
1Scientific Reports | 6:39175 | DOI: 10.1038/srep39175

www.nature.com/scientificreports

Transportation dynamics on 
coupled networks with limited 
bandwidth
Ming Li1, Mao-Bin Hu1 & Bing-Hong Wang2

The communication networks in real world often couple with each other to save costs, which results 
in any network does not have a stand-alone function and efficiency. To investigate this, in this paper 
we propose a transportation model on two coupled networks with bandwidth sharing. We find that 
the free-flow state and the congestion state can coexist in the two coupled networks, and the free-
flow path and congestion path can coexist in each network. Considering three bandwidth-sharing 
mechanisms, random, assortative and disassortative couplings, we also find that the transportation 
capacity of the network only depends on the coupling mechanism, and the fraction of coupled links only 
affects the performance of the system in the congestion state, such as the traveling time. In addition, 
with assortative coupling, the transportation capacity of the system will decrease significantly. 
However, the disassortative coupling has little influence on the transportation capacity of the system, 
which provides a good strategy to save bandwidth. Furthermore, a theoretical method is developed to 
obtain the bandwidth usage of each link, based on which we can obtain the congestion transition point 
exactly.

To meet the needs of communication development, more and more communication networks have been built 
over the last few years. However, in reality, due to the exorbitant cost of laying special lines and their energy 
supplies, a new communication network often attaches to some power networks, or partially couples with a 
existing communication network. Obviously, this construction mechanism makes the new network does not 
have a stand-alone function and efficiency. For the former case, a cascading failure caused by the interdependence 
between the power network and the communication network could destroy the whole system more easily than 
that without coupling1. The so-called interdependent networks are the popular model to perform such study2,3. 
For the latter case, on one hand, the coupling of two or more communication networks enables the message, 
opinion, or other information to spread from one network to another, which could facilitate the spreading and the 
emergence of cooperation4–9. On the other hand, sharing some physical devices could reduce the transportation 
efficiency of the communication networks. For example, in reality, some communication companies often share 
some communication lines to save costs, although the nodes in these networks may be totally different. Within 
the process of communication, the common lines will share a bandwidth. When the common bandwidth has 
been used by one network, the other networks can not use it at the same time. Uncovering the effects of this cou-
pling on transportation dynamic will be helpful for real-world communication network design and bandwidth 
allocation, which is the focus of this paper.

A basic model of transportation dynamic on networks is the one proposed by Ohira and Sawatari10. In this 
model, at each time step, information packets are generated with destination addresses, and transferred from one 
node to another toward their destinations following the given routings. With the increasing of the packet genera-
tion rate, this model can exhibit a phase transition from the free-flow state to the congestion state11. Based on this 
model, the dynamical properties of the communication system have been studied widely12–15, and a lot of routing 
strategies have been proposed to improve the transportation efficiency of a given network16, such as increasing the 
transportation capacity and decreasing the traveling time17–19. Some models and routing strategies have also been 
studied in the so-called interconnected networks20–22. However, the interconnected networks in these models can 
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all be understood as a large network with community structure, the sharing of physical devices between different 
networks has not been taken into account.

To appreciate what the sharing of physical devices in communication networks will mean, we will consider 
two transportation processes display on two networks simultaneously with some link coupling. The transporta-
tion in the two networks is limited by the link bandwidth. That is each link can only deliver a limited number of 
information packets at each time step23–26. For two coupled links, they share a common bandwidth limitation, 
which just represents the sharing of physical devices between the two communication networks. We will show 
that the transportation capacity of the two networks could be different, i.e., the free-flow state and the congestion 
state can exist in the two networks, respectively. By the analysis of different coupling mechanisms, we find that the 
congestion transition point is dependent on the coupling mechanism, and independent of the fraction of coupled 
links. Based on that, we demonstrate that the disassortative coupling is a good strategy for saving bandwidth, 
for which we can use the bandwidth of one network to support the transportation of the two networks without 
reducing the transportation capacity of both networks. All these results are established through analytic theory 
with numerical support.

