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Abstract

This study examined the effects of tonal and atonal music on respiratory sinus arrhythmia (RSA) in 40 mothers and their 3-
month-old infants. The tonal music fragment was composed using the structure of a harmonic series that corresponds with
the pitch ratio characteristics of mother–infant vocal dialogues. The atonal fragment did not correspond with a tonal
structure. Mother–infant ECG and respiration were registered along with simultaneous video recordings. RR-interval,
respiration rate, and RSA were calculated. RSA was corrected for any confounding respiratory and motor activities. The
results showed that the infants’ and the mothers’ RSA-responses to the tonal and atonal music differed. The infants showed
significantly higher RSA-levels during the tonal fragment than during the atonal fragment and baseline, suggesting
increased vagal activity during tonal music. The mothers showed RSA-responses that were equal to their infants only when
the infants were lying close to their bodies and when they heard the difference between the two fragments, preferring the
tonal above the atonal fragment. The results are discussed with regard to music-related topics, psychophysiological
integration and mother-infant vocal interaction processes.
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Introduction

Since the time of the Ancient Greeks, there has been debate

regarding whether the preference for consonance over dissonance

has cultural or biological origins. Consonance refers to the

aesthetic evaluation of multiple tones that sound harmonious,

stable or pleasant, whereas dissonance refers to tones that sound

unharmonious and unpleasant (e.g., [1]). Several studies on adults

have reported a preference for consonance or simple frequency

ratios above dissonance or complex frequency ratios [2–5]. In

studies of central nervous system activity, listening to dissonant

music has been associated with heightened activity in areas of the

brain that are known to be involved in stress responses [2,4,6,7].

For instance, listeners show increased activity in the amygdala,

hippocampus [4] and parahippocampal gyrus [2,8] during

dissonant music and decreased activity in these regions during

joyful consonant music [4]. It has been suggested that the

parahippocampal gyrus might be involved in the processing of

affective vocal signals [6]. In the amygdala, it seems that different

nuclei are involved in the responses to consonance and dissonance

[6]. For instance, activity in the superior regions is related to

dissonance [9], whereas activity in the basolateral [9] and lateral

[6] regions is related to consonance. Pallesen et al. [7] stated that

neural responses can be evoked even with isolated chords and that

such responses do not differ between musicians and non-

musicians.

To understand the origins of the preference for consonance,

infant studies have used the looking-time preference procedure to

demonstrate a preference for consonance in infants at the ages of 2

days [10], 2 months [11], 4 months [11,12] and 6 months [13].

Masataka’s [10] study of 2-day-old infants was exceptional because

prenatal experience was eliminated by including hearing infants of

deaf parents. This study concluded that infants prefer consonance

over dissonance from birth onwards, independent of prenatal or

early postnatal experience. By contrast, a recent study [14] that

utilized the same looking-time preference procedure did not

observe a preference for consonance in 6-month-old infants and,

thus, did not support an innate preference for consonance.

Considering these inconsistent findings, the use of other determi-

nants to infer musical preferences is instructive. In a recent study

[15], adult participants reported that their musical preference was

related to their physiological responses such as the sensation of

chills and shivers, feelings of bodily tension or relaxation and so

forth.
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In a number of infant studies, respiratory sinus arrhythmia

(RSA) has been utilized as a measure of physiological response

because it can be obtained through non-invasive ECG-respiratory

registration (e.g., [16]). RSA provides an accurate measure of a

component of the natural heart rate variability (HRV) that is

present during a respiration cycle as a result of regulation by the

parasympathetic division of the autonomic nervous system via the

vagus nerve [17]. Heart rate (HR) accelerates during inspiration

and decelerates during expiration. Thus, the degree of RSA

provides an indication of the vagal control of the heart. That is, as

vagal tone increases, the relationship between HRV and the

respiratory cycle becomes more pronounced and RSA increases

[17]. From an integrated psychophysiological point of view, RSA

is one of the responses that are related to arousal-induced

responses in social situations [18]. It has been speculated that

during low demands for social engagement, vagal tone increases

and HR decreases, allowing the body to focus on internal

processes. By contrast, during challenging situations, vagal tone

decreases and HR increases to prepare for environmental

participation and self-regulation [19].

Most infant studies that have examined the physiological

responses to music have focused on the clinical context of music

therapy with preterm infants. The results of these studies are

inconsistent, likely due to the differences in preterm stage and/or

differences in type of musical stimulation used across studies. Most

of the studies have reported that music therapy has soothing and

stabilizing effects on preterm infants [20] and that these effects are

often related to decreased HR (e.g., [21,22]). However, one study

that utilized maternal voice and singing [23] observed increased

infant HR in response to both maternal speech and maternal

singing with no significant difference in HR response between the

two stimulations [23]. Furthermore, a study that combined

Kangaroo Care with live harp music therapy [24] did not observe

a physiological impact of the music on the infants’ HR. Finally, a

developmental study [25] observed decreased HR in response to

three different types of musical stimuli among infants at 3 and 6

months of age, but increased HR at 9 months of age and no effect

at 12 months of age. To our knowledge, no studies on infants’

physiological responses to consonance and dissonance have been

conducted.

