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Oxidative stress and inflammation are important and critical mediators in the development
and progression of chronic kidney disease (CKD) and its complications. Shenkang
injection (SKI) has been widely used to treat patients with CKD. Although the anti-
oxidative and anti-inflammatory activity was involved in SKI against CKD, its bioactive
components and underlying mechanism remain enigmatic. A rat model of adenine-
induced chronic renal failure (CRF) is associated with, and largely driven by, oxidative
stress and inflammation. Hence, we identified the anti-oxidative and anti-inflammatory
components of SKI and further revealed their underlying mechanism in the adenine-
induced CRF rats. Compared with control rats, the levels of creatinine, urea, uric acid, total
cholesterol, triglyceride, and low-density lipoprotein cholesterol in serum were significantly
increased in the adenine-induced CRF rats. However, treatment with SKI and its three
anthraquinones including chrysophanol, emodin, and rhein could reverse these aberrant
changes. They could significantly inhibit pro-fibrotic protein expressions including collagen
I, α-SMA, fibronectin, and vimentin in the kidney tissues of the adenine-induced CRF rats.
Of note, SKI and rhein showed the stronger inhibitory effect on these pro-fibrotic protein
expressions than chrysophanol and emodin. Furthermore, they could improve
dysregulation of IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways. Chrysophanol and
emodin showed the stronger inhibitory effect on the NF-κB p65 protein expression
than SKI and rhein. Rhein showed the strongest inhibitory effect on p65 downstream
target gene products including NAD(P)H oxidase subunits (p47phox, p67phox, and
gp91phox) and COX-2, MCP-1, iNOS, and 12-LO in the kidney tissues. However, SKI
and rhein showed the stronger inhibitory effect on the significantly downregulated anti-
inflammatory and anti-oxidative protein expression nuclear Nrf2 and its target gene
products including HO-1, catalase, GCLC, and NQO1 in the Keap1/Nrf2 signaling
pathway than chrysophanol and emodin. This study first demonstrated that SKI and its
major components protected against renal fibrosis by inhibiting oxidative stress and
inflammation via simultaneous targeting IƙB/NF-ƙB and Keap1/Nrf2 signaling
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pathways, which illuminated the potential molecular mechanism of anti-oxidative and anti-
inflammatory effects of SKI.

Keywords: chronic kidney disease, shenkang injection, chrysophanol (PubChem CID: 10208), emodin, rhein
(PubChem CID: 10168), oxidative stress and inflammation, lkB/NF-kB signaling pathway, Keap1/Nrf2 signaling
pathway

INTRODUCTION

Organ fibrosis is a pathological extension of the normal wound
healing process characterized by oxidative stress and
inflammation; myofibroblast activation and migration; and
excessive synthesis, deposition, and remodeling of extracellular
matrix (ECM) components, mainly including collagen,
fibronectin, and α-smooth muscle actin (α-SMA) (Miao et al.,
2021a). A variety of pathophysiological principles is shared by
many fibrotic-associated diseases, such as cirrhosis, kidney
fibrosis, myocardial fibrosis, and idiopathic pulmonary fibrosis
(Miao et al., 2021a). Fibrotic diseases are estimated to account for
up to 50% of deaths in the developed world (Mantovani and Zusi,
2020).

Renal fibrosis, characterized by tubulointerstitial fibrosis and
glomerulosclerosis, is a chronic and progressive process
influencing renal functions during aging and in chronic kidney
disease (CKD), regardless of the cause (Bhargava et al., 2021; Li
et al., 2021; Medina Rangel et al., 2021). CKD and renal fibrosis
influence approximately 26–30 million adults, and 47% of 30-
year-olds will develop CKD during their lifetime in America
(Humphreys, 2018). About 11% of patients with stage 3 CKD will
inevitably progress to end-stage renal disease (ESRD), requiring
renal replacement therapies such as dialysis and transplantation
(Chauveau, 2018; Jain et al., 2019; Carta et al., 2020; Sawhney and
Gill, 2020). Additionally, CKD is also one of the strongest risk
factors for cardiovascular disease (Yanai et al., 2021). The costs to
care for patients with CKD are two times compared with as large
as ESRD costs.

In the last two decades, angiotensin-converting enzyme
inhibitors (ACEIs) or angiotensin receptor blockers (ARBs)
have been widely recommended clinically as a standard
therapy in patients with hypertension, cardiovascular disease,
and CKD (Chen et al., 2019a). These drugs could effectively
reduce proteinuria levels and slow down CKD progression and
prevent its complications. However, chronic administration of
ACEI or ARB led to the elevated levels of angiotensin II and
aldosterone, which is known as angiotensin II and aldosterone
escape (Wang et al., 2018). Despite these therapies, outcomes in
patients with CKD remain poor.