Results
Model.  The transportation system is formed by two networks A and B with the same size N and degree distri-
bution. At each time step, each node generates a new information packet with probability r, i.e., rN new packets 
in each network. The newly generated packet will be placed at the end of the queue of its origin node with a ran-
domly chosen destination. At each time step, each node will deliver the packets in its queue toward their destina-
tions, if the corresponding links have free bandwidth. Here, the bandwidth of a link is the maximum number of 
packets that can be delivered through the link at each time step. Without loss of generality, we set the bandwidth 
to be 1 for all links, i.e., only one packet can be delivered at each time step. If the corresponding bandwidth limit is 
reached, the packet has to stay in the queue. The transportation of a node will be over, when none of its links have 
free bandwidth. For simplicity, all the packets are delivered in the networks following the shortest paths from the 
origins to the destinations. When a packet reaches its destination, it will be removed from the system.

To represent the coupling of the two networks, we assume that a fraction β of the links of network A are 
coupled with the links of network B one by one (see Fig. 1). In the transportation process, two coupled links are 
considered as one link, i.e., sharing bandwidth. To present the priority of the transportation process, we assume 
that network A uses the common bandwidth first at each time step, and the remaining bandwidth (if any) can be 
used by network B.

In this paper we will study three coupling mechanisms, random, assortative and disassortative couplings. 
For random coupling, all the coupled links are chosen randomly from the two networks. For assortative (disas-
sortative) coupling, the link with the largest betweenness of network A is coupled with the link with the largest 
(smallest) betweenness of network B, the link with the second largest betweenness of network A is coupled with 
the link with the second largest (smallest) betweenness of network B, and so on.

Measures.  To describe the transition from the free-flow state to the congestion state, we use the following 
order parameter
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Here, S(t) is the total number of packets in the network at time step t, and 〈​·〉​ means the average for different t but 
the same Δ​t. It is easy to know that the maximum value of Δ​S/Δ​t is rN, which gives the maximum η =​ 1. Below 

Figure 1.  A schematic of two communication networks with link coupling. The two networks are presented 
by orange and green, respectively. The pairs of links indicated by the grey areas are the coupled links of the two 
networks. In the transportation process, two coupled links will share a common bandwidth, which can be used 
by both of the two networks but with a priority.
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the critical point rc, Δ​S/Δ​t =​ 0, i.e., at each time step, the number of packets arriving at their destinations is equal 
to rN.

As long as one link can not deliver all the packets that need to be delivered, the order parameter η will be larger 
than zero and the system will turn into the congestion state. Therefore, to study this congestion transition, we 
also need to measure the transportation state of each link quantitatively. Here, we use the bandwidth usage μij to 
represent the traffic load of link i →​ j, which defines as the average number of packets passing through link i →​ j 
at each time step. Mathematically, it can be expressed as

µ =
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− +
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t t
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t t
t

ij

2 1
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where Sij(t) is the number of packets passing through link i →​ j at the time step t. Since Sij(t) can only take value 1 
or 0 in our model, the range of the bandwidth usage μij is from 0 to 1. It’s clear that the larger the bandwidth usage 
is, the heavier the load is. When μij →​ 1, the link would be congested.

Transportation on single network.  For the convenience of analysis and discussion, we study the case 
β =​ 0 first. In this case, there is no interaction between the two networks, so we just consider one of them. To 
model the topological properties of real communication networks, we use Barabási-Albert (BA) network in the 
simulation27. As shown in Fig. 2(a), the order parameter η will take a non-zero value when the packet generation 
rate r exceeds a critical value rc, which is often called the transportation capacity of the system.

To get a better understanding of this congestion transition, we sort the bandwidth usages μij of all the links 
by their betweennesses bij in Fig. 2(b). Together with the frequency counts of these bandwidth usages shown in 
Fig. 2(c), one can find that when the bandwidth usages of most of links are very small, the bandwidth usage of the 
link with the largest betweenness μmax will close to the maximum value 1. From eq. (1), we can also find that only one 
link with μ →​ 1 will make the system go into the congestion state. Therefore, the transition point rc of the system is 
just the point above which μmax =​ 1 (see Fig. 2(a)). From this point of view, we can obtain the theoretical transition 
point for Fig. 2, rc =​ 0.112 (see Sec. Method for details), which is in agreement with simulation results well.

Transportation on coupled networks.  Since network A has the priority in using the common bandwidth, 
the coupling will not affect its communication performance. Thus, we focus now on the performance of network 
B in different coupling mechanisms. In Fig. 3, we give the order parameter η as a function of the packet generation 
rate r for different coupling fractions β. We can find that for assortative coupling, a very weak coupling could 
reduce the transportation capacity rc of network B significantly. However, the random and disassortative coupling, 
especially disassortative coupling, do not have serious effect on the transportation capacity rc of network B. This 
indicates that if the traffic of network B is not so heavy, we need not to build links just for network B and all its 
communication task can be attached to network A. This provides a good strategy to save costs for building new 
communication network.