In adult studies, music-related physiological responses appear to

be inconsistent. In an early study, increased HR and arousal were

reported in response to preferred, relaxing music [26]. By contrast,

studies in a nursing context [27–29] have found the opposite

result. Krumhansl [30] observed that sad music induced HR-

decrease and, Sammler, Grigutsch, Fritz and Koelsch [31]

reported dissonance-related decreased HR. However, Gomez

and Danuser [32] did not find a significant variation in HR in

response to music. When examining HRV, a few studies [33–35]

have reported increased parasympathetic activity in response to

relaxing, sedative music. Furthermore, music that is self-rated as

strongly emotional and/or inducing chills is related to increased

physiological arousal [36,37]. These results were supported by a

recent study that controlled for the respiratory component of RSA

and showed decreased parasympathetic activity during excitative

music in comparison with sedative music [33]. As with the

physiological variations that were observed in the infant studies,

this inconsistency is likely due to the type of musical stimulation

that the different studies employ. Moreover, caution is needed

when inferring emotional interpretations or preferences from

physiological events, as these events are multi-dimensional and,

thus, can be affected by a variety of other processes [38]. With

respect to HR, fluctuations may be the result of small changes in

motor activity that are not relevant to the task performance

[39,40]. Regarding HRV, in addition to vagal outflow, RSA

reflects respiratory and metabolic demand related to somatic

activity [38]. RSA is negatively correlated with motor activity in

both adults (e.g., [41]) and infants [42,43]. There is also a negative

relationship between RSA and respiration rate and a positive

relationship between RSA and tidal volume (e.g., [41,44–46]).

Therefore, motor and respiratory effects must be controlled or

treated as confounding factors when attempting to study

psychological influences on RSA [38].

In the current study, we examined the RSA-responses of 40

mothers and infants to a tonal and an atonal music fragment.

Some studies have hypothesized that adult musical preferences are

rooted in early mother-infant interaction processes, arguing that

maternal singing and talking has an emotion regulating effect

[8,15]. For instance, Mitterschiffthaler et al. [8] associated

preferences for consonance over dissonance with the universal

repertoire of mothers’ lullabies, which feature simple frequency

ratios [47]. Indeed, Shenfield, Trehub and Nakata [48] demon-

strated that infants with high baseline levels of cortisol benefitted

from maternal singing, as indicated through a decrease in cortisol.

Moreover, recent studies on maternal-infant speech have shown

that during mother-infant bonding moments of affect repair, the

observed interrelated pitch frequency ratios of the vocalizations

are tonally related or synchronized and mainly contain consonant

simple frequency ratios [49,50]. Van Puyvelde et al. [49] suggested

that the association of consonant frequency ratios in maternal

speech with enhanced social connectedness may be related to later

consonant preference. The distribution of frequency ratios during

moments of tonal synchrony appears to be in agreement with the

hierarchy of a harmonic series. A harmonic series is an acoustical

phenomenon. Each pitch of a regular sound corresponds with a

periodic sound that consists of a harmonic spectrum with a pattern

of partial components (or so-called harmonics). These harmonics

have fixed ratios in relation to their fundamental frequency.

Together, they blend or harmonize with this fundamental

frequency and give the impression of a single tone (see Figure 1

for an illustrated explanation of a harmonic series). During tonal

synchrony, mothers and infants share a tonal center to which their

other uttered pitches are related in the same way as the harmonics

are related to their fundamental frequency. Moreover, the

observed ratios during tonally synchronized vocal dialogues are

mainly consonant or simple frequency ratios (i.e., 70% of the

time), with a smaller number of complex frequency ratios (i.e.,

25% medium consonance and 5% dissonance) [49,50]. A similar

hierarchical response pattern has been found in the phase-locked

neural activity within individuals’ brainstems while listening to

different consonant and dissonant intervals [51].

The tonal music fragment that was used in the current study

was based on a harmonic series and the previously described

features of tonally synchronized mother-infant vocal dialogues

whereas the atonal fragment was not based on a harmonic series

(see method). Because tonal synchrony is a relational concept, we

explored both mothers’ and infants’ responses to the music and

potential coherences between the two. Therefore, the mothers and

their infants listened to the music together. In this way, the current

approach differed from a conservative experiment that measures

tonal and atonal infant preferences but controls for the potential

influence of the mother (e.g., mother is deaf to the music). We

attempted to answer the following three research questions: (1) Do

mothers and infants show a different RSA-response to the tonal

versus atonal fragment? (2) Do mothers and/or infants show a

different RSA-response to the tonal versus atonal fragment when

having close body contact compared to being separated? (3) Does

Maternal-Infant RSA-Responses to Music
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the mothers’ ability to differentiate between the two types of

stimuli influence the RSA-responses of mothers and/or infants?

