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Abstract

Background

The modern human colonization of Eurasia and Australia is mostly explained by a single-
out-of-Africa exit following a southern coastal route throughout Arabia and India. However,
dispersal across the Levant would better explain the introgression with Neanderthals, and
more than one exit would fit better with the different ancient genomic components discov-
ered in indigenous Australians and in ancient Europeans. The existence of an additional
Northern route used by modern humans to reach Australia was previously deduced from
the phylogeography of mtDNA macrohaplogroup N. Here, we present new mtDNA data and
new multidisciplinary information that add more support to this northern route.

Methods

MtDNA hypervariable segments and haplogroup diagnostic coding positions were analyzed
in 2,278 Saudi Arabs, from which 1,725 are new samples. Besides, we used 623 published
mtDNA genomes belonging to macrohaplogroup N, but not R, to build updated phylogenetic
trees to calculate their coalescence ages, and more than 70,000 partial mtDNA sequences
were screened to establish their respective geographic ranges.

Results

The Saudi mtDNA profile confirms the absence of autochthonous mtDNA lineages in Arabia
with coalescence ages deep enough to support population continuity in the region since the
out-of-Africa episode. In contrast to Australia, where N(xR) haplogroups are found in high
frequency and with deep coalescence ages, there are not autochthonous N(xR) lineages in
India nor N(xR) branches with coalescence ages as deep as those found in Australia.
These patterns are at odds with the supposition that Australian colonizers harboring N(xR)
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lineages used a route involving India as a stage. The most ancient N(xR) lineages in Eur-
asia are found in China, and inconsistently with the coastal route, N(xR) haplogroups with
the southernmost geographical range have all more recent radiations than the Australians.

Conclusions

Apart from a single migration event via a southern route, phylogeny and phylogeography of
N(xR) lineages support that people carrying mtDNA N lineages could have reach Australia
following a northern route through Asia. Data from other disciplines also support

this scenario.

Introduction

There is wide interdisciplinary agreement on the African origin of Anatomically Modern Hu-
mans (AMH) around 200 thousand years ago (kya), and also on the idea that they expanded
out of that continent to colonize the rest of the world replacing, with only minor genetic ex-
changes, the indigenous hominids already present in Eurasia [1,2]. However, there is still inter
and intra-disciplinary disagreement about the time and routes used by AMH in their dispersal
out of Africa.

Based mainly on the coalescence age of mitochondrial DNA (mtDNA) L3 lineages, most ge-
neticists propose a temporal window of 60-70 kya as the time for the exit, coinciding with the
early Last Glacial stage (MIS 4). This hypothesis involves a southern route to Arabia across the
Bab al Mandab strait, which, at that time, would have presented a very low sea level [3-6].
Some difficulties with this proposal are: the need of sea strait crossing, the inhospitable climatic
conditions in Arabia at that time, the lack of pertinent fossil record along the trail, and the
early colonization of Australia. Specially problematic is the date of the arrival of AMH to Aus-
tralia, the last stage of the initial phase of the AMH colonization of the world, that occurred at
least 45 kya [7] attending to the fossil record, but that could be as old as 62 to 75 kya based on
genomic aboriginal Australian data [8]. However, all these problems have been overcome by
appealing to navigation skills, coastal resource specialization, present-time submerged fossil re-
cord, and a very fast spread across coastal India, Myanmar, Malaysia and Indonesia to reach
Australasia in time. Recent archaeological studies of Middle Paleolithic stone assemblages in
several sites of the Arabian Peninsula [9-11] have added archaeological support to the south-
ern route although entering Arabia during the last interglacial, around 120 kya, much earlier
than the dates estimated from mtDNA by the geneticists. It is worth mentioning that a wade
ashore across the Bab al Mandeb strait in that period would be more difficult than during a
glacial stage.

On the other hand, a northern route by land across the Sinai Peninsula, for the out of Africa
migration, is strongly sustained by paleontological and archaeological evidence, as the presence
of AMH remains and associated stone material in the Levant around 100 kya [12,13]. The tem-
poral coincidence of this date with an interglacial period would improve the climatic condi-
tions of this corridor facilitating this northern exit. However, in this case, the lack of AMH
fossil continuity in the area prompted researchers to consider it as an unproductive exit.
Against this idea, recent studies on ancient genomes have detected a basal Eurasian component
in the Near East, which diverged prior to the separation of the ancestors of Europeans and
Eastern Asians. This finding reinforces the idea that the early presence of modern humans in
the Levant was not an unsuccessful episode [14].
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At the beginning of this century, studies based on mtDNA complete genomes [15-18] con-
firmed that only two mtDNA lineages (named M and N), sister branches of the African macro-
haplogroup L3 lineages, embraced all the mtDNA variation that exists out of Africa. Based on
the phylogeography of M and N in Eurasia, it was proposed that M and N could respectively
represent the maternal signals of both a southern and a northern route out of Africa [19]. The
huge quantity of data gathered during these years by the paleontology, archaeology and genet-
ics, including genomics and archaeogenomics fields, support that the first modern human colo-
nizers of Australia, carrying mtDNA N(xR) lineages, followed a northern route, across
northern Asia and through the Indonesian eastern side of the Wallace line. That reinforces our
previous view of the existence of a northern route based on the phylogeny and phylogeography
of mtDNA haplogroup N. The goal of this paper is to add further experimental data and put-
ting all this evidence in a coherent picture.

Material and Methods
Ethics Statement

Ethical approval was provided by the Ethics Committee for Human Research at the University
of La Laguna. Written consent was recorded from all participants prior to taking part in the
study.