Natural products have been widely used for prevention and
treatment of renal fibrosis (Chen et al., 2018a; Chen et al., 2018b;
Yang and Wu, 2021). Shenkang injection (SKI), approved by the
State Food and Drug Administration of China (CFDA) in 1999,
was used to treat CKD. SKI is composed of Rhei Radix et Rhizoma
(Dahuang), Salviae Miltiorrhizae Radix et Rhizoma (Danshen),
Astragali Radix (Huangqi), and Carthami Flos (Honghua) (Zou
et al., 2020). Dahuang possessed anti-inflammatory, anti-
bacterial, anti-cancer, and anti-fibrotic effects (Wang et al.,

2012). Danshen exhibited anti-inflammatory, anti-oxidative,
anti-tumor, cardioprotective, neuroprotective, and anti-fibrotic
effects (Wang et al., 2021a). Huangqi showed anti-inflammatory,
anti-oxidative, anti-infective, anti-diabesity, anti-tumor, anti-
aging, and immune-enhancing properties (Salehi et al., 2021).
The extracts and isolated compounds from Honghua presented
various pharmacological properties, such as anti-inflammatory,
anti-thrombotic, anti-tumor, anti-diabetic, and anti-myocardial
ischemic effects (Tu et al., 2015). These published literatures
indicated that anti-inflammatory and anti-oxidative effects were
their common pharmacological activity. Therefore, it could be
speculated that their anti-inflammatory and anti-oxidative effects
were associated with CKD treatment of SKI. Recently, clinical
studies have demonstrated that SKI could improve renal function
in CKD, peritoneal dialysis patients with chronic renal failure
(CRF), and diabetic nephropathy (Zhang et al., 2017; Song et al.,
2019; Wang et al., 2020a; Qin et al., 2020; Zou et al., 2020; Ma,
2021). A seminal publication has highlighted that SKI treatment
protected against CRF and symptoms related to CKD following
treatment with traditional Chinese medicine was 73.05 and
98.00%, respectively, in a clinical trial of 2200 patients (Qin
et al., 2021). The experimental studies revealed that SKI could
improve renal function and inhibit tubulointerstitial fibrosis by
anti-oxidative, anti-inflammatory, and anti-apoptotic effects in
unilateral ureteral obstruction mice and rats, streptozotocin-
induced mice, and renal ischemia–reperfusion injury (IRI) rats
(Liu, 2018; Liu et al., 2019; Zhang et al., 2020; Qin et al., 2021) as
well as renal tubular cells or mesangial cells treated by
transforming growth factor-β1 (TGF-β1) or high glucose (Wu
et al., 2015; Xu et al., 2016; Fu et al., 2019). Mechanistically,
several preliminary studies have revealed that SKI alleviated CKD
and renal fibrosis by inhibiting pro-inflammatory cytokines such
as interleukin-6, interleukin-1β, and tumor necrosis factor-α
(TNF-α) expression (Zhang et al., 2020) and modulating TGF-
β1/Smad3 and JAK2/STAT3 signaling pathways (Wu et al., 2015;
Qin et al., 2021). Although SKI has been demonstrated to have
anti-oxidative and anti-inflammatory effects in the treatment of
CKD, little is known about its underlying oxidative stress and
inflammation-associated mechanisms.

Oxidative stress and inflammation played a central role in the
pathogenesis and progression of CKD (Chen et al., 2018c).
Oxidative stress and inflammation are inseparably linked as
they form a vicious cycle in which oxidative stress provokes
inflammation by several mechanisms including activation of the
nuclear factor kappa B (NF-ƙB) which leads to the activation and
recruitment of immune cells, meanwhile, activation of the nuclear
factor-erythroid-2–related factor 2 (Nrf2) which regulates the
basal activity and coordinated induction of numerous genes that
encode various anti-oxidant and phase 2 detoxifying enzymes and
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related proteins. In this research, a CRF rat model was induced by
adenine orally, which was then administered with SKI and its
bioactive components including chrysophanol, emodin, and
rhein orally to determine whether they could improve CKD
and slow down renal fibrosis by regulating the inhibitor of
kappa B (IƙB)/NF-ƙB and Keap1/Nrf2 signaling pathways.
Furthermore, we used the TGF-β1–induced human proximal
epithelial cells to explore the therapeutic mechanism of SKI
and its bioactive components on renal injury.