Method

Participants and characteristics
The study was approved by the local ethics committee (UZ-

Jette, Belgium, B.U.N. 143201111237). We recruited 45 mothers

from prenatal classes and a private midwife’s office. The mothers

who agreed to participate were contacted a few weeks before the

estimated date of their infant’s birth and signed written informed

consent forms. At the time of the first recording session, the

mothers’ mean age was 30 years and 3 months (SD = 3.84; range

25–43 years). All of the infants (21 boys, 19 girls) were healthy, full-

term born infants and passed the Universal Newborn Hearing

Screening (UNHS) test. The mean birth weight was 3.380 kg

(SD = 0.376; range 2.680–4.160 kg), and the mean birth length

was 49.84 cm (SD = 1.47; range 48–52 cm). The mothers’ mean

duration of higher education was 6 years (SD = 2.0, range 2–10

years). The recordings of 40 dyads were used for the current

analyses; 5 of the recordings were excluded due to artifacts (N = 3)

or infant fussiness (N = 2).

Apparatus
For the ECG and respiration registration, the ambulatory

BioRadio 150 system (Cleveland Medical Devices Inc., Cleveland,

Ohio, USA) was used. This system consisted of a BioRadio User

Unit and Computer Unit. The User Unit had a wireless data

acquisition system that allowed the subjects to move freely and

acquired the synchronized ECG and breathing signals of both the

mother and the infant. Digitized signals were wirelessly transmit-

ted by the User Unit to the Computer Unit which was connected

to a PC computer via USB port and later imported into the

VivoSense software version 2.4 (Vivonoetics, San Diego, USA) for

further analysis. Simultaneous digital video recordings were made

with a DCR-SX73 E Sony Handycam (SCA, California, USA).

The music fragments were composed and arranged by means of

Finale, Music Notation Software Products for Music Composition

Figure 1. Illustration of a spectral analysis (multiple peak sounds within one tone) of a 55 Hz pitch tone. A regular sound vibration is a
complex tone that consists of a fundamental frequency (F0 or harmonic number 1, h1 or A1 on the Figure, i.e., most left peak) + a series of harmonics
or partials (h2–16, other peaks). Together, they blend, giving the impression of one single tone. The frequency of each partial is a multiple of the F0
(55–110–165 Hz and so forth…). These multiple relations are expressed in ratios on the Figure. For example h3 (165 Hz) is related to h2 (110 Hz) with
a ratio of 3:2. When considering the harmonics h2–16 in relation to the F0, you obtain the illustrated frequency ratios (see on the bottom of the
Figure). Van Puyvelde et al. (2010) observed that, during tonal synchrony, mothers and infants share a tonal center (which corresponds with F0/h1
and its octaviations) to which their other uttered pitches are related in the same fashion as the partials of a harmonic series are related to the
fundamental frequency or F0 (i.e., the mothers and infants use the same ratios as pictured on the Figure). The partials of the tonal center are
indicated by rectangles and the arrows show the frequency ratios with regard to this tonal center. For example h6 is related to h4 (ratio 6:4 = 3:2) and
not h5 because h5 is not part of the tonal center (no octaviation of F0). On the right, an overview of the distribution of the ratios during tonal
synchrony and their approximated music interval is given, with a distinction between high consonance (2:1, octave; 3:2, perfect 5; 5:4 major 3)
medium consonance (7:4, minor 7; 9:8, major 2) and dissonance (11:8, triton; 13:8, minor 6; 15:8 major 7). The same ratios and distribution were used
in the tonal fragment, i.e., 70% high, 25% medium consonance and 5% dissonance).
doi:10.1371/journal.pone.0106920.g001
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(MakeMusic Inc., Minnesota, USA) and the digitalized sound

samples by means of Roland XP-80 (Roland Corporation,

Shizuoka, Japan). The statistical analyses were conducted using

R version 3.02 (R Foundation for Statistical Computing, Vienna,

Austria), with package lme4 used for the mixed effect modeling

[52] and the phia package utilized for the evaluation of the

interactions [53].

Recording of physiological signals
Two standard single-channel ECG registrations (II derivation)

were used, one for the mother and one for the infant. The

electrodes were placed –in correspondence with the configuration

of Einthoven, Fahr and de Waart [54]- on the upper right side and

the lower left side of the chest. The grounding electrode was

placed on the mother’s back. The grounding of the infant was

obtained by maintaining the infant’s skin-to-skin contact with the

mother (see procedure). The ECG signals were recorded with a

sampling frequency of 960 Hz and breathing signals with a

sampling frequency of 60 Hz. To register breathing movements,

both the mother and the infant wore a thoraco-abdominal

respiratory effort belt, with the infant wearing a pediatric belt.