Samples

In this study, we collected 1,725 blood/saliva samples from unrelated and healthy Saudi Arabi-
an donors for mtDNA HVR amplification. Only individuals with all their known ancestors
born in Saudi Arabia were considered. We also selected 28 samples of western Asian origin
(five of them previously published in Maca-Meyer et al. [17]) and 11 of Saudi Arabian origin
for mtDNA complete sequencing. Written informed consent was obtained from

all individuals.

MtDNA sequencing

The mtDNA hypervariable regions I and II of 1,725 new Saudi Arabian samples were amplified
and sequenced as detailed elsewhere [20]. When necessary, haplogroup diagnostic SNPs were
typed using PCR-RFLPs or SNaPshot multiplex reactions [21]. The 1,725 new partial mtDNA
sequences have been deposited in GenBank under accession numbers KP960570-KP962294. In
addition, complete mtDNA genome sequencing was carried out on 28 western Asian individu-
als of uncertain or atypical haplogroup adscription. These include the reanalysis of five samples
belonging to haplogroup N(xR) previously published in Maca-Meyer et al. [17]. For mtDNA
genome sequencing, amplification primers and PCR conditions were as previously published
[17]. Successfully amplified products were sequenced for both complementary strands using
the DYEnamic ET Dye terminator kit (Amersham Biosciences) and samples run on Mega-
BACE 1000 (Amersham Biosciences) according to the manufacturer's protocol. The 23 new
complete mtDNA sequences have been deposited in GenBank under accession numbers
KM245130-KM245152. The five sequences previously published [17] and reanalyzed here have
kept their previous GenBank accession numbers (S3 Table).

Previous published data compilation

Complete and partial sequences belonging to specific haplogroups were obtained from public
databases such as NCBI, MITOMAP thel000 Genomes Project and from the literature. We
searched for mtDNA lineages directly using diagnostic SNPs, or by submitting short fragments
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including those diagnostic SNPs to a BLAST search (http://blast.st-va.ncbinlm.nih.gov/Blast.
cgi). Haplotypes extracted from the literature were transformed into sequences using the Hap-
loSearch program [22]. Sequences were manually aligned and compared to the rCRS [23] with
BioEdit Sequence Alignment program [24]. Haplogroup assignment was performed by hand,
screening for diagnostic positions or diagnostic motifs at hypervariable regions and at coding
regions whenever possible.

We retrieved 623 published complete sequences of Eurasian and Oceanian origin from pub-
lic databases to build the phylogenetic trees of N(xR) haplogroups (lineages that belong to N
but not to its R subclade): N1a3a (n = 29 mitogenomes), X (n = 2), N7 (n = 13), N8 (n = 2), N9
(n=269), N10 (n =4),N11 (n=18), O/N12 (n=4), N13 (n =2),N21 (n=11), N22 (n=7), A
(n=247) and S (n = 15). To accurately establish the geographic ranges of the relatively rare
haplogroups, we searched 73,215 partial sequences (references are in S1 Table) from the litera-
ture. A total of 328 of these previously published partial sequences could be unequivocally clas-
sified into haplogroups: N7 (n = 13), N8 (n = 33), N10 (n = 71), N11 (n = 58), N21 (n = 113),
and N22 (n = 40) (S2 Table). For western Eurasian haplogroups we relied on recent reviews
carried out by others: N1 [6,25-29], N2 [6,27-29], N3 [26,28-30], N5 [27,31], and X
[6,26,27,32]. In addition, 553 Arabian samples previously published in Abu-Amero et al. [19])
were also included in our study.

Phylogenetic analysis

Phylogenetic trees were constructed by means of the Network program, v4.6.1.2 using, in se-
quent order, the Reduced Median algorithm, Median Joining algorithm and Steiner (MP) algo-
rithm [33]. Remaining reticulations were manually resolved. Haplogroup branches were
named following the nomenclature proposed by the PhyloTree database [34] (Build 16; http://
www.phylotree.org/). Coalescence ages were estimated by using statistics rho [35] and sigma
[36], and the calibration rate proposed by Soares et al. [37]. Differences in coalescence ages
were calculated by two-tailed t-tests.

Phylogeographic analysis

In this study, we are dealing with the earliest periods of the out-of-Africa spread, and later de-
mographic growth and expansions most probably eroded those early movements. For that rea-
son, we omitted spatial geographic distributions of haplogroups based on contemporary
frequencies or diversities, and used a simple presence/absence of N basal lineages criterion to
establish the present-day haplogroup geographic range and the overlapping geographic area of
those haplogroups as the most probable center of the old expansion.

Correlation analysis

To test for correlation between N(xR) haplogroups coalescence ages and their relative geo-
graphic distances from Africa we used parametric Pearson tests and modeled a non-parametric
Kendall rank-correlation [38] formulating a monotonically decreasing function in which to a
geographic increasing longitude value, from Djibouti eastwards to Australia, a decreasing hap-
logroup coalescent mean age value is associated. The first and last points of this function corre-
spond, respectively, to the empirical coalescent ages of macro-haplogroup L3 and haplogroup
S at the Djibouti and Australia geographic longitudes. The upper and lower bounds of this
function are marked by the corresponding 95% confidence intervals (95% CI) associated to
each mean age point. In the Kendall rank-correlation we consider a concordant pair when, at a
given longitude, the 95% CI associated to the model and to the experimental haplogroup coa-
lescent ages overlap, being a discordant pair if they do not. The geographic center of gravity for
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each haplogroup was estimated as the point at which the segment joining the most distant lati-
tudinal borders and the segment joining the most distant longitudinal borders of the hap-
logroup geographic range crossed. Maps and geographic coordinates were obtained using
Google Earth software (https://earth.google.com).

