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Diabetes prevalence is increasing worldwide, and epidemiological studies report an
association between diabetes incidence and environmental pollutant exposure. There
are >84,000 chemicals in commerce, many of which are released into the environment
without a clear understanding of potential adverse health consequences. While in vivo
rodent studies remain an important tool for testing chemical toxicity systemically, we
urgently need high-throughput screening platforms in biologically relevant models to
efficiently prioritize chemicals for in depth toxicity analysis. Given the increasing global
burden of obesity and diabetes, identifying chemicals that disrupt metabolism should be a
high priority. Pancreatic endocrine cells are key regulators of systemic metabolism, yet
often overlooked as a target tissue in toxicology studies. Immortalized b-cell lines and
primary human, porcine, and rodent islets are widely used for studying the endocrine
pancreas in vitro, but each have important limitations in terms of scalability, lifespan, and/
or biological relevance. Human pluripotent stem cell (hPSC) culture is a powerful tool for in
vitro toxicity testing that addresses many of the limitations with other b-cell models.
Current in vitro differentiation protocols can efficiently generate glucose-responsive
insulin-secreting b-like cells that are not fully mature, but still valuable for high-
throughput toxicity screening in vitro. Furthermore, hPSCs can be applied as a model
of developing pancreatic endocrine cells to screen for chemicals that influence endocrine
cell formation during critical windows of differentiation. Given their versatility, we
recommend using hPSCs to identify potential b-cell toxins, which can then be
prioritized as chemicals of concern for metabolic disruption.
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INTRODUCTION

Diabetes Pathogenesis
Diabetes is a chronic disease characterized by high blood sugar
levels and devastating secondary health complications (1). In
2019, there were >460 million people with diabetes worldwide,
which translates to roughly 1 in 11 adults ages 20-79 years. For
those over the age of 65, diabetes rates further increase to 1 in 5
(1). Moreover, the International Diabetes Federation projects
that diabetes incidence will increase by 51% over the next 25
years to exceed 700 million adults worldwide.

Glucose homeostasis is maintained by the exquisite balance of
hormones secreted from pancreatic islets. The predominant islet
cell type is the b-cell, which secretes insulin in a tightly regulated
manner in response to glucose and other stimuli (2, 3). Type 1
diabetes (T1D), accounting for ~10% of patients with diabetes, is
caused by autoimmune destruction of b-cells leading to
insufficient insulin production. Type 2 diabetes (T2D) accounts
for ~90% of cases and was classically thought of as a disease of
insulin resistance. However, we now appreciate that b-cell
dysfunction and loss of b-cell mass are also central to T2D
pathogenesis (4–6). The critical role of b-cells in driving diabetes
risk is further confirmed by genome-wide association studies,
which find that most loci influencing T2D risk are involved in
regulating insulin secretion (7–9). These studies also emphasize
that rising diabetes rates cannot simply be explained by genetics,
but rather must be influenced by environmental factors (9, 10).
For example, there is strong epidemiological evidence linking
exposure to persistent organic pollutants (POPs) with increased
T2D incidence (11–29) and b-cell dysfunction (28–30) in
humans. However, basic research in clinically relevant models
is needed to understand the potential causal role for
environmental contaminants in diabetes pathogenesis and to
explore underlying tissue- and cell-specific mechanisms
of toxicity.

Environmental Contaminants
Environmental pollutants are a major global concern due to their
wide-ranging acute and chronic adverse effects on human health
(31). With over 84,000 chemicals in commerce, there is an urgent
need to develop tools for extensive chemical screening and
toxicity testing (32). Environmental contaminants fall within a
wide range of classes, including but not limited to POPs (e.g.,
pesticides, polychlorinated biphenyls (PCBs), dioxin-like
compounds), estrogen analogues (e.g., bisphenol A (BPA),
used in polycarbonate plastics), phthalates (used in cosmetics,
paints, textiles), heavy metals, perfluorinated chemicals (e.g.,
perfluorooctane sulfonate (PFOS) used in food packaging and
fire-fighting foams), and flame retardants (e.g., polybrominated
diphenyl ethers, organohalogen compounds, organophosphates
esters) (33–35). Contaminants can be further classified by their
mechanism of action. For example, chemicals that impair proper
hormone function are referred to as endocrine-disrupting
chemicals (EDCs) (33, 36–40) and those that disrupt
metabolism are classified as metabolism-disrupting chemicals
(MDCs) (41–43). Despite restrictions on many environmental
pollutants, these chemicals continue to persist in the
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environment, contaminating food and water sources, and
remain detectable in human tissues (44, 45).