Procedure
The data were collected during home visits. The stereo Hifi-

system was placed one meter away from the mother and the infant

(see Figure 2). After fitting the electrodes and respiratory effort

belts, one group of the mothers (N = 21) was asked to take a seated

resting position with the infant lying close to the mother’s body (see

Figure 2). The other mothers (N = 19) were asked to take a seated

position next to the infant without close body contact. During

registration, the mothers were asked to hold their infants’ hand or

foot during the testing to ensure continuous skin-to-skin contact

between the mother and the infant. When the mother felt

comfortable, a 3-minute baseline registration was recorded and,

subsequently, the testing commenced. The test consisted of two

blocks of music, each with a duration of 3 min 12 s with a pause of

1 min 48 s between the two blocks. Before starting, the

experimenter informed the mothers that they would hear two

different music fragments and that they were expected to listen

carefully to these fragments to later report which fragment they

preferred. To provide a further motivational incentive for the

mothers to pay attention to the music fragment, they were also

asked to report their eventual thoughts or feelings and any notable

behavioral responses that they observed from their infant during

the two music fragments. In addition, the mothers were instructed

not to interact with their infants during the music fragments unless

they thought that their infants were in discomfort. When the infant

sought explicit contact with the mother or smiled at her, the

mother was allowed to respond briefly to avoid a still-face

situation. Between the fragments, the mothers were allowed to talk

quietly with the infants without stimulating or arousing them. The

presentation order of the two music fragments was counterbal-

anced (tonal-atonal, N = 19; atonal-tonal, N = 21).

Music fragments
Fragment 1 (tonal) was based on the notes of the harmonic

series of C. Thus, the composition consisted of only 8 notes (plus

the octaviations). These notes corresponded with the first 16

harmonics or partials of the complex tone C, i.e., C-G-E-Bb-D-

F#-G#-B. Moreover, the incidence of simple and complex

frequency ratios aligned with the harmonic series and tonal

synchrony, i.e., 70% high consonance (C-E-G), 25% medium

consonance (Bb, D) and 5% dissonance (F#, G#, B). In Fragment

2 (atonal structure), the harmonic series musical structure was

absent. To minimize habituation, every 10 s, the leading musical

instrument and rhythms of music were varied to attain the infant’s

attention with next sounds of Roland XP-80 (Roland Corporation

U.S., Los Angeles, USA), a music workstation expanded with the

SR-JV80-02 and SR-JV80-09 Wave Expansion Boards: harp,

vibraphone, piano, and pizzicato strings. This variation and other

musical determinants, such as length, tempo, volume (i.e., 60 db),

rhythms and instrument sound samples, were identical in the two

fragments (see Figure 3).

Figure 2. Mothers and infants listened to two music fragments. One group of the mothers maintained close body contact with their infants.
The other mothers were asked to take a seated position next to the infant without close body contact. The music stereo installation was placed 1
meter from the participants. The music stimulus was played at 60 db.
doi:10.1371/journal.pone.0106920.g002
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Analysis of physiological signals
Data analysis. For the analyses, we computed maternal and

infant RR-interval (RRI), respiratory sinus arrhythmia (RSA) and

respiration frequency (fR) during all testing blocks. These analyses

of the recorded signals were performed using proprietary

algorithms in the dedicated VivoSense software (Vivonoetics,

San Diego, USA), which achieves R-wave detection and RSA-

calculation through a derivative-based algorithm that accounts for

violations of the Nyquist-criterion (see next paragraph). The

timing of the detected R-wave was used to generate the RR-

interval (RRI). For each testing block, maternal and infant fR,

RRI and RSA were calculated. RSA was computed using the

peak-valley method (i.e., the mean difference between the shortest

heart period associated with inspiration and the longest heart

period associated with expiration for each respiratory cycle) to

reflect vagal tone [55]. This is the most appropriate method for

infant research, as it accounts for Nyquist-violations (see next

paragraph). Frequency-domain spectral analysis requires a mini-

mum of at least two minutes of uninterrupted registration to

generate stable RSA-estimates [43,56]. All of the ECG and

Figure 3. Illustration of the first 14 bars of the two music fragments to show the tonal structure and the disruption of tonality.
Fragment 1 (Tonal structure) is composed with the notes of the harmonic series C, i.e., C-G-E-Bb-D-F#. The ratios in relation to the tonal center C
consisted of 70% high consonance (i.e., the notes C-E-G), 25% medium consonance (i.e., the notes Bb, D) and 5% dissonance (i.e., the notes, F#, G#,
B). In Fragment 2 (Atonal structure), the harmonic series musical structure was absent.
doi:10.1371/journal.pone.0106920.g003
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breathing data were visually inspected for artifacts and incorrect

detections. In the case of ectopic beats or erroneous detections, the

data were manually corrected with the removal of the erroneous

detection/artifact followed by a cubic spline interpolation (correc-

tions were applied to ,1% of data).