Results
Macrohaplogroup N

Coalescence ages, based on complete mtDNA sequences, for the main branches of macroha-
plogroup N(xR), and their present-day geographic distributions are shown in Table 1 and S1-
S2 Figs. Haplogroup N11 presents the oldest divergence (around 76 kya) with two main
branches, N11a and N11b. N11a is spread in central, western China and Inner Mongolia, and
also in southern China and in Makatao from Taiwan [39-42], whereas N11b is found in Philip-
pines [43,44].The second most ancient lineage is N10 (around 66 kya) being mainly detected in
southern China, the Tibet and in Lingao from Hainan [39,45]. It is relevant to mention here
that, albeit in a smaller proportion, Tibetan and Southeastern Asians, like Filipinos, have intro-
gressed Denisovan-like DNA in their genomes [46,47]. Around 50 kya N(xR) representatives
diverged at the same time at very distant geographic areas as western Eurasia (N1 and N2) and
Australia (S). Incidentally, as most parsimonious, we propose the Australian N14 lineage [48]
as a branch of Sla, sharing 5291 transition with another Australian S sequence (S1 Fig). Later
N(xR) spreads, around 40 kya, occurred in a global geographic range from West Asia including

Table 1. Age estimates, in thousands of years, for L3, M, and the main branches of haplogroup N.

Haplogroup This study’

L3
M

N

R
N1
N2
N3
N5
N7
N8
N9
N10
N11
O/N12
N13
N21
N22
A

S

X

1.- Age estimates from complete sequences using rho and the calculator provided by Soares et al. 2009.

70.8(52.7-88.1)
48.4(42.0-54.8)
60.2(46.1-74.2)
54.5(45.2-65.6)
51.9(37.1-68.3)
48.3(31.5-69.2)
11.9(4.0-20.3)
35.7(19.8-51.5)
36.4(22.5-50.9)
20.4(9.8-31.6)
37.9(37.5-48.7)
66.4(39.2-93.4)
75.9(48.4-104.9)
43.0(26.8-60.1)
29.3(16.2-43.0)
17.5(8.7-26.6)
17.0(8.8-25.5)
27.6(19.3-38.3)
46.8(37.0-56.9)
31.9(20.7-45.6)

Behar et al. 2012

67.3+4.4
496+1.8
589+24
56.5+2.1
516+5.6
445+7.4

36.7 £ 8.2

45.7+7.9
50.4+6.5
56.3+ 3.6
52.1+6.4

224+9.0
252+8.8
242+49
535+5.5

Other authors® ° defining mutations Geographic range

71.6"(57.1-86.6) 78.3°(62.4-94.9) 94.3°+9.9 Africa
Asia

65.1°(52.8-77.8) Eurasia

54.5% 2.0 Eurasia

54.2"(41.3-67.5)
50.9°(30.5-72.5)
15.4% £11.9

49.1"(34.2-64.6)
63.4°(53.1-74.0)

29.2"(19.1-39.8)

31.7+11.7 33.8°(22.5-45.7)

11.9/(4.0-20.3)

33.7°(22.4-45.1)

7

2

n
3
3
5
2
3
5
1

7
7
1

1

4
1

3
13
7
7
8
1

7

West Eurasia, North Africa
South and West Eurasia
West Eurasia

South and West Eurasia
Cambodia

South China

East Asia

Southeast China
Philippines, China, Tibet
Australia

Australia

Indonesia, Malaysia
Southeast Asia

Central and Northeast Asia
Australia

West Eurasia, North Africa

2.- a = Derenko et al. 2013; b = Fernandes et al. 2012; ¢ = Fu et al. 2013; d = Gonder et al. 2007; e = Kong et al. 2011; f = Kushniarevich et al. 2013;

g = Pierron et al. 2011; h = Soares et al. 2009.

doi:10.1371/journal.pone.0129839.t001
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North Africa (haplogroup X), southeast Asia (N7 in Cambodia), to northeast Asia (N9) extend-
ing also to Australia (O/N12). Other haplogroups as M and R derivatives, also present in Aus-
tralia, could have reached this continent in that period as a secondary migratory wave. Ancient
DNA analyses of an early modern human from Tianyuan cave in northern China, dated
around 40 kya [49] and a modern human from western Siberia dated around 45 kya [50],
showed that these two individuals already belonged to mtDNA haplogroup R lineages, the
main derived branch of macrohaplogroup N. In addition, they carried portions of DNA de-
rived from Neanderthals similar to people present-day in mainland Asia, but lacked of the
Denisovan component detected in Negritos of Philippines, Papuans and aboriginal Australians
and, at less proportion, in southeastern Asians and Tibetans [47,51], reinforcing the idea that
Asian expansions at that period were driven by carriers of derived mtDNA lineages and that
the Tianyuan specimen was genetically a fully modern human.

N(xR) haplogroups with the southernmost geographical ranges as N8, N21 and N22 had all
significantly more recent radiations than those of Chinese haplogroups N10 (p < 0.0001 in all
cases) and N11 (p < 0.0001 in all cases) and the Australian lineages S (p < 0.0001 in all cases)
and O (p< 0.0001 for N21 and N22 and p = 0.0074 for N8). These results are inconsistent with
a southern route for N(xR). Furthermore, they are also significantly younger (p < 0.0001 in all
cases) than the youngest northern Asian haplogroup A (Table 1). It has to be mentioned that,
from our analysis of 247 haplogroup A complete sequences (S2 Fig), we have detected 32 new
phylogenetic branches of this haplogroup, tentatively represented in red on the A tree. Also in-
consistent with the southern route hypothesis is the fact that relative diversities point to an ori-
gin in island Southeast Asia for these southern N lineages and recent dispersals westwards into
the Malay Peninsula [52].