MATERIALS AND METHODS

Chemicals and Reagents
SKI was purchased from Shijishenkang Pharmaceutical Company
Ltd. (Xi’an, China). The primary antibodies including collagen I
(ab34710, Abcam, United States), α-SMA (ab7817, Abcam,
United States), fibronectin (ab2413, Abcam, United States),
vimentin (ab92547, Abcam, United States), p-NF-ƙB p65
(13346, Cell Signaling Technology, United States),
phosphorylated IƙBα (p-IκBα, 2859, Cell Signaling
Technology, United States), gene cyclooxygenase 2 (COX-2,
ab62331, Abcam, United States), monocyte chemotactic
protein-1 (MCP-1, ab7202, Abcam, United States), inducible
nitric oxide synthase (iNOS, ab178945, Abcam, United States),
12-lipoxygenase (12-LO, ab167372, Abcam, United States),
p47phox (ab795, Abcam, United States), p67phox (ab109366,
Abcam, United States), and gp91phox (ab80508, Abcam,
United States), Keap1 (ab196346, Abcam, United States), Nrf2
(ab31163, Abcam, United States), heme oxygenase 1 (HO-1,
ab68477, Abcam, United States), catalase (ab16731, Abcam,
United States), glutamate–cysteine ligase catalytic subunit
(GCLC, ab190685, Abcam, United States), and NAD(P)H
dehydrogenase quinone 1 (NQO1, ab28947, Abcam,
United States) were purchased from Abcam Company
(Cambridge, MA, United States) and Cell Signaling
Technology (Danvers, MA, United States). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH, 10494-1-AP) and histone
H3 (17168-1-AP) were purchased from Proteintech Company
(Wuhan, China).

Extraction and Isolation of Chrysophanol,
Emodin, and Rhein
SKI (10 L) was concentrated using a rotatory evaporator in
vacuum to yield 2.1 kg of dry brown extract. The concentrated
extract was extracted with petroleum ether (3 × 7.5 L), ethyl
acetate (3 × 7.5 L), and n-butanol (3 × 7.5 L), successively. The
ethyl acetate extract was chromatographed on a MCI column.
Elution was performed using a solvent mixture of MeOH/
H2O with an escalating amount of MeOH and similar
fractions, identified by thin-layer chromatography, which
were combined to yield five major fractions. The compounds
were further isolated by the Sephadex LH-20 column, reversed-
phase C-18 silica column, and semi-preparative high-
performance liquid chromatography method. Finally, the
compounds including chrysophanol, emodin, and rhein were

identified by nuclear magnetic resonance spectrometry and
reference substances.

CRF Model and Drug Administration
Male Sprague–Dawley rats (6–8 weeks old and weighing
180–210 g) were purchased from the Central Animal Breeding
House of Xi’an Jiaotong University (Xi’an, Shaanxi, China). An
adenine-induced CRF model was reproduced as described in
detail previously (Wang et al., 2021b;Wang et al., 2021c). In brief,
the rats were divided into six groups (n � 8/group) including
control, adenine-induced CRF, SKI-treated group with CRF (CRF
+ SKI), chrysophanol-treated group with CRF (CRF + CHR),
emodin-treated group with CRF (CRF + EMO), and rhein-treated
group with CRF (CRF + RHE). Except for the control group, other
groups with CRF were orally administered adenine (200 mg/kg/d)
for 3 weeks. Treatment groups were administered SKI (20 ml/kg/
d), chrysophanol (30 mg/kg/d), emodin (100mg/kg/d), and rhein
(150mg/kg/d) for 3 weeks. The body weight of each rat was
measured daily. After 3 weeks, individual rats were placed in
metabolic cages (1 per cage) to obtain 24-h urine collections.
The rats were anesthetized with 10% urethane and then blood
samples and kidney tissues were collected for clinical biochemistry
and histopathological analysis. All animal care and experimental
procedures were approved by the Ethics Committee for Animal
Experiments of Northwest University.

Renal Function Evaluation
The levels of creatinine, urea, uric acid, total cholesterol,
triglyceride, and low-density lipoprotein cholesterol (LDL-C)
in serum as well as creatinine in urine were determined using
an Olympus AU6402 automatic analyzer.

Light Microscopic Study
Light microscopy was conducted using 10% formalin-fixed,
paraffin-embedded biopsies stained with hematoxylin-eosin
(H&E) and Masson’s Trichrome stains, as previously described
(Miao et al., 2020).

Immunohistochemistry
The specific protein expressions were examined on paraffin sections
of kidney tissues as previously described (Miao et al., 2020).

Western Blot Analysis
All solutions, tubes, and centrifuges were maintained at 0–4°C.
Cytoplasmic and nuclear proteins from kidney tissues were
extracted based on our previous publication (Choi et al.,
2010). Protein levels were detected using Western blotting as
previously described (Miao et al., 2020). The blots were obtained
using the enhanced chemiluminescence reagent, and the protein
levels were normalized to the level of GAPDH or histone H3.
Specific bands were analyzed using ImageJ 1.48v software.