Biomonitoring is essential for tracking human contaminant
exposure and predicting adverse health outcomes (46, 47).
However, this is a reactive approach to evaluating the impact
of toxins on human health. Ideally, we need to efficiently screen
chemicals for toxicity in relevant model systems prior to their
release into the environment. Since pollutants often accumulate
in tissues, effectively creating a chemical mixture cocktail (48),
we also need to consider the combined effects of complex
chemical mixtures. Dose and duration of exposure add
additional layers of complexity. For example, POPs have long
half-lives of years to decades (49), but the shorter lifespan of
other chemicals such as BPA and phthalates is also not trivial.
Much like hormones, EDCs can exert their effects on the human
body at low concentrations over an extended period of time (50).
Despite being excreted within days, frequent consumption of
these pollutants results in chronic, low dose exposure over time
(51, 52). Furthermore, nonlinear dose-responses are frequently
seen with EDCs, so acute high dose studies may not accurately
predict adverse health outcomes of chronic or subacute low dose
exposures (42, 53, 54). The need to consider chemical exposures
ranging from acute high doses to chronic low doses, as well as
individual chemicals and complex mixtures, further emphasizes
the importance of scaling up toxicity testing capacity.

Developmental Origins of Disease
Another important consideration for toxicology studies is the
timing of exposure to environmental contaminants. Gestational
or early life stressors, such as undernutrition or overnutrition,
are linked to a variety of adult-onset diseases - termed
developmental origins of health and disease (DOHaD) (55, 56).
For instance, low birth weight and early life “catch up” growth
are well-established risk factors for developing metabolic disease
later in life (57, 58). Maternal-fetal exposure to POPs has been
linked to adverse outcomes such as reduced birth weight,
disruption of hormone levels in cord blood, and changes in
epigenetic markers of development (59–61). There is also
mounting epidemiological evidence suggesting a possible link
between early-life environmental contaminant exposure and
long-term metabolic dysfunction (62–66). More epidemiology
is needed and important cohort studies like the Maternal-Infant
Research on Environmental Chemicals (MIREC) continue to
track long-term metabolic outcomes in offspring (67–70).
However, it takes decades to truly establish a link between
early-life exposure and long-term adverse health outcomes. In
vitro model systems that allow for toxicity screening in
developing human cells will be a powerful starting point for
studying DOHaD.

Perspective Overview
There is an urgent need to identify environmental contaminants,
specifically EDCs or MDCs, that contribute to diabetes
pathogenesis. To do so, we must consider non-classical
toxicological endpoints in a wide variety of tissues involved in
regulating metabolic homeostasis. This means thinking beyond
typical hepatoxicity endpoints and considering diverse metabolic
January 2021 | Volume 11 | Article 604998
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targets such as neuroendocrine cells, enteroendocrine cells, white
or brown adipocytes, skeletal muscle, thyroid gland, and
pancreatic endocrine cells (38, 40, 71). While injury to any of
these tissues would potentially disrupt energy homeostasis, we
propose that pancreatic endocrine cells should be a high priority
for toxicity testing to identify MDCs of concern for diabetes
pathogenesis. In this Perspective Article, we discuss a range of
endpoints that could be considered in the context of b-cell
toxicity. We also discuss various model systems available for
toxicity testing, including the numerous advantages of human
pluripotent stem cells (hPSCs). In particular, we propose hPSCs
as a unique model system for evaluating toxicity both during
critical windows of b-cell development and in glucose-responsive
adult b-like cells (Figure 1).
TOXICITY TESTING IN PANCREATIC
b-CELLS