The role of the Arabian Peninsula

The southern coastal route hypothesis places the Arabian Peninsula as the initial staging post
in the exit of modern humans out of Africa. Our previous mtDNA analyses of Saudi Arabian
populations [19,53] evidenced the lack of deep phylogenetic autochthonous Arabian lineages
needed to support ancient population continuity in Arabia. On the contrary, the oldest putative
indigenous lineages have coalescences ages at the Pleistocene-Holocene boundary and, the
present day genetic profile of the Arabian Peninsula fits better as a recipient of relatively recent
immigrations than as a source of the pioneer Eurasian colonizers [54]. However, a recent study
of N(xR) lineages in the Arabian peninsula has considered the existence of derived N1
branches in the area as relicts of the earliest stage of the southern coastal dispersal of modern
humans from the Horn of Africa to the rest of the world [6].

An increase in sample size, including 2,278 Arab mtDNA partial sequences (54 Table) and
the complete mtDNA sequencing of 28 West Asian samples, comprising some rare Saudi and
North African lineages (S3 Table and S3 Fig), have not significantly changed our previous re-
sults and conclusions [19,53,54]. As before, haplogroups J (21%) and R0a (17%) are the pre-
dominant clades. Phylogeographic analysis of these haplogroups [19,53,55] and other lineages
with less prevalence in the area as HV1 [56] and R2 [57] seems to indicate population expan-
sions in the Arabian Peninsula mainly after the last glacial maximum coinciding with climate
improvement in the area. As for the four R macrohaplogroup complete sequences of Arabian
origin analyzed in this study (S3 Fig), one belonged to R0a2c haplogroup, and the other to Rla
with an Armenian and an Abkhazian sequence as sister branches [58]. The other two se-
quences belong to the Indian clades R6 and R8 and were classified as specific R6al [59] and
R8a3 [60] sublineages. In addition, a rare Georgian sequence has been classified as an R2d line-
age (S3 Fig).
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Although the bulk of the Arabian sequences (70%) belong to different clades of macroha-
plogroup R, 13% percent of Arabian samples belong to haplogroup L, with a clear sub-Saharan
African origin. One of the two L Arabian completely sequenced samples was a typical L2al
lineage with a reversion at the 16309 position. The second is a derived L3ila sequence, with its
closest counterpart observed in Ethiopia (This study and [61]) pointing to a recent importation
from northeastern Africa (S3 Fig). Seven per cent of the Arabian samples were assigned to
macro-haplogroup M, of which 4% are members of the North African haplogroup M1, and the
remaining 3% conform a miscellaneous group of sequences from South, Southeast and Eastern
Asian origins and sole representatives of Melanesia (Q1), Madagascar (M32c) or Australia
(M42). In particular, the rare Arabian M sample completely sequenced in this study (S3 Fig)
belongs to the Indian M42b1 clade, sharing only transversion 95C with a Munda sequence
(MUNZ22) at the same clade. A sister branch of the Indian M42b, with a coalescence time esti-
mation around 55 kya, has spread in Australia [62]. Finally, ten percent of the Saudi Arab se-
quences were of N(xR) ascription, being the best represented clades the X2 branch of
haplogroup X (2.8%) and the derived branches N1a3 (2.1%), N1b (2.0%),N1ala (1.1%) and I
(1.3%) of haplogroup N1.

There is no evidence of deep autochthonous N(xR) clades in the Arabian Peninsula. More-
over, in the few cases in which more than one Arabian sequence is allocated into the same
branch their coalescence ages are within the Pleistocene-Holocene period observed for other
members of haplogroup R. Furthermore, in the majority of the cases these Arab sequences
have sister lineages with deeper roots in the Near East, Iran, the Caucasus or further North. For
instance, the two completely sequenced N1a3a Saudi samples (S3 Fig) have a coalescence age
of only 11.9 kya. The sole N3a Saudi sample (53 Fig) can be placed as a derived branch in a tree
composed of Iranian and Belarus N3 sequences [28]. Again, the sole X1 Saudi sequence de-
tected (S3 Fig) has a sister counterpart in North Africa, conforming a secondary X1c2 branch
with an age of barely 6.5 kya. A close inspection of the complete Arab sequences presented by
Fernandes et al. [6] in their N(xR) phylogenetic tree corroborates this scenario. To begin with,
there are two sequences from Dubai (DL63 and DL60) that are rooted at 22 kya with a N1e
North Asian Buryat, [63]; however the coalescence age for the two Arab members is only 5,216
(103-10,501) ya. In addition, the fact that N1e is a sister branch of haplogroup I, a subclade of
N1, deserves mention. The N1a Yemeni isolate JHA114 coalesces at 15 kya with a set of Soma-
lian and Ethiopian sequences. Their N1c (now N1a3a) isolate DL247 from Dubai conforms a
clade with European and Caucasian sequences with an age around 18 kya but, our updated
N1a3a clade (S3 Fig) conformed by 31 sequences including 6 from the Arabian peninsula, has
in fact an age of only around 11.9 (9.2-14.6) kya. A Yemeni sequence (JT196), belonging to
haplogroup W, has the oldest coalescence age with sister branches in Turkey and in the Cauca-
sus, around 20 kya. At this point it seems pertinent to mention that a N2a sister branch of the
whole W clade has as representative members North Asians Ket [64] and Mansi isolates [65]
and an Armenian from the Caucasus [34]. Furthermore, the most ancestral W sequence is that
of a Sherpa lineage from the Tibetan highlands [66].