Statistical Analysis
The data are presented as mean ± SEM. Statistical analyses were
performed using GraphPad Prism software v6.0. A two-tailed
unpaired Student’s t-test was used for comparisons between two
groups. Statistically significant differences amongst more than
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two groups were analyzed by one-way analysis of variance
followed by Dunnett’s post hoc tests. p < 0.05 was considered
significant differences.

RESULTS

SKI and Its Main Components Improved
the Impaired Renal Function and Injury
The final metabolite of adenine is uric acid. After adenine given
by the oral gavage, excessive adenine can be oxidized to 2,8-
dihydroxyadenine via an 8-hydroxyadenine intermediate by
xanthine dehydrogenase. Low solubility of 2,8-

dihydroxyadenine can form precipitation in the renal
tubules, which led to renal injury and fibrosis. As shown in
Figure 1A, intragastric adenine led to significantly decreased
body weight and increased urinary volume in CRF rats, while
treatment with SKI and three anthraquinones including
chrysophanol, emodin, and rhein did not produce the
significant changes for body weight and urinary volume. The
levels of creatinine, urea, uric acid, total cholesterol,
triglyceride, and LDL-C in serum were significantly increased
in the adenine-induced CRF group compared with the control
group. Except for uric acid, all these increases were improved by
treatment with SKI. Similarly, except for triglyceride, all these
increases were improved by treatment with rhein. Treatment

FIGURE 1 | SKI and three anthraquinones including chrysophanol, emodin, and rhein improved renal function and injury in the adenine-induced CRF rats. (A) Body
weight and urinary volume as well as clinical serum biochemistry including creatinine, urea, uric acid, total cholesterol, triglyceride, and LDL-C in the different groups. **p <
0.01 compared with the CTL group; #p < 0.05, ##p < 0.01 compared with the CRF group. (B) Images of H&E staining of the kidney tissues in the different groups. Scale
bar, 40 μm.
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FIGURE 2 | SKI and three anthraquinones including chrysophanol, emodin, and rhein ameliorated renal fibrosis in the adenine-induced CRF rats. (A) Images of
Masson’s Trichrome staining of the kidney tissues in the different groups. Scale bar, 60 μm. (B) Expressions of profibrotic proteins including collagen I, α-SMA,
fibronectin, and vimentin of the kidney tissues in the different groups. (C) Quantitative analysis of profibrotic protein expressions of the kidney tissues in the different
groups. **p < 0.01 compared with the CTL group; ##p < 0.01 compared with the CRF group. (D) Immunohistochemical analysis with anti–α-SMA of the kidney
tissues in the different groups. Scale bar, 40 μm.
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with emodin significantly lowered the levels of creatinine, urea,
TC, and LDL-C in the adenine-induced CRF group, while the
levels of uric acid and triglyceride were decreased in the
adenine-induced CRF group treated by emodin, but did not
arrive at statistical significance. Treatment with chrysophanol
only significantly lowered the creatinine levels in the adenine-
induced CRF group. Compared with the control rats, H&E
staining showed that the kidney tissues of the adenine-induced
CRF rats showed severe inflammatory cell infiltration, tubular
dilation, and interstitial fibrosis (Figure 1B). These injuries were
improved by treatment with SKI and its main components
including chrysophanol, emodin, and rhein. Collectively,
these results demonstrated that SKI could improve the
impaired renal function and ameliorate renal injury in the
late stages of CKD. This effect was followed by rhein
treatment. Similar results were observed in the adenine-
induced CRF group treated by rhein. Furthermore,

chrysophanol showed a certain renoprotective effect on
adenine-induced renal function decline and damage.

SKI and Its Main Components Ameliorated
Renal Fibrosis
Renal fibrosis is characterized by an excessive accumulation and
deposition of ECM components. As shown in Figure 2A, Masson’s
Trichrome staining showed severe tubulointerstitial fibrosis in the
kidney tissues of the adenine-induced CRF rats compared with the
normal control rats. However, the fibrosis was improved by
treatment with SKI and three anthraquinones including
chrysophanol, emodin, and rhein. ECM components mainly
included collagen I, collagen III, α-SMA, fibronectin, and
vimentin. Therefore, we further determined the expression of
pro-fibrotic proteins including collagen I, α-SMA, fibronectin,
and vimentin. As shown in Figures 2B,C, the kidney tissues of