The need to correct RSA for respiration is even more important

in infant studies than in adult studies (see [43]). Young infants

possess an immature control of their respiration [57] and a high

respiration rate [56] with small breathing amplitude [58], which

can complicate the RSA calculation. When the respiration rate is

overly rapid to allow the detection of two succeeding RRI-periods

during one inspiration or expiration, the Nyquist-criterion (i.e., the

requirement that the sampling rate is at least twice as high as the

frequency of interest) is violated [56,59]. VivoSense accounts for

violations of the Nyquist-criterion and scores the breaths with no

detectable peak-valley RSA as zero. To address the potential

effects of respiration frequency on RSA, we conducted a series of

within-subject regressions on the averages of the data of each

experimental block, predicting infants’ RSA from its respiration

frequency. This approach is consistent with a previously published

methodology [60]. Residuals from these regressions were collected

and used to control for the effect of respiration frequency on RSA

[41,60]. Although non-invasive ambulatory respiratory inductance

plethysmography has been adapted to infants and used in previous

studies [43,61], we were not in the possession of such a device.

Therefore, we did not include a measurement of tidal volume in

the present study. An additional common issue in psychophysio-

logical research is the large between-individual variation in RRI,

RSA and fR measures. Hence, within-subjects z-transformations

were applied, as recommended in a previously published

methodology (e.g., [62]).

Data preparation
Influence of maternal and infant motor behavior. In

agreement with recent methodology [42,43], two independent

coders analyzed the video-recordings second-by-second for motor

behavior [42,43]. The coding scheme of Bazhenova et al. [42] was

created to code infant motor activity. Therefore, we adapted it to

the mother’s motor activity (i.e., 0 = quiet motor, 1 = slow,

2 = mild/moderate, 3 = pronounced). In line with Ritz et al.

[43], the percentage of time that an infant or a mother spent in

each activity level was calculated and then multiplied by the

activity level value. Then, the values were summed, resulting in a

range from 0 (maximum of ‘quiet motor’) to 300 (maximum of

‘pronounced’). The inter-rater reliability between the two inde-

pendent coders was assessed on a random 25% of the recordings.

During coding, both of the coders were blind to the test condition.

Figure 4. Overview of RSA-responses before and after correction for respiratory and motor confounds in mother group and infant
group.
doi:10.1371/journal.pone.0106920.g004
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High kappa inter-rater reliabilities were reached, M = .82

(Cohen’s k).

Additional cognitive and physical variables. Eleven

mothers did not hear the difference between the two fragments.

Therefore, we included ‘differentiation’ as a variable in the

analysis model. Furthermore, 21 mothers listened to the fragments

with the (dressed) infant close to their bodies, whereas the other 19

mothers listened without close body contact with their infants. As

previously mentioned, in both groups, the mothers maintained

skin-to-skin contact by holding their infants’ foot or hand. All of

the mothers who perceived a difference between the tonal and

atonal fragment preferred the tonal fragment.

Statistical analysis
To answer the current research questions, we fit separate

coefficients for mothers and infants; these coefficients took into

account all of the aforementioned factors. For each observation,

the variable ‘‘Subject’’ indicated whether the measurement

originated from the mother or the infant. The variable ‘‘Condi-

tion’’ referred to the baseline, the tonal fragment or the atonal

fragment. For both variables, treatment contrasts were used, with

‘‘Mother’’ or ‘‘Baseline’’ as the reference value, respectively. The

two other indicator variables were ‘‘Together’’ and ‘‘Differentia-

tion’’, which evaluated the effect of close body contact between the

mother and the infant and the mothers’ ability to differentiate

between the two fragments, respectively. The research questions

were tested within the framework of Linear Mixed Effect models.

Every model was fitted using restricted maximum likelihood. A

random intercept was fitted for every individual, and the model

was corrected for variability in motor activity during the testing.

The model was selected using a backwards approach, starting

from the model with all possible 2-, 3- and 4-way interactions. In

each step, all n-way interactions were dropped, starting with the 4-

way interaction. The reduced model was then compared with the

model from the previous step using a likelihood ratio test. This

procedure ensures that the models were suited to post-hoc testing

of the interactions. After selecting the final model, post-hoc

comparisons were used to answer the research questions. To

evaluate the interactions, an approach that was similar to Boik’s

[63] approach was chosen. P-values were corrected for multiple

testing using the method of Holm [64].

Results

Overview
Figure 4 provides an overview of the RSA-responses to the tonal

and atonal fragment in the mother group and infant group before

and after the correction of RSA for the confounding effects of

motor and respiratory activities.

Selected model
The final model included all of the described variables and

interactions, apart from the 4-way interaction. The removal of the

3-way interactions resulted in a significant loss of explained

variance, as shown by the likelihood ratio tests, p = .014 (see

Table 1).