Our detailed analysis of the Arabian N(xR) lineages confirms the lack of ancestral N clades
in that Peninsula that could sustain a modern human continuity since the out-of-Africa spread
at around 60 kya proposed by geneticists, or around 120 kya according to archaeologists [9-
11]. It is of note to mention that a recent study, using complete mtDNA genomes, fully corrob-
orate our negative results also in Yemen [67]. To give a statistical assessment, the N1a3a
branch, that joins most Arab lineages with others of western Asian origin, has a coalescence
age of only 11.9 + 2.7 ky being significantly younger (P < 0.0001) than the youngest clade O
(43.1 £ 16.5 ky) from Australia. Better than as the cradle of a recent born African modern
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human, the Arabian Peninsula could be defined as a recent pilgrimage center of worldwide
incomers.

The role of South Asia in the spread of macrohaplogroup N

The main issue of an unique coastal southern route out of Africa was the lack in South Asia of
autochthonous N(xR) lineages that are predominant in Australia, the last stage of the out-of-
Africa expansion [17,68]. However, the detection of a putative autochthonous N5 lineage in
India [31] was enough to reinforce the single southern migration hypothesis, with the impor-
tant additional assertion that all the three mtDNA founder lineages in Eurasia (M, N, R) trav-
elled together in a unique main expansion. Nevertheless, since then, an impressive amount of
mtDNA data on India and West Asia has been published. This new information is in support
of a real absence of basal N(xR) autochthonous haplogroups in India. First, no new basic N lin-
eages have been detected. Second, N5 could not be an Indian autochthonous clade based on
phylogenetic reconstruction, as it shares transition 1719 with its sister clade N1 that is a hap-
logroup of undoubted West Asian origin [34], and it has been also found in the Caucasus, Paki-
stan, Iran and Nepal [26,69-71]. Third, other N lineages detected in India as I, W, X2, or N9a,
Y2 and A4, are derived branches of the basal clades N1, N2, X, or N9 and A, of western and
eastern Asian origins respectively. Thus, the presence of N lineages in India is better explained
as the product of late migration from northwestern and northeastern areas. Even though hap-
logroup N5 is accepted as an autochthonous Indian lineage, its coalescence age (35.7 + 8.2) is
significantly younger (p < 0.0055) than that of the Australian S lineage (46.8 + 5.5). This sce-
nario strongly contrasts with the huge presence of autochthonous M [40,72] and R
[31,59,60,73] lineages with deep coalescence ages in India. It could be alleged that primary au-
tochthonous N lineages existed in India but became extinct due to genetic drift, but this hy-
pothesis is in contradiction with the fast population growth detected in prehistoric southern
Asia [74]. In summary, it seems that the first colonizers of Australia, carrying mtDNA hap-
logroup N(xR) lineages, could use a route not involving India as a stage. This does not preclude
the existence of a southern route across South Asia as proposed by ourselves [17,68] and others
[4,75] based also on other mtDNA lineages.

Early arrival to Australia

The coalescence age of the autochthonous mtDNA haplogroup S, around 50 kya, is compatible
with the archaeological dating for human occupation in northern Australia [76], but is out of
the MIS 4 glacial period (74-59 kya), when low sea levels would facilitate the travelling from
Sunda to Sahul. However, from the genome sequencing of an Aboriginal Australian [8], it was
deduced that Aboriginal Australians are descendants of a human dispersal into eastern Asia
that occurred as early as 62-75 kya. It was also reported that the mtDNA sequence of that sam-
ple belongs to haplogroup O, one of the basic N(xR) lineages in Australia but with later diver-
gence than S. Furthermore, it was confirmed that there was Neanderthal and Denisovan DNA
traces in that individual. In particular, the Denisovan component is mainly present in Melane-
sians, East Indonesians and Negrito from Philippines, compared to other southeastern Asians,
and is absent in Andamanese [77]. That is, only populations situated to the east of the biologi-
cal boundary traced by Alfred Russell Wallace in 1869 seem to consistently share genetic mate-
rial from Denisovans, pointing to a close relationship among them. At this respect, the
presence of mtDNA lineages in Negrito from Philippines, related to the oldest haplogroup N11
deserves special mention. Furthermore, based on genome-wide data, an ancient, Paleolithic, as-
sociation between Australian New Guinean and Mamanwa from Philippines has been substan-
tiated recently [78].
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Table 2. Coordinates for haplogroups assigned to the southern route with observed and expected age values.

Haplogroup
L3

N1a3a

N3

N5

N7

N8

N22

N21

S

Geographic center
Khor Angar (Djibouti)
Damgawt (Yemen)

Kerman (Iran)
Nagpur (India)

Phnom Penh (Cambodia)
DaNang (Vietnam)
Kuching (Malaysia)
Samarinda(Indonesia)
Darwin (Australia)

doi:10.1371/journal.pone.0129839.t002

Coordinates
12°23'N-43°21°E

Observed age (Kya)

70.8(52.7-88.1)

Expected age (Kya)

70.8(52.7-88.1)