Despite mounting evidence implicating pollutants as metabolic
disruptors, the pancreas has not been extensively studied in the
toxicology field (40, 42). Interestingly, the occasional
biodistribution studies that include pancreas tissue report a
slower elimination of lipophilic pollutants in the pancreas
compared to liver or adipose (72, 73). Xenobiotic metabolism
enzymes, such as cytochrome P450 (Cyp) enzymes, are useful
biomarkers for direct cellular exposure to pollutants. We have
reported induction of Cyp1a1 in mouse and human islets
following direct exposure to TCDD/dioxin or dioxin-like
pollutants in vitro and in mouse islets following systemic
administration of TCDD in vivo (73). Moreover, in pregnant
TCDD-exposed mice, Cyp1a1 was induced 17-fold in pancreas
compared to only 3-fold and 7-fold in liver and adipose,
respectively (74). Therefore, pancreatic cells are not only
directly exposed to pollutants in vivo, but may even act as a
“sink” for long-term storage of lipophilic chemicals, similar to
adipose depots.

There is mounting evidence that a wide range of
environmental contaminants can directly impact b-cell
function. For example, BPA, a non-persistent additive
commonly used in plastic products, acutely increases insulin
secretion in mouse and human islets via inhibition of KATP

channels and increased Ca2+ signaling (75), whereas longer-term
BPA exposure inhibits Ca2+ entry and reduces insulin secretion
(76). Newer BPA-replacement chemicals, BPS and BPF, also
disrupt mouse b-cell function (77). Exposure to POPs, including
organochlorine pesticides and a PCB mixture, directly inhibited
insulin secretion in a rat b-cell line (INS-1E cells) (30). A
“northern contaminant mixture”, containing 20 different POPs
at environmentally relevant concentrations, also suppressed
insulin secretion in rats in vivo and in a rodent b-cell line
(MIN6 cells) in vitro (78). Additionally, we and others have
shown that dioxin suppresses insulin secretion in rodent islets
(73, 79, 80) and human islets (73). Interestingly, acute high-dose
dioxin exposure caused b-cell apoptosis in male mice but not
female mice (81), whereas prolonged low-dose dioxin exposure
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led to impaired b-cell adaptation to high fat diet feeding in
female but not male mice (74, 82).

Given the critical role for b-cells in diabetes pathogenesis,
environmental toxins that adversely impact b-cells are likely to
disrupt overall glucose homeostasis or at minimum, increase
diabetes risk. Importantly, there are numerous plausible avenues
for toxin-induced b-cell injury that could lead to adverse
metabolic health outcomes. Below, we propose key toxicity
endpoints for b-cells. This is not intended to be a
comprehensive list of potential adverse outcomes, but rather
examples that should be considered as a starting point for
identifying MDCs that act as b-cell toxins.

Insulin Secretory Defects
Pancreatic b-cells are highly specialized to synthesize, process,
store, and secrete insulin rapidly and sustainably in response to
numerous physiological stimuli, including glucose (2). There is a
rapid first phase of insulin secretion within minutes of a glucose
stimulus, followed by a sustained second phase that can last for
several hours. Glucose-stimulated insulin secretion is amplified
by other nutrients, such as fatty acids and amino acids, and
binding of gut-derived hormones (GLP-1, GIP) to incretin
receptors. Dysregulated glucose-induced insulin secretion is a
well-established feature of T2D (83–87) and also reported
in T1D patients prior to disease onset (88–92), suggesting a
possible link between insulin secretory defects and activation of
inappropriate autoimmune responses. Therefore, environmental
contaminants that interfere with any aspect of the complex
insulin secretory pathway (e.g., glucose sensing, mitochondrial
metabolism, ion flux, exocytotic machinery, sensitivity to
amplification signals) could adversely affect the fine-tuned
ability of b-cells to couple insulin secretion with a nutrient
secretagogue. Furthermore, defects in the timing of insulin
release, either the rapid first-phase or the sustained second-
phase response, could impact overall glycemic control.
Importantly, b-cell dysfunction is not just insufficient or
decreased insulin secretion, but also refers to overproduction
of insulin. Hyperinsulinemia is not only an adaptation to insulin
resistance but can also be the primary defect that drives obesity
and insulin resistance (93–96). Therefore, toxins that increase
insulin secretion – either inappropriate insulin release under
basal glucose conditions or excessive insulin secretion following
a nutrient stimulus – should also be considered potential MDCs.

