
Bioinformatics, YYYY, 0–0
doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY
Genome analysis

Genome Analysis
Vcfexpress: flexible, rapid user-expressions to filter and format VCFs

Brent S. Pedersen1,*and Aaron R. Quinlan1,*

1Department of Human Genetics, University of Utah, Salt Lake City, UT, USA

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: Variant Call Format (VCF) files are the standard output format for various software tools that identify
genetic variation from DNA sequencing experiments. Downstream analyses require the ability to query, filter , and
modify them simply and efficiently. Several tools are available to perform these operations from the command line,
including BCFTools, vembrane, slivar, and others.

Results: Here, we introduce vcfexpress, a new, high-performance toolset for the analysis of VCF files, written in the
Rust programming language. It is nearly as fast as BCFTools, but adds functionality to execute user expressions in the
lua programming language for precise filtering and reporting of variants from a VCF or BCF file. We demonstrate
performance and flexibility by comparing vcfexpress to other tools using the vembrane benchmark.

Availability: vcfexpress is available under the MIT license at https://github.com/brentp/vcfexpress
Contact: bpederse@gmail.com, aquinlan@genetics.utah.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Files in Variant Call Format(Danecek et al., 2011) (VCF) are the
starting point of many genetic analyses. The VCF format can
represent diverse metadata detailing each genetic variant, as well
as the distinct genotypes and haplotypes observed for each
variant. While it provides a comprehensive container for all
relevant data, the complexity of the format poses challenges for
extracting the information germane to diverse downstream
analyses. Therefore, it is critical to have the capability to easily
and rapidly filter, query, and format these files. There are
several tools available to perform these operations; notably
BCFTools(Danecek et al., 2021), slivar(Pedersen et al., 2021),
vembrane(Hartmann et al., 2023), SnpSift(Cingolani, Patel, et
al., 2012), and bio-vcf(Garrison et al., 2022). Here we introduce
vcfexpress, which we provides a powerful combination of speed,
safety, functionality, expressiveness, and ease of use. In
contrast, slivar is best for expressions that filter variants based
on sample and family attributes and patterns. Furthermore, other
tools like vembrane and BCFTools are similar in intent to
vcfexpress; however, vcfexpress expands on their functionality
by allowing complete control over the filtering expressions and
data selection from a VCF, while retaining high processing
performance.

2 Methods

2.1 Implementation

 Vcfexpress is implemented in the rust programming language
using rust-htslib (https://docs.rs/rust-htslib/latest/rust_htslib/)
which wraps the HTSlib(Bonfield et al., 2021) C library.
Internally, vcfexpress relies on a lua wrapper of rust-htslib,
allowing users to pass custom lua expressions (specifically,
luau) to vcfexpress at runtime. This functionality represents an
important advance in vcfexpress, as these expressions provide
unique analytical power and flexibility. In addition to filtering
VCF files in search of variants that meet diverse, user-defined
criteria, these filters can be used to modify and add VCF fields.
Therefore, users can employ vcfexpress to add new annotations
to empower downstream analyses. Because of the software's
processing speed, we were able to implement support for parsing
SnpEff(Cingolani, Platts, et al., 2012) and VEP(McLaren et al.,
2016) functional annotations with a user-defined lua script rather
than as specialized built-in code; this functionality demonstrates
the flexibility of our approach. Because we use the luau variant
of lua, expressions can be run in a sandboxed environment
(https://luau.org/sandbox) allowing safe execution of untrusted
user code and expressions. Another unique use-case is a
template argument that can specify the output format (e.g., BED,
BEDGRAPH) of the filtered and/or modified VCF.

2.2 Usage

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.05.622129doi: bioRxiv preprint

https://doi.org/10.1101/2024.11.05.622129
http://creativecommons.org/licenses/by-nc/4.0/

Pedersen et al.

 Vcfexpress is called from the command line with a user-
provided filter expression that is applied to each variant that
returns a boolean indicating whether the variant should be
written to the output based on the results of the filter expression.
In addition, the user can provide a template string that indicates
how to format the output of the filtered variants. If this is not
given, then the output is formatted as VCF (or BCF depending
on the suffix of the output file). The following example
illustrates using the vcfexpress "filter" function to exclusively
report records if all samples have a sequencing depth greater
than 10 and the AN info field is above 100. The template
argument specifies that vcfexpress should output a BED file of
all passing variants:

vcfexpress filter \
 -e 'return all(function (dp) return dp > 10
end, variant:format("DP")) \
 and variant:info(‘AN’) > 100' \
 --template '{variant.chrom}\t{variant.start}\
t{variant.stop}' \
 -o all-high-dp.bed $input_vcf