16°34'N-52°51"E 11.9(9.2-14.6) 68.2(56.1-80.0)
30°00°N-58°00"E 11.9(4.0-20.3) 66.7(54.7-78.7)
21°08'N-79°05'E 35.7(19.8-51.5) 60.9(48.9-72.1)
11°00'N-104°00'E 36.4(22.5-50.9) 54.1(42.9-65.3)
16°00'N-108°00'E 20.4(9.8-31.6) 53.0(42.5-63.5)
01°34'N-110°20'E 17.0(8.8-25.5) 52.4(40.3-64.4)
01°31'S-118°00'E 17.5(8.7-26.6) 50.2(39.5-60.3)
12°28'S-130°50 E 46.8(37.0-56.9) 46.8(37.0-56.9)

Lack of correlation in both routes between haplogroup ages and their
geographic distances from Africa

Parametric and non-parametric correlation methods used to test for a negative association be-
tween increasing longitude values from eastern Africa to Australia and the coalescence age of
present N(xR) haplogroups along the proposed southern and northern routes (Tables 2 and 3),
gave non-significant association values in both cases (R = -0.33 and -0.19; T = 0.02 and 0.15).
The most probable causes of this negative results for the southern route are the lack of autoch-
thonous N(xR) lineages in Arabia and South Asia, even accepting N1a3a and N5 as indigenous
from the Arabian Peninsula and India respectively, and the young radiations of the southern-
most N(xR) haplogroups in southeastern Asia compared to those in Australia. For the northern
route, the negative results can be explained by the very old radiation ages of haplogroups N10
and N11 in southern China compared to those of the northern Asian haplogroups A and N9,
that, most probably re-expanded during the MIS-3 mid last glacial interstadial (60-25 kya).

Discussion

Practically all humans out-of-Africa belong to mtDNA macrohaplogroups N or M, both sister
branches of L3 African clade. N shows a global Eurasian distribution but most of its lineages
everywhere are members of the R subclade. Only in Aboriginal Australians N(xR) lineages
reach frequencies over 50% [5,79], and in some regions of East and Central Asia, haplogroups
N9 and A can, respectively, exceed 10% [30,39,58,68,80]. In the rest of its geographic range, the
presence of N(xR) lineages is residual and represent small younger expansions driven by the

Table 3. Coordinates for haplogroups assigned to the northern route with observed and expected age values.

Haplogroup
L3

X

N1

N2

A

N11

N10

N9

S

Geographic center

Khor Angar (Djibouti)
Krasnovodsk (Turkmenistan)
Samarkanda (Uzbekistan)
Almaty (Kazajistan)

Urumchi (China)

Kunming (China)
HoChiMinh (Vietnam)
Taiyuan (China)

Darwin (Australia)

doi:10.1371/journal.pone.0129839.003

Coordinates Observed age (Kya) Expected age (Kya)
12°23'N-43°21°E 70.8(52.7-88.1) 70.8(52.7-88.1)
40°10°N-53°00'E 31.9(20.7-45.6) 66.6(57.8-75.7)
39°37'N-66°58'E 51.9(37.1-68.3) 64.4(54.6-74.1)
43°13'N-76°51'E 48.3(31.5-69.2) 61.6(71.8-50.8)
43°49°N-87°37°E 27.6(19.3-38.3) 58.9(50.0-67.8)
24°53'N-102°49°E 75.9(48.4—104.9) 54.5(44.7-64.2)
10°49°N-106°49°E 66.4(39.2-93.4) 53.4(42.3-64.4)
37°52'N-112°33°E 37.9(27.5-48.7) 51.8(41.2-62.3)
12°28°S-130°50°'E 46.8(37.0-56.9) 46.8(37.0-56.9)
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Fig 1. Geographic dispersal routes of (A) AMH out of Africa migration, and (B) secondary worldwide human expansions, deduced from the age
and geographic localization of L3 and N(xR) mtDNA haplogroups including Lineages O and S from Australia. Climatic marine isotope stages (MIS)
and most probable places of genetic admixture with Neanderthals and Denisovans are depicted. Dotted lines in B mean probable gene flow between
populations from different dispersals.

doi:10.1371/journal.pone.0129839.g001

later spread of human groups, mainly harboring R derivatives in Western Asia and R and M
derivatives in South and East Asia.

Our phylogenetic and phylogeographic analysis of macrohaplogroup N in Eurasia supports
the existence of an additional northern route out of Africa, not involving the Arabian Peninsula
or the Indian subcontinent as previously envisaged [17]. This long journey ended in Australia
when it was still a part of the Sahul, most probably at the last glacial stage MIS-4 (Fig 1A). On
the top of the common L3* trunk, macrohaplogroup N accumulated a stem of five mutations
without any known bifurcation. From this fact, it can be deduced that, after the out-of- Africa,
the bearers of this lineage seem to have had demographic difficulties and remained as a stag-
nate population for a long time. So, the first stages of the proposed haplogroup N northern
route would be speculative and have to find indirect support on other genetic, archaeological
and anthropologic evidences.