To figure out the capacity of network B, we also take account of the bandwidth usage as that of single networks 
shown in Fig. 4. For random and assortative couplings, we can find that the average bandwidth usage 〈​μ〉​ of 
network B will deviate from that of network A with the increasing of the packet generation rate r (see Fig. 4(a)). 
However, the average bandwidth usage for the disassortative coupling almost coincides with that of network A. 
This indicates that the disassortative coupling does not add too much restriction to network B in using the com-
mon bandwidth, and makes the bandwidth allocation in the coupled system more reasonable. This explains why 
the system with the disassortative coupling shown in Fig. 3 has the largest transportation capacity.

Since the two networks have the same structure and traffic load, the coupling will not affect the transportation 
in network B, before the average bandwidth usage of network A exceeds 0.5. However, the simulation results 
shown in Fig. 4(a) contradict this. Addressing this issue, we consider the heterogeneity of the bandwidth usage as 

Figure 2.  The simulation results for transportation on single networks (β = 0). In the simulation, the 
networks we used are BA networks with average degree 〈​k〉​ =​ 4 and size N =​ 1000. (a) The order parameter η as 
a function of the packet generation rate r. μmax is the bandwidth usage of the link with the largest betweenness. 
(b) The bandwidth usages of links μij are plotted as a function of their betweennesses bij. The corresponding 
lines are obtained by eqs (4) and (16). For small packet generation rate r, the bandwidth usage of link increases 
approximate linearly with the betweenness, which also satisfies eq. (17) (see the cases r =​ 0.01 and 0.03). (c) The 
frequency counts of the bandwidth usages μ shown in (b). The slop of the dash line is −​2.8.



www.nature.com/scientificreports/

4Scientific Reports | 6:39175 | DOI: 10.1038/srep39175

that of single network. For network B, the bandwidth of a link is restricted by the coupling, and only the remain-
ing bandwidth from network A can be used. It is clear that the link with the largest bandwidth usage μmax in net-
work A has the smallest remaining bandwidth. For convenience, we denote the bandwidth usage of this link in 
network B as µ′max.

In Fig. 4, we give the bandwidth usages μmax and µ′max as a function of the packet generation rate r. We can find 
that the bandwidth usage µ′max will decrease with the increasing of r, when the packet generation rate r exceeds a 
value, at which µ µ+ ′ → 1max max . In this way, the critical value rc obtained by µ µ+ ′ = 1max max  just is the conges-
tion transition point of network B, since it is smaller than that obtained by the link with the largest betweenness 

Figure 3.  The order parameter η as a function of the packet generation rate r for different coupling 
fractions β. In the simulation, both networks A and B are BA networks with the same average degree 〈​k〉​ =​ 4 
and size N =​ 1000. (a) Random coupling. (b) Assortative coupling. (c) Disassortative coupling.

Figure 4.  The bandwidth usage of links for different coupling mechanisms. (a) The average bandwidth usage 
〈​μ〉​ for different coupled mechanisms with β =​ 1. (b) Random coupling. The maximum bandwidth usage μmax 
of the link with the largest betweenness in network A, and the bandwidth usage µ′max of its coupled link in 
network B as a function of the packet generation rate r. In this case, the link with the largest betweenness is not 
always chosen as the coupled link. However, since this link always gives the smallest congestion transition point 
rc, for the average of many realizations, we can treat the results as that the link with the largest betweenness is 
always the coupled link. (c) Assortative coupling. The maximum bandwidth usages μmax of the links with the 
largest betweennesses in networks A and B, which are coupled with each other, as a function of the packet 
generation rate r. (d) Disassortative coupling. The maximum bandwidth usage μmax of the link with the largest 
betweenness in network A, and the bandwidth usage µ′max of its coupled link in network B, whose betweenness is 
the smallest one in network B, as a function of the packet generation rate r. In the simulation, both networks A 
and B are BA networks with the same average degree 〈​k〉​ =​ 4 and size N =​ 1000.
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in network B. For the simulation results shown in Figs 3 and 4, µ′max only depends on the coupling mechanism. 
This explains that the congestion transition point rc

B in Fig. 3 takes the same value for different β. Furthermore, 
using µ µ+ ′ = 1max max , we can also obtain the transition point rc

B for the random, assortative and disassortative 
couplings, that is 0.078, 0.037 and 0.109 for the simulation results shown in Fig. 3 (see Sec. Method for details).