FIGURE 3 | SKI and three anthraquinones including chrysophanol, emodin, and rhein inhibited inflammation in the adenine-induced CRF rats. (A) Images of H&E
staining of the kidney tissues in the different groups Scale bar, 40 and 60 μm. Numerous inflammatory cells were indicated by arrows. (B) Immunohistochemical analysis
with anti-CD68 of the kidney tissues in the different groups. Scale bar, 40 μm.
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the adenine-induced CRF rats showed significant upregulation of
protein expression of collagen I, α-SMA, fibronectin, and vimentin
compared with the control rats. However, treatment with SKI and
three anthraquinones showed significant inhibitory effect on these
pro-fibrotic protein expressions in the kidney tissues of the adenine-
induced CRF rats. Of note, SKI and rhein showed the stronger
inhibitory effect on the pro-fibrotic protein expression than
chrysophanol and emodin, which was consistent with the results
of clinical biochemistry and histological analyses includingH&E and
Masson’s Trichrome stainings. Additionally, immunohistochemistry

analysis further demonstrated treatment with SKI and three
anthraquinones could significantly inhibit the α-SMA expression
in the kidney tissues of the adenine-inducedCRF rats comparedwith
those found in the CRF rats (Figure 2D). Of note, SKI and rhein
showed the stronger inhibitory effect on the pro-fibrotic protein
expression than chrysophanol and emodin. These results
demonstrated that SKI and three anthraquinones protected
against renal fibrosis in the adenine-induced CRF rats. Therefore,
we concluded that anthraquinones might be one of the main
renoprotective components of SKI.

FIGURE 4 | SKI and three anthraquinones including chrysophanol, emodin, and rhein inhibited the pro-inflammatory IκB/NF-κB signaling pathway in the adenine-
induced CRF rats. (A) Protein expressions of nuclear translocation of p65 and its downstream gene products including COX-2, MCP-1, iNOS, 12-LO, and NAD(P)H
oxidase subunits (p47phox, p67phox, and gp91phox) of the kidney tissues in the different groups. (B) Quantitative analysis of pro-inflammatory and pro-oxidative protein
expressions of the kidney tissues in the different groups. **p < 0.01 compared with the CTL group; #p < 0.05, ##p < 0.01 compared with the CRF group. (C)
Immunohistochemical analysis with anti–COX-2 of the kidney tissues in the different groups. Scale bar, 40 μm.
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SKI and Its Main Components Retarded
Inflammation Response
Histopathological examination showed that severe inflammatory cell
infiltration in the renal interstitium is one of the typical characteristics
in rats induced by adenine (Figure 3A). CD68 is often used as a
histochemical marker of inflammation response, which was involved
in the monocytes/macrophages. Therefore, we determined the anti-
CD68 expression in the kidney tissues of the adenine-induced CRF
rats. As shown in Figure 3B, the renal interstitium of CRF rats
showed significantly increased CD68 expression compared with that
of the control rats. However, treatment with SKI and three
anthraquinones showed significantly decreased CD68 expression
in the renal interstitium of the adenine-induced CRF rats.

Collectively, these results indicated administered adenine
triggered oxidative stress and inflammation. Therefore, we
speculated that the molecular mechanisms of SKI and three
anthraquinones against tubulointerstitial fibrosis might be
associated with the activation of oxidative stress and inflammation.

SKI and Its Main Components Ameliorated
Renal Fibrosis by Inhibiting the IκB/NF-κB
Signaling Pathway
The interplay between oxidative stress and inflammation form a
vicious cycle in which oxidative stress triggers inflammation by
various mechanisms such as the activation of the IƙB/NF-ƙB

FIGURE 5 | SKI and three anthraquinones including chrysophanol, emodin, and rhein activated the anti-inflammatory and anti-oxidative Keap1/Nrf2 signaling
pathway in the adenine-induced CRF rats. (A) Protein expressions of nuclear translocation of Nrf2 and its repressor, Keap1, and its downstream gene products including
HO-1, catalase, GCLC, and NQO-1 of the kidney tissues in the different groups. (B) Quantitative analysis of anti-inflammatory and anti-oxidative protein expressions of
the kidney tissues in the different groups. **p < 0.01 compared with the CTL group; #p < 0.05, ##p < 0.01 compared with the CRF group. (C) Immunohistochemical
analysis with anti–HO-1 of the kidney tissues in the different groups. Scale bar, 40 μm.
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signaling pathway. As shown in Figures 4A,B, the kidney tissues
of adenine-induced CRF rats showed significantly upregulated
p-IƙB and nuclear p65 levels compared with those of the control
group, which indicated the activation of the IƙB/NF-ƙB signaling
pathway. This was accompanied by the significantly upregulated
protein expressions of COX-2, MCP-1, iNOS, 12-LO, and
NAD(P)H oxidase subunits (p47phox, p67phox, and gp91phox) in
the kidney tissues of the adenine-induced CRF rats compared
with those of the control rats. However, these upregulated
expressions were inhibited in the adenine-induced CRF rats
treated by SKI and three anthraquinones. Additionally,
immunohistochemistry analysis demonstrated that treatment
with SKI and three anthraquinones could significantly inhibit
the COX-2 expression in the kidney tissues of the adenine-
induced CRF rats compared with that of the CRF rats
(Figure 4C). Of note, chrysophanol and emodin showed the
stronger inhibitory effect on the NF-κB p65 protein expression
than SKI and rhein. Rhein showed the strongest inhibitory effect
on p65 downstream target gene products. Taken together, these
results indicated that the inhibition of the pro-inflammatory IκB/
NF-κB signaling pathway was involved in SKI and three
anthraquinones against renal fibrosis.