The view from other genetic markers

The first Y-chromosome global studies also confirmed the recent origin of modern humans in
Africa and their expansion throughout Eurasia replacing other archaic hominids. It was also
deduced that a two routes scenario, one from the Horn of Africa and the other for the Levan-
tine corridor, would be enough to explain the Y-chromosome phylogeography out of Africa
[81]. However, subsequent studies, mainly involving the Indian subcontinent, favored the
southern route across the Bab el Mandeb strait as the primary migratory passage explaining
later northward colonization as its secondary offshoots [75]. In recent years wide genome anal-
yses and whole genome sequencing have been increasingly introduced to further clarify the ori-
gin and dispersals of modern humans. The reduced genetic diversity and recombination rates
observed in populations situated further and further away from Africa were considered by
some authors in support of a recent African origin of modern humans followed by a single
gradual colonization of the rest of the world through successive founder steps [82-84]. In addi-
tion, it was suggested that the wave of migration out of Africa occurred around 56 kya [85].
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Furthermore, another article suggested that the recombination diversity patterns correlate with
distance from Africa through a south Arabian, but not a Sinai, route and, within Eurasian pop-
ulations, recombination distance correlate with distance from Southern India, supporting a sin-
gle rapid expansion from Africa to eastern Asia with South Asia playing an important role

[86]. However, other authors envisaged a more complex scenario, suggesting distinct, early dis-
persals from Africa [87]. For some authors the earliest dispersal occurred around 130 kya fol-
lowing a southern route to Australia and Melanesia and the later dispersal into northern
Eurasia by around 50 kya [88], others situated the out of Africa in a range of 140-80 kya distin-
guishing subsequent bottlenecks in Europeans and East Asians around 20 kya [89] that could
be explained as due to the MIS2 late last glaciation (24-12 kya). The recent explosive human
population growth over the last 3,000-4,000 years detected by studies focusing on neutral ge-
nomic regions [90,91], is also graphically confirmed at mtDNA level as the most important ra-
diations in the mtDNA phylogenetic tree [34] sprout from secondary nodes with post-
Neolithic ages. Perhaps, the patterns of the primary human dispersals, inferred from studies
comparing gene diversities in present day populations, should be taken with caution. Anyhow,
the northern route deduced from Y-chromosome and global genomic studies is in contradic-
tion, in time and direction with our proposal based on mtDNA haplogroup N(xR). In fact, in a
range of 30-50 kya we detect secondary dispersals that colonized western Eurasia and northern
Africa (Fig 1B). These movements were named as back-to-Africa migrations by us ([17,92-
94]) and others ([32,95-97]). Curiously, returns to Africa have also been detected in Y-chro-
mosome ([98-101]) and genome wide analyses ([102-106]) but with younger ages, ranging
from historical times to 23 kya. These discrepancies could be attributed to the real existence of
several waves of back-to-Africa migrants, detected preferably by different kinds of genetic
markers, to differences in the dating methods or to both causes.

Out of Africa across the Levant

From a mtDNA perspective, it was the wide radiation of macro-haplogroup L3 in Africa, dur-
ing a mild climatic period, that prompted the African exit of modern humans to Eurasia [61].
At the beginning, this putative expansion was estimated around 89 + 69 kya [107], but a later
revised mtDNA time scale placed this radiation in an age window between 59 to 95 kya
[1,27,49,61], comprising the last phase of a moist interglacial period and the outset of an arid
glacial period. In addition, it has to be mentioned that, using a revised genome-wide mutation
rate [108], the split between non-African and African populations was situated in a range of 90
to 130 kya. These ranges overlap with the presence of modern humans in the Levant, as attested
by the fossil evidence retrieved from the Qafzeh and Skhul caves [109]. It also coincides with a
wet climatic period that would facilitate a sub-Saharan Africa northward spread to the Medi-
terranean shores across the present-day Saharan desert, not only through the Nile Valley but
also across Libya and the Maghreb [110-112]. In the same temporal window is the Aterian
stone industry that extended overall in North Africa and the Sahara desert, from the Atlantic
coast to the Nile Valley and outward into the Levant [113]. Of paramount importance is the ev-
idence that Aterian presents hints of modern human behavior as suggested by the inclusion of
ornamental shell beads in their African and Levantine assemblages, and the technological ad-
vantage of their stem tools, suitable for hafting [114,115]. Furthermore, affinities between Ater-
ian skulls and Levantine earlier Homo sapiens have been reported [116], as well as cranial
morphometric affinities between Levantine and later Pleistocene/early Holocene human popu-
lations from Australia [117]. All these evidences points to a successful Paleolithic exit through
the Sinai Peninsula during the last interglacial period (Fig 1A). Finally, as sea levels would be
higher in that time than in glacial episodes, alternative routes involving crossing maritime
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straits as the Bab al Mandeb through Arabia or the Gibraltar through Iberia would have fewer
possibilities of success. This leaves the crossing of the Sinai Peninsula by land as the most plau-
sible gate of exit. During this favorable climatic window, the Mediterranean Africa and the Le-
vantine corridor presented a rather uniform environment that allowed the continuous
dispersal into the Near East of small groups of modern humans with close familiar ties. These
groups would carry basal L3* mtDNA lineages as their African counterparts. Only two of those
lineages have survived till present day, giving the M and N macro-haplogroups that comprise
all the non-African extant mitochondrial diversity. The current phylogeography of M and N
and their respective coalescent ages of 46 to 53 kya and 54 to 64 kya [27] allow an earliest
northward expansion of at least a group carrying a mtDNA lineage that, along the migration
route, gave rise to macro-haplogroup N which comprises all the current N lineages, including
the derived R characterized by the reversion of the 16223 transition and the presence of the
12705 substitution [17].