In the congestion state.  All the above results suggest as long as only one link is congested, the system will 
go into the congestion state. This means that in the congestion state not all the packets will be stuck, and the ones 
with a routing containing no congested links can be delivered as usual. In other words, the free-flow and con-
gested paths can coexist in the system. This is a quite common phenomenon in real communication networks.

For assortative coupling, all the links with larger bandwidths are chosen as the coupled links, so with the 
increasing of r, the coupled links are always congested firstly. In this case, we can classify the congested and 
free-flow links simply by whether or not they are coupled links. Therefore, we take the assortative coupling as an 
example to show the coexistence of the free-flow paths (containing no coupled links) and the congested paths 
(containing coupled links) in the system.

In Fig. 5(a), we give the fraction f of the packets that reach their destinations by passing through one or more 
coupled links in network B at each time step for assortative coupling. If the congestion happens in each link 
simultaneously, f will be a constant depending on the coupling fraction β and the link betweenness, regardless of 
the system is in the free-flow state or the congestion state. However, the results of Fig. 5(a) show that when the 
packet generation rate r exceeds rc

B, f decreases with the increasing of the packet generation rate r. This indicates 
that the free-flow and congested paths coexist in the congestion state.

Furthermore, in the congestion state, all the packets passing through some coupled links in network B will 
wait a long time for being delivered, or never reach their destinations >r r( )c

A . Since only the packets that can 
reach their destinations contribute to the statistics of the average traveling time T, this creates an illusion that the 
packets will take less time to reach their destinations, when the packet generation rate r closes to rc

A (see Fig. 5(b)). 
As above analysis, this does not mean the traffic condition is improved with the increasing of the packet genera-
tion rate r, but the coexistence of the free-flow paths and the congested paths in the congestion state. For the other 
two coupling mechanisms, this coexistence can also be found in the congestion state. However, not all the con-
gested links are the coupled links, so one needs to make a distinction between the free-flow and congestion links 
by other parameters, such as bandwidth usage. The results are similar, so we do not go into this in detail.

Conclusions
In this paper we have proposed a transportation model to study the bandwidth sharing between different com-
munication networks. Two coexistence phenomena have been found in this simple transportation model, both 
of which reflect the common problems in daily communication. One is the coexistence of the free-flow state and 
the congestion state in the two networks, the other one is the coexistence of the free-flow path and the congestion 
path in each network. According to our analysis, the former is caused by the priority of the two networks in using 
the common bandwidth, the latter is due to the heterogeneity of the traffic load on each link.

We also develop a theoretical method to obtain the congestion transition points of the two networks, which 
are in agreement with the simulation results very well. Both the theory and the simulation results indicate that 
the transportation capacity of the system depends on the coupling mechanism of the system, no matter how 

Figure 5.  The simulation results for showing the coexistence of the free-flow paths and the congested paths 
in the congestion state. In the simulation, both networks A and B are BA networks with the same average 
degree 〈​k〉​ =​ 4 and size N =​ 1000. (a) The fraction f of the packets that reach their destinations by passing 
through one or more coupled links in network B for assortative coupling. (b) The average traveling time T as a 
function of the packet generation rate r for assortative coupling.
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many number of links are coupled with each other. Furthermore, we find that the disassortative coupling has 
little influence on the transportation capacity of the system, which provides a good strategy to save bandwidth. 
We also point out that the coexistence of the free-flow path and the congested path in the congestion state could 
create the illusion that the traffic condition of the system is improved with the packet generation rate increases. 
We think that our theoretical method can also be used in other transportation models with similar mechanisms, 
and the corresponding results can help us understand the properties of the transportation process in real-world 
communication system.