Loss of b-Cell Mass
Patients with T1D display near complete loss of b-cell mass
(> 80% reduction) at the time of disease onset (6). Although less
extreme, individuals with T2D also have reduced b-cell mass (5,
6, 97, 98), which may be caused by a combination of increased b-
cell death, insufficient b-cell proliferation, or impaired b-cell
neogenesis. b-cell mass is generally increased in overweight or
obese non-diabetic subjects compared to lean controls but
reduced by 24%–65% in patients with T2D (5, 6, 99). Loss of
b-cell mass can be detected by measuring the a-cell to b-cell
ratio, which is consistently higher in patients with T2D (97).
Therefore, environmental toxins that disrupt b-cell mass, for
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example by inducing b-cell apoptosis or preventing b-cell
expansion, should be flagged as potential MDCs.

Impaired b-Cell Adaptation
Healthy b-cells have fine-tuned mechanisms for adapting to
fluctuations in energy supply and insulin demand to maintain
Frontiers in Endocrinology | www.frontiersin.org 4
appropriate glucose homeostasis (100). Examples of complex
compensatory mechanisms include a) regulation of key b-cell
transcription factors that control the b-cell transcriptome, b)
altered activity or expression of metabolic enzymes to allow for
flexibility in nutrient metabolism, and c) increased b-cell
proliferation to expand functional mass of b-cells. Failed
A

B

C

FIGURE 1 | (A) Human pluripotent stem cells (hPSCs) can be isolated from the inner cell mass of a human blastocyst (human embryonic stem cells, hESCs) or
obtained via reprogramming of human somatic cells obtained from genetically diverse donors (induced pluripotent stem cells, iPSCs). hPSCs are versatile in their
capacity for genetic modifications and disease modeling and may be scaled up or down to suit a variety of experimental conditions. (B) Workflow #1 illustrates how
hPSCs may be used to screen chemicals or chemical mixtures of interest throughout pancreas development. hPSCs can be differentiated into pancreatic endoderm
using published protocols or commercially available differentiation kits, and further into maturing, glucose-responsive b-like cells. Chemicals can be introduced at
different days or stages of differentiation to mimic environmental exposures at different windows of pancreas development. (C) Workflow #2 demonstrates the
capacity to outsource hPSC expansion and large-scale differentiation, allowing individual labs to conduct toxicity screening of specific chemicals/chemical mixtures
using glucose-responsive b-like cells generated in a central location. (B, C) We suggest a number of potential toxicity endpoints, such as cell survival, insulin
secretion, and mitochondrial function. Common analytical methods include but are not limited to microscopy and live-cell imaging, flow cytometry to quantify cell
populations throughout differentiation, and PCR to assess gene expression (Created with BioRender.com).
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compensatory insulin secretion and expansion of b-cell mass
during insulin resistance are important predictors of diabetes
susceptibility (99, 101, 102). Therefore, toxicology studies should
consider the ability of b-cells to appropriately compensate under
conditions of fasting or insulin resistance. If only direct cellular
toxicity is tested without considering interactions with other
metabolic challenges, potential MDCs will be overlooked.

Impaired b-Cell Development
The number of pancreatic progenitors present throughout
embryonic development is a critical determinant of b-cell mass
and pancreas size in adulthood, unlike the closely related
endoderm-derived liver which can fully compensate following
partial progenitor cell ablation (103). Therefore, an infant born
with reduced b-cell massmay have a compromised ability to adapt
to metabolic stressors later in life. Additionally, overproduction of
insulin at birth caused by inappropriate b-cell expansion or
accelerated maturation could lead to the development of insulin
resistance and obesity (as described above) (94–96, 104).
Therefore, a starting point for predicting long-term adverse
metabolic health outcomes following intrauterine chemical
exposure would be screening for chemicals that alter b-cell
development. We propose that “developmental MDCs” could be
prioritized, in part, based on whether they influence the formation
of b-cells – either decreasing or increasing numbers – during
critical windows of development.
TRADITIONAL MODELS FOR TOXICITY
TESTING IN PANCREATIC ENDOCRINE
CELLS

In Vivo Rodent Models
In vivo rodent models are an important tool for toxicity testing,
but pose a significant technical barrier to high throughput
screening (105) and are limited in their ability to predict
human outcome. In a largescale study of pharmaceutical
toxicity testing, rodents were predictive of human toxicity for
only 43% of tested compounds, and demonstrated poor
concordance for liver and endocrine toxicity (106). Further,
human populations are genetically diverse and exist amongst
variable exogenous factors, whereas laboratory animals are
genetically uniform and housed within controlled environments
to support reproducibility. While in vivo testing is necessary for
assessing the impact of chemicals on a whole organism rather than
just a single cell or tissue type in isolation, there has been a shift
towards first prioritizing chemicals using in vitro model systems
with higher throughput capacity (107, 108).