Up to the Caucasus and beyond

There are several possible routes to penetrate to the interior of Asia from the Levant [13], how-
ever, archaeogenomics points to the Caucasus as the most probable path (Fig 1A). In effect, the
reliable recovery and sequencing of ancient DNA from archaic hominids such as Neanderthal
and Denisovan have greatly enlightened their genetic interactions with modern humans. Nean-
derthal genomic sequencing [118,119], and their comparison with modern humans, detected a
limited rate of gene flow (1.5 to 2.1%) from Neanderthals into non-African modern humans
before their split into European and Asian groups. As the geographic range of Neanderthals
embraced Europe and parts of western Asia, including the Levant, it was proposed that the in-
terbreeding occurred in the Levant where the out of Africa human groups and Neanderthals
first met. Further analyses involving more modern human populations demonstrated that Ne-
anderthals contributed significantly more DNA to modern East Asians and Melanesian than to
modern Europeans or South Asians [120-122], and that Neanderthals and modern humans
could have interacted in a temporal window of 40-90 kya [123]. More recently, it was stated
that the introgressed Neanderthal DNA in humans is more closely related to the Mezmaiskaya
Neanderthal from the Caucasus than it is to either the Neanderthal from Altai in Siberia or to
the Vindija Neanderthals from Croatia [119]. Clearly, this scenario is in conflict with the hy-
pothesis of a single dispersal out of Africa of modern humans through the Bab al Mandeb strait
into Arabia, and a sole southern coastal migration through South Asia to southeastern Asia
and Australasia. Although the southeastern range of Neanderthals might have extended to the
western bank of the Indus River [124], it is difficult to explain why Eastern Asians have more
Neanderthal DNA contribution than Europeans and South Asians. On the contrary, these dif-
ferences in Neanderthal gene flow fit better within the hypothesis of one origin, multiple dis-
persals and two routes, east and northwards from the Levant. Thanks, again, to ancient DNA
studies on hominid remains from Uzbekistan and the Altai mountains, it is unambiguously
known that Neanderthals extended their northeastern range to central Asia and South Siberia
[125]. Furthermore, using Neanderthal mtDNA sequences in demographic analysis, it was in-
ferred that western and eastern Neanderthal populations diverged approximately 55-70 kya
and that there was fragmentation and population turnover in the west, but genetic continuity
in the eastern area [126]. Under these circumstances, those modern human groups that went
northwards had to coexist with Neanderthals all along the trail. We do not know how the rela-
tionship between modern humans and Neanderthals was. Perhaps when the prey was abun-
dant they cooperated and when it was scarce they conflicted. However, it seems sure that
modern humans had to pay a sex toll but, in return, they followed the northward tracks
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through the Caucasus already opened by the Neanderthals. At least, the ancestors of the future
Australian colonizers went up to the Altai Mountains in South Siberia where a different homi-
nid, the Denisovans, already coexisted with the Neanderthals (Fig 1A). As with the case of Ne-
anderthals, the genomic [127] and high-coverage genomic sequencing [120] of a Denisovan
individual revealed that modern humans and Denisovans also interbred, but this time it mainly
affected the ancestors of Australian, Melanesian, East Indonesian and Mamanwa, a Negrito
tribe from Philippines [77]. It has been proposed that the geographic range of Denisovans
when the introgression could happen was greater, reaching southeastern Asia [127]. However,
against that supposition, it is the fact that the analyzed Altaian Denisovans had an extremely
low genetic variation at around 70 kya [120], so that if a greater geographic range existed it
would be too early to have admixed with modern humans in Southeast Asia. Furthermore, the
substantial introgression of Neanderthal DNA into Denisovans [119], and the close relation-
ship of a mtDNA genome of a hominin from Spain, with H.heiderbergensis morphological re-
semblance, to the mtDNA of Denisovans [128] might suggest that the Neanderthal and
Denisovan geographic ranges had a substantial overlap in the past.

Down to Australia

Climatic conditions could drive the first N bearers from southern Siberia down to southeastern
Asia and from there to Australia (Fig 1A). This most probably occurred during the continental
progressive cooling at the MIS4 glacial period (70-55 kya). They could have followed an interi-
or or coastal route as there is evidence for an early presence of modern humans in Central
China at least since 80 kya [129], in Southern China around 100 kya [130,131] and in Laos by
50 kya [132]. Similar old dates have been reported for Indonesia [133] and Philippines [134].
The unique mtDNA hints of these movements could be the haplogroup N11 highly divergent
branches located in Philippines [43], and in western and central China, including Tibet and
Mongolia [39,41], perhaps isolated remains of a greater geographic occupation that was eroded
by subsequent human waves. In this respect it is important to call the attention to the fact that
all mtDNA radiations that occurred later than 50 kya in other parts of Eurasia were younger
than the first colonization of Australia by haplogroup N lineages.

The secondary radiations

Shortly after this pioneering adventure, there are clear phylogenetic and phylogeographic signs
of worldwide secondary mtDNA expansions in which the three Eurasian macrohaplogroups
(M, N and R) actively participated (Fig 1B). These later demographic and geographic expan-
sions occurred during the warming interstadial MIS-3 period from 59 to 24 kya. They were
particularly impressive in the Indian subcontinent for the M [40,72,105] and R [59,60,135]
macrohaplogroups, but also in West Eurasia even affecting eastern and northern Africa as pre-
viously envisaged by our studies [17,92-94] and others [32,95-97]. It has to be stressed that in
our opinion, the 45 kya expansion from the Levant to Europe proposed by others [136] in fact
signals an important northern input affecting both areas (Fig 1B), as it has been suggested pre-
viously from the field of archaeology [137-139].

Conclusions

An unique southern route for the AMH out of Africa migrations has been placed as the most
probable path for the journey that drove our species to colonize the entire world. However, as
this study demonstrates, an additional Levant northern route is more congruent with available
multidisciplinary data. In addition, combined genetic, archaeological and bioclimatic evidence
suggest that, although the early anatomically modern human was born in Africa, the nursery of
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the modern humans that colonized Eurasia, Oceania and the New World might be first at the
south Siberia northwest China core and later in Southeast Asia.
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