Method
To solve this model, we consider a single network first, which could give the properties of the two networks 
when there is no coupling. For a network with size N, there are N(N −​ 1) origin-destination pairs in the network. 
Therefore, at each time step we can find a new packet in each origin-destination pair with probability r/(N −​ 1). As 
we know, the betweenness of a link is the number of the shortest paths passing through it. Hence, in the free-flow 
state, the probability that there are n new packets waiting at node i for being delivered through link i →​ j at each 
time step is

=

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Here, bij is the betweenness of link i →​ j. When there is more than one packet in these paths, some collision may 
occur in the transportation of packets before they reach node i. As a result, pn(bij) will be slightly larger than 
the simulation results for large r and n. But it does not affect the theoretical results much, since pn tends to zero 
quickly with the increasing of n.

Excluding the new arriving packets, there may be some other packets waiting for being delivered through 
link i →​ j at node i, which remain from the last time step. We denote the number distribution of these packets as 
λn(bij). Using the two distributions pn(bij) and λn(bij), the bandwidth usage of link i →​ j can be expressed as
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Obviously, this means that when there are already some packets or some new arriving packets at node i waiting 
for being delivered through link i →​ j, the bandwidth of link i →​ j will be used at this time step.

To obtain μij(bij), we must get λn(bij) first, which takes the same distribution for each time step in the steady 
state. Thus, considering two successive time steps, it is easy to find λn(bij) follows the recursion formula,

λ λ λ= + +p p p( ) , (5)0 0 1 1 0 0
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These equations hold for any betweenness bij, so we omit bij for simplify. In addition, as a distribution, the prob-
ability λn also satisfies

∑λ = .
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1
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n

i
0

The group of eqs (5–9) can be written as a matrix equation

Λ =P C, (10)

where P is an (n +​ 1) ×​ (n +​ 1) matrix,
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Λ​ and C are column vectors with n +​ 1 entries,
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For any given n, we can get λ0 from eqs (10–13) by Cramer’s rule. We take n =​ 1, 2, 3 as examples,
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Then, substituting λ0 into eq. (4), we can get the bandwidth usage. Since pn tends to zero quickly with the increas-
ing of n, the bandwidth usage μij obtained by eqs (4) and (16) has already agreed with the simulation results 
shown in Fig. 2(b) well.

For r N  and large bij, ignoring pn with n ≥​ 1, it is easy to find that eq. (4) can be written in a simple form

µ =
−
.

rb
N 1 (17)ij

ij

This result has also been found in refs 23,25 from other perspective. Here, we want to point out that eq. (17) is 
the upper limit of the bandwidth usage, and means that all the packets do not clash before they arrive at node i. 
Therefore, the bandwidth usage obtained by eq. (17) will deviate from the true value for links with larger between-
nesses. In addition, eq. (17) can also be obtained by the first moment of the distribution (3).

Strictly speaking, the bandwidth usage μij obtained by eq. (4) will always be smaller than 1 for r <​ N −​ 1. To 
obtain the transition point indicated by the simulation, we can express the congestion condition of a link as

µ ε= −1 , (18)ij

where ε is a constant much smaller than 1. This means that when the bandwidth usage μij is close to 1, the link 
will be congested. Using this equation, we can obtain the congestion condition for each link. The transition point 
of the system corresponds to that of the link with the largest betweenness bij =​ bmax. For the case shown in Fig. 2, 
bmax =​ 13656 and N =​ 1000, using ε =​ 10−2, we can find rc =​ 0.112, which agrees with the simulation results well. 
In addition, we can also get the transition point rc =​ 0.073 by eq. (17). Obviously, this result is much smaller than 
the simulation results.

For the two coupled networks, considering the two networks as two single networks, we can get the bandwidth 
usage of a link μij in network A and its coupled link µ ′ij  in network B by eq. (4). In this way, the congestion condi-
tion of the corresponding coupled link in network B is

µ µ ε+ ′ = − .1 (19)ij ij

Using eq. (4), we have

λ λ ε+ ′ ′ = +p b b p b b( ) ( ) ( ) ( ) 1 , (20)ij ij ij ij0 0 0 0

Here, bij is the betweenness of link i →​ j in network A and ′bij is the betweenness of its coupled link in network B. 
The transition point of network B corresponds to bij =​ bmax and ′ =b bij , bmax and bmin for random, assortative and 
disassortative couplings, respectively. For the networks used in the simulation of Figs 3 and 4, bmax =​ 13656, 
bmin =​ 24 and 〈​b〉​ =​ 1003. Then, we can get the transition point by letting ε =​ 10−2, the results are = = .r r 0 112c

A
c , 

and = .r 0 078c
B , 0.037 and 0.109 for random, assortative and disassortative couplings, respectively.
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