To our knowledge, such template functionality is not available
in other tools, and it provides important analytical flexibility,
especially for VCF files with many samples. The next example
shows how the user can modify the BCF input to have a new
INFO field called HIGH_IMPACT. This new field is populated
using information extracted from the CSQ field and written to a
new BCF as output.

vcfexpress filter \
 -s ‘HIGH_IMPACT=return
CSQS.new(variant:info('vep'), desc):any(
 function(c) return c.IMPACT ==
'HIGH' end)` \
 -p scripts/csq.lua \
 -p scripts/high_impact_header.lua \
 -o high_impact.bcf input.bcf

This example uses scripts/high_impact_header.lua, which
contains the code to update the VCF header:

header:add_info({ID="HIGH_IMPACT", Number=0,
Description="", Type="Flag"})
desc =
parse_description(header:info_get("vep").Descrip
tion)

We emphasize that these are mere examples of the vast
analytical flexibility provided by the lua filtering language and
full usage is documented on the github page for the tool.

3 Results
We assessed vcfexpress’s performance using the vembrane
benchmark to compare the speed of several tools on a set of
filtering tasks ranging from simple INFO field parsing to per-
sample attributes to parsing the consequence (CSQ) fields. Each
tool has specific strengths and utilities; these are documented
nicely in the vembrane paper(Hartmann et al., 2023). Generally,
BCFTools has been the fastest; however, we find that vcfexpress
has similar speed, while supporting advanced filtering logic and
VCF and BCF formats (Figure 1).

Summary

We have introduced vcfexpress which supports user expressions
for filtering, formatting, and modifying records in VCF and BCF
files. We show that it is on par with the fastest tool and expands

Figure 1. Speed of tools across a range of filters. Here we compare
five tools in filtering VCF and (where possible) BCF. The filters are:
filter_none (remove all records); >=2 platforms (filter on numeric
INFO field); format DP (require at least 1 sample to have high depth);
uncertain (check the VEP consequence field for
“uncertain_significance”); impact_high (check if any CSQ has high
impact). Note that vcfexpress is competitive with bcftools for speed
while offering extreme flexibility.

upon existing variant filtering functionality. The lua expressions
are extremely flexible–offering the full power of the lua
language while maintaining high processing performance. We
therefore expect that vcfexpress will be a useful tool in this
space.

Acknowledgments
We acknowledge Tom Sasani for their helpful discussions and assistance with
editing the manuscript.

Funding
This work has been supported by funding from the Chan
Zuckerberg Insititute's Essential Open Source Software Initiative
(Grant number: EOSS4-0000000180), as well as an R01 award
(R01HG012252) from the National Human Genome Research
Insitute.

Conflict of Interest: none declared.

References

Bonfield,J.K. et al. (2021) HTSlib: C library for reading/writing high-throughput
sequencing data. Gigascience, 10.

Cingolani,P., Platts,A., et al. (2012) A program for annotating and predicting the
effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of
Drosophila melanogaster strain w1118; iso-2; iso-3. Fly , 6, 80–92.

Cingolani,P., Patel,V.M., et al. (2012) Using Drosophila melanogaster as a model
for genotoxic chemical mutational studies with a new program, SnpSift.
Front. Genet., 3, 35.

Danecek,P. et al. (2011) The variant call format and VCFtools. Bioinformatics, 27,
2156–2158.

Danecek,P. et al. (2021) Twelve years of SAMtools and BCFtools. Gigascience,
10.

Garrison,E. et al. (2022) A spectrum of free software tools for processing the VCF
variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and slivar. PLoS Comput.
Biol., 18, e1009123.

Hartmann,T. et al. (2023) Insane in the vembrane: filtering and transforming
VCF/BCF files. Bioinformatics, 39.

McLaren,W. et al. (2016) The Ensembl Variant Effect Predictor. Genome Biol., 17,
122.

Pedersen,B.S. et al. (2021) Effective variant filtering and expected candidate

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.05.622129doi: bioRxiv preprint

https://doi.org/10.1101/2024.11.05.622129
http://creativecommons.org/licenses/by-nc/4.0/

vcfexpress

variant yield in studies of rare human disease. NPJ Genom. Med., 6, 60.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.05.622129doi: bioRxiv preprint

https://doi.org/10.1101/2024.11.05.622129
http://creativecommons.org/licenses/by-nc/4.0/