Research question 1: Do mothers and infants show a
different RSA-response to the tonal versus atonal
fragment?

Table 2 shows that the infants’ and the mothers’ RSA-responses

to the tonal and atonal music differed. The infants showed

significantly increased RSA-levels when listening to the tonal
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fragment compared to both the atonal fragment (x2(1) = 21.78, p,

.001) and baseline (x2(1) = 23.78, p,.001). The mothers did not

seem to react to the different music fragments, exhibiting no

significant differences in their RSA-responses to the three different

conditions (see Table 2).

Research question 2: Do mothers and/or infants show a
different RSA-response to the tonal versus atonal
fragment when having close body contact compared to
being separated?

Body contact between the mothers and infants impacted the

RSA-responses. Table 3 shows that there was a significant

difference in RSA-responses between mothers and infants when

they were not in close body contact. This was the case both when

the mother differentiated between the two fragments,

x2(2) = 10.20, p = .018, and when there was no differentiation

between fragments, x2(2) = 13.97, p = .004 (see Table 3).

Research question 3: Does the mothers’ ability to
differentiate between the two types of stimuli influence
the RSA-responses of mothers and/or infants?

The mothers’ ability to differentiate between the tonal and

atonal fragment only had a significant effect on the mothers’

responses. There was a significant difference in RSA between

mothers who differentiated and mothers who did not differentiate,

x2(2) = 9.70, p = .016. Within the infant group, there was no

significant difference in RSA between the infants whose mothers

differentiated fragments and the infants whose mothers did not

x2(2) = 0.13, p = .94. The results of the post-hoc test are provided

in Table 4.

Conclusion tested by post-hoc comparisons for dyads
with close body contact and with mothers who
differentiated between the two fragments

Research question 2 showed that there was no difference in the

response between mothers and infants during close body contact

regardless of the mothers’ ability to differentiate the two music

fragments. Nevertheless, the ability to differentiate the fragments

had a significant effect on the mothers’ but not the infants’

responses (research question 3). Therefore, post-hoc comparisons

of the different listening conditions were conducted in the mother

group and infant group for the four possible combinations (i.e., 1/

close body contact–differentiation, 2/close body contact – no

differentiation, 3/no close body contact – differentiation, and 4/

no close body contact – no differentiation). These comparisons

revealed that mothers and infants only showed similar RSA-

responses to tonal music when the two were in close contact and

the mother differentiated the two fragments. In such cases, both

the mother and the infant showed increased RSA-levels during the

tonal fragment in comparison with baseline levels (see Table 5).

The infants also showed a significant difference in RSA-response

to the tonal versus atonal fragment, x2(1) = 14.91, p = .0025. The

comparisons between the different listening conditions in the other

groups were not significant (p..05) (see Table 5). A detailed

overview of the mothers’ and infants’ RSA-responses for each

group is shown in Figure 5.

Discussion

The present study examined the effects of two music fragments

(i.e., tonal or atonal) on the RSA-responses of 40 mothers and their

3-month-old infants. The two music fragments differed from one

another only in the presence (tonal) or absence (atonal) of a

harmonic series musical structure. The tonal fragment was

intended to correspond with the tonal structure that was observed

during tonally synchronized mother-infant vocal dialogues,

whereas the atonal fragment was intended to correspond with

non-tonally synchronized vocal dialogues [50]. In the analyses,

motor activity was included as a covariate and RSA was controlled

for effects of respiration rate. This discussion addresses music-

related and maternal-infant interaction-related topics.

The findings with regard to research question 1 showed that the

infants’ and the mothers’ RSA-responses to the tonal and atonal

music differed. Whereas mothers’ RSA did not seem to react to the

music in general, the infants showed significantly higher RSA-

levels during the tonal fragment than during the atonal fragment

and baseline. We first discuss the results of the infants’ responses to

tonal versus atonal music with regard to a potential consonance

bias. In the literature, there is a controversy with regard to the

presence [10–13] or absence [14] of a biological predisposition to

consonance bias. In the present study, the infants showed

increased RSA-levels during the tonal fragment in relation to

baseline levels and in relation to the atonal fragment. This effect

was observed independent of the varying RSA-responses of the

mothers over the music conditions, which are discussed below.

Physiological reactivity has been designated as a reliable determi-

nant of musical preference in adult studies [15], suggesting that

infants preferred the tonal and overly consonant music to the

atonal dissonant music. However, musical preferences in adult

studies are related to arousal (e.g., [65]) and chills [36,37]) rather

than to relaxing aspects. In a context of infant development,

physiological relaxation may be preferred over physiological

arousal to obtain self-regulation (e.g., [66–68]). However, such

conclusions are beyond the scope of the current study. We can

Table 2. Post hoc comparisons for the mothers and infants for the effect of the tonal/atonal music on the corrected RSA.