Immortalized b-Cells
Rodent Cell Lines
Immortalized rodent b-cell lines are robust in culture and highly
proliferative, making them a useful tool for large-scale studies.
Unfortunately, their replication capacity limits their applicability
as a model for human b-cells, which have minimal ability to
Frontiers in Endocrinology | www.frontiersin.org 5
proliferate (99, 109). In addition, commonly used insulin-
secreting rodent b-cell lines, including b-TC-6 (mouse), MIN6
(mouse), and INS-1 (rat) cells, have varying degrees of glucose-
responsiveness (110, 111). Immortalized cell lines also tend to be
genetically unstable in culture for extended periods of time.
Clonal INS-1E cells have higher stability than the INS-1
parental line and maintain their insulin content in passages
>40 (112), but both INS-1/INS-1E cells are cultured with the
toxic reducing agent, 2-mercaptoethanol, which further limits
their biological relevance for toxicity testing.

Despite these limitations, INS-1 823/13 cells were
comprehensively evaluated as a potential pollutant-screening
system. This cell line was found to be adequately glucose-
responsive, but the insulin secretory responses to key control
compounds and pollutants deviated substantially from previous
reports (113). The authors concluded that INS-1 823/13 cells
were lacking key b-cell characteristics and deemed inadequate as
a diabetogenic pollutant screening system (113). We reached a
similar conclusion after testing immortalized pancreatic
endocrine cells for their response to TCDD/dioxin, a POP that
acts via the aryl hydrocarbon receptor (AhR). In primary mouse
and human islets, TCDD significantly upregulated CYP1A1 gene
expression and enzyme activity, whereas immortalized b-cell
(INS-1, MIN6, b-TC6) and a-cell (a-TC1 and a-TC3) lines
showed no evidence of AhR activation by TCDD (73). Our
findings confirm that important discrepancies exist in the
cellular machinery between primary and immortalized cell lines.

Human Cell Lines
Novel engineered human b-cell lines, EndoC-bH1 and EndoC-
bH2, are a useful tool for studying b-cell physiology and drug
responses (114, 115). EndoC-bH1 cells were engineered from
human fetal pancreatic buds transduced with an SV40LT-
expressing lentiviral vector under the control of an insulin
promoter. These cell lines are glucose-responsive in vitro and
have minimal expression of other pancreatic genes (114–116).
Their main drawback is the limited capacity for expansion in
vitro, which is more biologically appropriate than rodent b-cell
lines, but less practical. With a doubling time of approximately 7
days, their potential for high-throughput toxicity studies is
limited. While proliferation can be stimulated with SerpinA6,
STC1, and APOH (114), using compounds that alter cellular
physiology is not ideal for toxicity testing. Additionally, as
EndoC b-cells are a product of oncogenesis, there is
undoubtedly alterations to normal pathways (117).

Primary Isolated Islets
Non-Human Islets
Primary rodent islets are more biologically relevant than
immortalized rodent b-cell lines, but there are important
distinctions between human and rodent islets that must be
considered. For example, the distribution and composition of
endocrine cells, vasculature, innervation, proliferation, and
insulin secretion all differ between human and rodent islets
(118, 119). Pig islets are more similar to human islets (120).
Interestingly, islets isolated from juvenile porcine pancreata have
January 2021 | Volume 11 | Article 604998
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greater expression of b-cell-related genes compared to those
isolated from adult pigs (121), but are functionally immature and
require in vitro maturation following isolation (122–124).
Further, it is possible to isolate up to 5,000 islets/g juvenile
porcine pancreas (122), compared to a typical yield of ~200–400
islets total per mouse pancreas and 600–800 islets per rat
pancreas depending on the strain (125–127). Thus, pig islets
may be a useful tool for toxicity screening, although species
differences will always remain a concern for translation.