SKI and Its Main Components Ameliorated
Renal Fibrosis by Activating the Keap1/Nrf2
Signaling Pathway
Increased oxidative stress activated the expression of the
endogenous anti-oxidant proteins to reduce tissue damage,
which was mediated by the activation of the Keap1/Nrf2
signaling pathway. As shown in Figures 5A,B, the adenine-
induced CRF rats exhibited the significantly downregulated
Nrf2 protein expression and upregulated Keap1 protein
expression in the kidney tissues compared with the control
rats. This was accompanied by significantly downregulated
Nrf2 downstream target gene products including HO-1,
catalase, GCLC, and NQO-1 in the kidney tissues of rats with
adenine-induced CRF. These findings point to the impaired
activation of the Nrf2 pathway in this model. However, these
aberrant changes were reversed in the adenine-induced CRF rats
treated by SKI and three anthraquinones. Additionally,
immunohistochemistry analysis showed treatment with SKI
and three anthraquinones could significantly enhance the
COX-2 expression in the kidney tissues of the adenine-
induced CRF rats compared with that of the CRF rats
(Figure 5C). Furthermore, SKI and rhein showed the stronger
inhibitory effect on the significantly downregulated anti-
inflammatory and anti-oxidative protein expression in the
Keap1/Nrf2 signaling pathway than chrysophanol and emodin,
which was consistent with the results of their effects on the pro-
fibrotic protein expression including collagen I, α-SMA,
fibronectin, and vimentin. Taken together, these results
indicated that the activation of the anti-inflammatory and
anti-oxidative Keap1/Nrf2 signaling pathway was involved in
SKI and three anthraquinones against renal fibrosis in the
adenine-induced CRF rats.

DISCUSSION

The progression of CKD and renal fibrosis, one of the biggest issues
in nephrology, indicated that patients inevitably progress ESRD and
require dialysis or kidney transplantation (Webster et al., 2017;
Aydin et al., 2019; Van Sandwijk et al., 2019). Numerous studies have
demonstrated that renal fibrosis was associated with the dysbiosis or
dysregulation of gut microbiota, non-coding RNAs,
renin–angiotensin system, aryl hydrocarbon receptor, IƙB/NF-ƙB,
Keap1/Nrf2, TGF-β/Smad, and Wnt/β-catenin signaling pathways
(Ma et al., 2018a; Chen et al., 2019b; Garg and Maurya, 2019; Zhao
et al., 2019; Hu et al., 2020a; Miao et al., 2021b; Wang et al., 2021d;
Wu et al., 2021; Zhou et al., 2021) as well as metabolite disorders
including tryptophan metabolism and lipid metabolism (Zhao,
2013a; Zhao et al., 2015; Wang et al., 2019; Liu et al., 2021a).
Further studies have demonstrated that activation of IƙB/NF-ƙB and
Keap1/Nrf2 signaling pathways could mediate or crosstalk these
signaling pathways in both patients with CKD and experimental
research studies (Chen et al., 2017a; Chen et al., 2017b; Chen et al.,
2019c). Of note, IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways
were the most important mediators in oxidative stress and
inflammation that played a central role in the development and
progression of CKD and its complications (Meng et al., 2014; Chen
et al., 2016; Feng et al., 2019a). Oxidative stress was a status in which
reactive oxygen species (ROS) generation surpassed the anti-oxidant
defense system capacity. It led to the increased ROS production and
damaged anti-oxidant capacity. Oxidative stress and inflammation
were inseparably linked, as each begets and amplifies the other.