Subject Music fragment Value df Chi sq p

Mother baseline-atonal 20.18 1 2.28 0.5251

baseline-tonal 20.10 1 0.74 1.0000

atonal-tonal 0.07 1 0.42 1.0000

Infant baseline-atonal 20.02 1 0.02 1.0000

baseline-tonal 20.57 1 23.78 ,.0001*

atonal-tonal 20.55 1 21.78 ,.0001*

The value represents the difference in RSA for the groups.
Note. Signifcant p-values are indicated in bold font with an asterisk (*).
doi:10.1371/journal.pone.0106920.t002
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only conclude that the infants showed a differentiation in RSA-

responses between the tonal and the atonal fragment. It is possible

that the music fragments constituted a significant environmental

stimulus that overrode other possible environmental stimuli,

including entrainment to the mother’s RSA when in physical

contact. A hypothesis in the literature is that consonant

preferences may originate from early experiences during mother-

infant vocal dialogues as a consequence of the regulating impact of

melodious mother talk and mother singing [8,15,49]. The tonal

fragment in the present study was based on these tonal features of

early vocal dialogues between mothers and infants. Therefore, the

overall RSA-responses of the infants during music based on these

characteristics of vocal interaction warrant further study into

whether the tonal qualities of early vocal dialogues are related to

successful affective [49] and physiological co-regulation.

We did not observe an effect of atonal music in comparison to

the baseline on the infants’ RSA-responses even though a decrease

in RSA during the atonal music fragment might have been

expected. It is possible that the effect of the atonal music fragment

was reduced as a result of the continuous touch between the

mothers and infants during the music conditions. A recent

research [69] showed that touch between a mother and infant

attenuates the infant’s physiological reactivity to stress during a

still-face experiment (i.e., a simulated situation of maternal

deprivation in which the mother is not allowed to respond to

the infant). Without their mothers’ touch, the infants showed

increased cortisol levels and decreased RSA during the still-face

phase and did not recover during reunion. However, when

mothers were allowed to touch their infants throughout the

experiment, the magnitude of the stress response in RSA and

cortisol was reduced and the infants recovered during reunion

[69].

In comparison with previous studies of infants’ responses, the

current findings correspond with the reported soothing effects of

music therapy on preterm infants’ HR (e.g., [20–22]). However,

the present results are in contrast to other reports of arousal in

preterm infants during maternal talk and singing [23] and during

musical stimuli [25]. One explanation for these inconsistencies

may be differences in the nature of the musical stimuli (i.e.,

maternal voice, orchestral pieces, harp, piano, tempo, rhythm and

so forth) that were utilized. With regard to tempo differences, it

has been suggested that the observed cardiovascular responses of

adults may be influenced by musical and instrumental expression

[70] or entrainment processes [71]. Due to entrainment, decreases

or increases in HR in response to music may occur when the

tempo of the music is much lower or higher than the mean HR

(i.e., 80 beats per minute in adults). However, in the present study,

it is likely that the music-related factors did not influence the

results, as the tempo, instrumentation and intensity were identical

in the two fragments. Another reason for the inconsistencies across

the studies may relate to the population that was tested. Most of

the reported studies were conducted with preterm infants who

tend to be easily stimulated [20] in comparison to full-term infants

(i.e., the present study sample).

This study included the mothers’ responses in the analyses.

Some mothers did not differentiate between the two music

fragments. The mothers who differentiated between the fragments,

preferred the tonal above the atonal fragment. It was notable that

the mothers displayed RSA-responses that were equal to those of

their infants only when they differentiated between the two

fragments and when the infants were lying close to their bodies. By

contrast, all of the infants responded to the tonal fragment

regardless of their mothers’ responses. These results may suggest

that the music fragments provided a more significant stimulus to
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physiological response in the infants than in the mothers.

Moreover, it appears that physiological reactivity to music in

adults is a top-down regulated process, whereas infants at this age

seem to respond via bottom-up processes. In the mothers, we likely

observed an integrated mind-body response to the music, as

described in the neurovisceral integration models [18,72–73],

resulting in the mixed response pattern. This notion is in line with

some studies’ suggestion that the human musical inner life is a

culturally developmental [74] and age-dependent process (e.g.,

[74–75]) that is related to cognitive functions such as meaning-

fulness, needs and beliefs that are developed over the life-time (e.g.,

[15]). It has yet to be determined how and at what age top-down

processes begin to interfere with physiological responses to music.

The mothers’ and infants’ responses in this study may be

supported by animal study results that full body contact is required

to achieve maternal-infant matched physiology [76]. In human

adults, an additional cognitive component may be needed. This

suggestion is supported by a study that showed that physiological

synchrony between mothers and infants, only occurred when

mothers were able to respond in a sensitive manner [77].