Human Islets
Human islets are currently the gold standard for a physiologically
relevantmodel to study the endocrine pancreas in vitro due to their
cellular composition, human origin, and genetic diversity. Human
islets are harvested from deceased organ donors and great strides
have beenmade to ensure that high quality donor islets are broadly
available for research (128, 129). However, even with the highest
quality isolationprocedures, thepancreas begins to autodigest after
death, resulting in decreased cell viability and sample quality (119).
Human islets have a limited functional in vitro lifespan with
current tissue culture protocols, although advances in the field
are ongoing. For example, islets cultured on specific matrices
maintain glucose-stimulated insulin secretion for at least 7 days
in culture (130). The number of purified islets per donor also
varies; while an average healthy adult pancreas houses over 3
million islets (118), between 200,000 and 500,000 islets typically
remain post-purification (131). This, coupled with the limited
proliferation of human b-cells, presents a critical barrier to
scalability and longevity for toxicology testing. Therefore, human
islets are an excellent resource for in vitro chemical testing at a
smaller scale, wherein endpoints such as glucose-stimulated insulin
secretion, islet morphology, mitochondrial function, and gene
expression can be assessed in biologically diverse organ donors.
Numerous factors, such asdonor sex, age, andbodymass index,will
influence islet function ex vivo and thus impact biological
reproducibility. However, the genetic and environmental diversity
of human organ donors (132, 133) also offer a unique opportunity
for toxicity testing.
STEM CELLS ARE A UNIQUE TOOL FOR
PANCREAS TOXICOLOGY STUDIES

HPSC culture offers a unique in vitro solution to address the need
for high-throughput screening of environmental toxins in a
variety of biologically relevant mature cell types, as well as in
differentiating or “developing” immature progenitor cells.
HPSCs can be obtained from either the inner cell mass of a
human blastocyst, termed human embryonic stem cells (hESCs),
or from human somatic cells that have been reprogrammed to a
pluripotent state, termed induced pluripotent stem cells (iPSCs)
(Figure 1A).

Remarkable progress has been made over the past decade
unraveling the developmental cues involved in islet cell
formation. We now have robust step-wise differentiation
Frontiers in Endocrinology | www.frontiersin.org 6
protocols that mimic the key fate decisions for directing hPSCs
into pancreatic endocrine cells using small molecules and growth
factors in vitro (134–139). These differentiation protocols
efficiently guide hPSCs towards pancreatic endoderm cells
(PDX1+/NKX6.1+) in four “stages”, followed by commitment
to the pancreatic endocrine lineage (NEUROG3+), then insulin-
secreting endocrine cells (INS+/NKX6.1+), and finally to b-like
cells capable of glucose-induced insulin secretion (INS+/MAFA+/
UCN3+) (3) (Figure 1B). The challenge in recent years has been
understanding the final stages of human b-cell maturation so we
can generate fully mature b-cells with a rapid and robust insulin
secretory response to various secretagogues. Despite these
limitations, we believe that hPSCs are an excellent tool for
studying adverse effects of environmental contaminants both
during pancreas development and in adult pancreatic endocrine
cells. Indeed, a recent study by Zhou et al. in Nature
Communications beautifully demonstrated the diverse and
powerful applicability of hPSCs for high-content screening of
potential b-cell toxins, exploring gene-environment interactions,
and comparing toxicity in diverse cell types (140). The authors
differentiated hESCs into INS+ cells in a 384-well plate format
and screened a U.S. Environmental Protection Agency (EPA)
ToxCast library of ~ 2,000 compounds for “hits” that impaired
survival of INS+ cells (140). Using this study as an example, we
highlight the numerous benefits of using hPSCs, whether hESCs
or iPSCs, for exploring MDC toxicity.
Flexibility to Model Developing
or Adult Cells
HPSCs offer a flexible model to test for MDCs that impact either
the early formation of b-cells during fetal development or the
function and survival of adult insulin-secreting b-like cells.
Depending on the research question, we propose two different
workflow approaches. For developmental studies (Figure 1B,
Workflow #1), environmental toxin(s) can be introduced to
differentiating hPSCs at critical days or “stages” of differentiation.
Thus, a critical aspect of this workflow is establishing hPSC
differentiation protocols within the toxicology lab conducting
chemical testing. The impact of toxins can be assessed by
measuring key pancreatic cell markers by flow cytometry, image-
based analysis, qPCR, or other techniques that are amenable to
high throughput analysis. For example, the proportion of cells
expressing markers of pancreatic commitment (% PDX1+),
pancreatic endoderm (% PDX1+/NKX6.1+), and induction of the
endocrine program (% NEUROG3+) are excellent benchmarks
for early stages of differentiation. At later stages, the proportion of
cells that acquire insulin (% INS+/NKX6.1+) is as an indicator
of commitment to the b-cell lineage, and subsequently the
proportion of INS+ cells co-expressing critical b-cell markers
such as MAFA is an important indicator of b-cell maturity.
Fluorescent reporter hPSC lines generated by genome editing –
for example, NEUROG3-EGFP or INS-GFP hESCs – will be
particularly useful for efficient image-based screening or high-
content flow cytometry applications to identify MDCs that disrupt
the formation of key pancreatic cell populations (141–144).
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The workflow and endpoints for toxicity studies in adult cells
could differ considerably from developmental studies
(Figure 1C, Workflow #2). First, it is feasible for hPSC-derived
b-like cells to be mass-produced in large quantities at a central
location to generate a reproducible starting point for toxicology
screening studies. Once hPSC-derived b-like cells are validated,
they can be distributed to toxicology laboratories for testing of
individual chemicals or complex chemical mixtures. This is
important because it separates the need for toxicity testing
capacity and stem cell differentiation expertise to be housed
within the same lab. As with the progenitor cell model, there are
numerous potential outcomes that could be assessed in a high-
throughput screening platform, such as the expression of key b-
cell markers using live-cell imaging or flow cytometry, b-cell
survival as in Zhou et al. (140), and basal or glucose-induced
insulin secretion. Any of the outcome measures described in the
section on “Toxicity Testing in Pancreatic b-cells” could be
assessed in hPSC-derived b-like cells, although not necessarily
in a high-content format.