The activation of NF-ƙB and the impairment of Nrf2 were the
most important pro-inflammatory and anti-inflammatory signals,
respectively. The NF-ƙB activation mediated the expression of pro-
inflammatory cytokines and chemokines, and oxidative stress
evoked recruitment and activation of leukocytes and resident
cells, thus triggering inflammation (Miao et al., 2021a). Although
oxidative stress and inflammation had a central role in progression
of CKD, ACEI and ARB have been used as first-line drugs for
treatment of CKD and its complications. This led to the
contradiction between the underlying pathomechanism
elucidation and the treatment of CKD patients. Therefore,
developing the agents to target oxidative stress and inflammation
is necessary for the effective treatment of CKD patients.

The adenine diet led to severe CRF due to adenine-derived very
low-soluble 2,8-dihydroxyadenine in the renal tubule,
which induced tubulointerstitial nephritis, characterized by gross
swelling, kidney discoloration and deformity, urinary concentrating
ability loss (polyuria), azotemia (increased serum urea), anemia,
hypertension, and minimal proteinuria (Zhao et al., 2014). The
histopathological results showed tubulointerstitial damage including
extensive inflammatory cell infiltration, tubular dilation, and fibrosis
in the kidney tissues. Severe interstitial inflammatory cell infiltration
was one of themost typical pathological features in the kidney tissues
of adenine-induced CRF rats. Substantial evidence has demonstrated
that many natural products, such as Rhubarb, Astragalus, and
Polyporus umbellatus, showed the renoprotective activity by anti-
oxidative and/or anti-inflammatory effects (Wang et al., 2012; Zhao,
2013b; Zhang et al., 2014; Shahzad et al., 2016; Liao et al., 2017).
Although, the exact mechanisms for these natural products have not
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been revealed, it has been suggested that they may possibly possess
anti-oxidant and/or anti-inflammatory activity. Our current findings
demonstrated rats with CRF showed the upregulating protein
expression of p-IƙBα and nuclear p65 indicating NF-ƙB
activation in kidney tissues, meanwhile, this was accompanied by
the upregulating protein expression of COX-2, MCP-1, iNOS, 12-
LO, and NAD(P)H oxidase subunits (p47phox, p67phox, and
gp91phox) in the kidney tissues of the adenine-induced CRF rats.
However, these upregulating expressions were inhibited by
treatment of SKI. These results were in agreement with previous
studies of natural products, such as Poria cocos and Polyporus
umbellatus as well as their components including poricoic acid A,
poricoic acid ZM, poricoic acid ZP, and ergone against renal fibrosis
by targeting IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways (Feng
et al., 2019b; Chen et al., 2019d; Chen et al., 2019e; Chen et al., 2019f;
Wang et al., 2020b). Both clinical and experimental studies have
demonstrated that SKI could improve renal function in CKD.
Several previous publications have highlighted that SKI retarded
renal fibrosis by inhibiting levels of interleukin-6, interleukin-1β, and
TNF-α (Zhang et al., 2020) and modulating TGF-β1/Smad3 and
JAK2/STAT3 signaling pathways (Wu et al., 2015; Qin et al., 2021).
Another study has been demonstrated that treatment with SKI could
inhibit the protein expression of NF-ƙB at both mRNA and protein
levels in kidney tissues of renal ischemia–reperfusion injury mice
with DN induced by high-fat diet and streptozocin (Liu, 2018). Little
was known about its underlying anti-oxidative and anti-
inflammatory mechanism. Our findings suggested that SKI
retarded renal fibrosis by inhibiting the activation of the IƙB/NF-
ƙB signaling pathway. Therefore, our current works and that of
others suggested that effective inhibition of activated oxidative stress
and inflammation via the IƙB/NF-ƙB signaling pathway retarded
CRF progression.

In the bioactive fraction of ethyl acetate extract of SKI, we
identified three anthraquinones including chrysophanol, emodin,
and rhein that were major and bioactive components of Rheum
officinale, which has been demonstrated to improve CKD and renal
fibrosis (Wang et al., 2012; Zhang et al., 2018; Zeng et al., 2021).
Compared with chrysophanol and emodin, rhein showed a strong
inhibitory effect on renal fibrosis. Although rhein has been widely
demonstrated to protect against renal fibrosis (Zeng et al., 2014; Hu
et al., 2019; He et al., 2020;Wu et al., 2020; Yu et al., 2020), only two
previous studies have reported that rhein protected against renal
fibrosis by inhibiting the NF-ƙB p65 protein expression (Liu et al.,
2021b) and lincRNA-COX2/miR-150-5p/STAT1 axis (Hu et al.,
2020b). Similarly, a number of publications have demonstrated that
emodin retarded renal fibrosis by modulating several pathways,
such as TGF-β/Smad, TGF-β/BMP-7, PI3K/Akt/GSK-3β, and Bax/
caspase-3 signaling pathways (Jing et al., 2017; Ma et al., 2018b;
Yang et al., 2020; Liu et al., 2021c). Furthermore, several studies
have demonstrated the inhibitory effect of emodin on renal fibrosis
by suppressing the NF-ƙB p65 protein expression (Lu et al., 2020) or
the levels of ROS, TNF-α, and interleukin-6 (Chen et al., 2017c; Jing
et al., 2017). So far, no publication demonstrated the renoprotective
effect of chrysophanol through modulating the IƙB/NF-ƙB
signaling pathway. Recently, two publications have demonstrated
that chrysophanol protected against renal fibrosis by the TGF-
β/Smad signaling pathway (Dou et al., 2020; Guo et al., 2020).