However, the current findings and suggested interpretations

contrast with other studies that reported physiological synchrony

between mothers and infants who had no bodily contact [78–79].

It has been proposed that different underlying mechanisms are

responsible for eliciting physiological synchrony when body

contact is or is not present [78], but variations in methodology

may explain the apparent variability between studies. Until now,

mother-infant physiological synchrony was studied in social

interactive situations that required movement and speech, which

are known to elevate the metabolism (e.g., [43,60,80,81]) and

Table 4. Post hoc test for the effect of the differentiation capacity on the response differences for both the infant and the mother.

Comparison Subject Condition 1 Condition 2 df Chi Sq p

Differentiation-No differentiation Mother 20.63 0.02 2 9.70 .0156*

Infant 0.02 0.08 2 0.13 .9351

Condition 1 and Condition 2 are fitted coefficients representing the effect of the variable Condition.
Note. Signifcant p-values are indicated in bold with an asterisk (*).
doi:10.1371/journal.pone.0106920.t004

Table 5. Overview of the effect on RSA of listening to the tonal and atonal fragments for infants and mothers.

Subject Condition Music fragment Value df Chi sq p

Mother Together/Differentiation (N = 19) Baseline-atonal 20.41 1 8.27 .0804

baseline-tonal 20.73 1 25.16 ,.0001*

atonal-tonal 20.32 1 4.82 .3378

Together/No Differentiation (N = 5) baseline-atonal 0.23 1 1.04 1.000

baseline-tonal 20.10 1 0.18 1.000

atonal-tonal 20.33 1 2.06 1.000

Not Together/Differentiation (N = 10) baseline-atonal 20.44 1 5.63 0.229

baseline-tonal 20.10 1 0.26 1.000

atonal-tonal 0.35 1 3.49 0.678

Not Together/No Differentiation (N = 6) baseline-atonal 0.20 1 0.83 1.000

baseline-tonal 0.54 1 5.88 0.214

atonal-tonal 0.34 1 2.28 1.000

Infant Together/Differentiation (N = 19) baseline-atonal 20.02 1 0.02 1.0000

baseline-tonal 20.58 1 16.20 .0013*

atonal-tonal 20.56 1 14.91 .0025*

Together/No Differentiation (N = 5) baseline-atonal 0.04 1 0.04 1.000

baseline-tonal 20.60 1 6.66 0.161

atonal-tonal 20.64 1 7.69 0.106

Not Together/Differentiation (N = 10) baseline-atonal 20.05 1 0.07 1.000

baseline-tonal 20.55 1 8.46 0.076

atonal-tonal 20.50 1 7.00 0.147

Not Together/No Differentiation (N = 6) baseline-atonal 0.02 1 0.01 1.000

baseline-tonal 20.56 1 6.35 0.176

atonal-tonal 20.58 1 6.737 0.161

Value indicates the difference between the groups.
Note. Signifcant p-values are indicated in bold with an asterisk (*).
doi:10.1371/journal.pone.0106920.t005
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induce respiration variability [43]. These potential confounds were

statistically controlled in the current study. Therefore, further

replication studies in the domain of mother-infant synchrony that

account for motor and respiratory confounds are warranted to

allow more reliable comparisons between studies.

This study had several merits and limitations. In contrast to

most RSA-studies that have been conducted in a mother-infant

context, we controlled for respiration and motor activity.

However, we did not control for tidal volume and, thus, did not

analyze the potential influences of volume-related variability. An

additional limitation was the ambiguity as to why some mothers

did not differentiate the two music fragments. We did not test the

mothers’ ability to process melody and harmony and, therefore, do

not know whether these mothers were tone-deaf or not focused on

the music. Although this issue has no significance with regard to

the current interpretations, further research may be advised to

include a music perception test on tone-deafness (e.g., the

Montreal Amusia Test Battery [82]). One of the most significant

contributions of the current study was the relational approach that

was used to explore the RSA-responses of mothers and infants

when exposed to tonal versus atonal music. However, because this

study is the first to explore RSA-responses to music in a mother-

infant context, the findings must be further elaborated. For

instance, the infants’ RSA-responses to the two music fragments

and the differentiation between the body contact conditions may

be weakened by the fact that the mother and infant maintained

some body contact during the recordings to maintain instrument

grounding [69]. Secondly, additional research is warranted to

reveal the potential one-sided or two-sided (non)conscious

influences between the mothers and infant that contributed to

the current findings. Finally, an analysis of mothers’ and infants’

emotional responses to music can offer an additional perspective.

In summary, the present study demonstrated that the infants

showed increased RSA-levels to a tonal fragment of music that had

the characteristics of tonally synchronized mother-infant vocal

dialogues in comparison to a baseline and an atonal fragment. The

mothers responded with similar increased RSA-levels to a tonal

fragment only when they were holding their infant close to their

body and when they heard the difference between the two

fragments, with a preference for the tonal fragment.
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