Therefore, our study demonstrated that the inhibition of the
activated IƙB/NF-ƙB signaling pathway might be the underlying
molecular mechanism of anti-oxidant and anti-inflammatory
bioactivities of both SKI and three anthraquinones against renal
fibrosis.

Compared with pro-inflammatory system, the natural anti-
oxidant defense system contains many ROS scavenger molecules
from exogenous dietary and endogenous components, anti-oxidant
enzymes and substrates, and phase 2 detoxifying enzymes
(Cuadrado et al., 2019). Each component contributes to their
specific function and works in a collaborated way with the other
components to exert their protective effects against tissue damage
and dysfunction. Under physiological milieu, oxidative stress
elicited increasing endogenous anti-oxidant and cytoprotective
proteins and enzymes to restrain dysfunction and tissue damage
(Cuadrado et al., 2019). This process was induced by the activation
of the Nrf2 which plays a central role in the basal activity and
coordinated regulation of about 250 genes such as HO-1, GCLC,
NQO1, catalase, superoxide dismutase, thioredoxin, and
glutamate–cysteine ligase (Chen et al., 2017a; Cuadrado et al.,
2019). Our findings first demonstrated SKI treatment could
upregulate nuclear Nrf2 protein expression and downregulate
Keap1 protein expression in the kidney tissue of CRF rats,
which was accompanied by upregulating Nrf2 downstream
target gene products. To date, no publication demonstrated the
renoprotective effect of SKI through activating the Keap1/Nrf2
signaling pathway. Our current findings first point to the
beneficial effects of SKI on the impaired activation of the Keap1/
Nrf2 pathway in the adenine-induced CRF rats.

Although increasing evidence has reported that chrysophanol,
emodin, and rhein could improve many refractory diseases by
the activation of the impaired Keap1/Nrf2 signaling pathway,
and few studies demonstrated the renoprotective effect of
chrysophanol, emodin, and rhein by regulating the Keap1/Nrf2
signaling pathway. Two previous in vitro studies have
demonstrated that emodin could increase the activities of anti-
oxidant enzymes such as catalase, glutathione peroxidase,
superoxide dismutase, glutathione reductase, and glutathione
S-transferase in the hypoxia/reoxygenation-induced HK-2 cells
or cisplatin-induced human kidney HEK 293 cells (Waly et al.,
2013; Chen et al., 2017c). Another in vivo experiment has
demonstrated that emodin significantly inhibited the decreased
renal cortical glutathione levels and superoxide dismutase activity
in the cisplatin-induced nephrotoxicity rats (Ali et al., 2013).
However, no publication demonstrated the renoprotective
effect of chrysophanol and rhein through modulating the
Keap1/Nrf2 signaling pathway. Therefore, our study revealed
that activation of the impaired Keap1/Nrf2 signaling pathway
might be also a potential molecular mechanism of anti-oxidant
and anti-inflammatory bioactivities of both SKI and three
anthraquinones against renal fibrosis.

Collectively, our current study first elucidated that SKI and its
main components including chrysophanol, emodin, and rhein
protected against renal fibrosis by inhibiting oxidative stress and
inflammation via simultaneous targeting pro-inflammatory IƙB/
NF-ƙB and anti-inflammatory Keap1/Nrf2 signaling pathways,
which revealed the underlying molecular mechanism of SKI and

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 80052210

Luo et al. SKI Protects Against Renal Fibrosis

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


its main components against renal fibrosis. These findings
uncovered the potential effective material basis and molecular
mechanism of the renoprotective effect of SKI, which will pave
the way for discovery of lead compounds against renal fibrosis by
inhibiting oxidative stress and inflammation via targeting the redox
pathway.

CONCLUSION

This study first demonstrated that SKI and its components
including chrysophanol, emodin, and rhein protected against
renal fibrosis. Mechanistically, this study revealed the potential
molecular mechanism of the anti-oxidative and anti-
inflammatory effects of SKI by inhibiting oxidative stress and
inflammation via simultaneous targeting IƙB/NF-ƙB and Keap1/
Nrf2 signaling pathways.
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