It is important to recognize that current differentiation
protocols generate human b-like cells with a blunted insulin
secretory response to glucose compared to primary human islets
(134–139). For the purpose of identifying MDCs that cause b-cell
dysfunction or apoptosis, we propose that generating fully
mature human b-cells in vitro may not be a necessary
milestone. Instead, the benefits of a large-scale source of
expandable stem cells that can generate large quantities of
moderately glucose-responsive insulin-secreting cells outweighs
the downside of working with a slightly immature b-like cell.
This has certainly proven true for toxicity studies in other cell
types, such as cardiomyocytes, where differentiation protocols
currently generate immature cardiomyocytes, but recapitulate
sufficient features of adult cells to study adverse drug reactions in
specific aspects of cardiotoxicity (145–148).

Scalability and Reproducibility
The scalability of hPSCs is a significant advantage for high-
content screening. Importantly, hPSCs share the proliferative
advantage of immortalized b-cells, but subsequently lose this
capacity as they differentiate into pancreatic lineage cells (139).
The highly proliferative nature of hPSCs allows them to be
substantially expanded before differentiation, 50–100 fold per
week, particularly when grown in suspension format (149). Large
batches of hPSCs can then be differentiated into a mass-
produced cell product, which can be carefully validated with
well-defined QA/QC protocols before being frozen down and
distributed for toxicity testing (Figure 1C, Workflow #2). This is
similar to the model proposed by the diabetes cell therapy field
for mass-production of a GMP-grade cell product for
transplantation (3, 149). Alternatively, more modest scale-up
approaches can be established within the same lab that will
perform toxicity endpoint assessments (Figure 1B, Workflow
#1). For example, Zhou and colleagues expanded hESCs in a
more traditional adherent format with Matrigel-coated plates
before seeding dissociated cells into 384-well plates for
pancreatic differentiation and chemical screening (140). The
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incredible flexibility to both scale-up hPSC production and
differentiation or to miniaturize pancreatic differentiation is an
important benefit of using hPSCs for toxicity studies.

Unique Capacity for Disease Modeling
Stem cells offer remarkable capacity for disease modeling
through both the natural genetic diversity of iPSCs (150) and
the ability to create isogenic hPSC lines using genome editing
(151). The use of hPSCs for disease modeling in diabetes has
been reviewed elsewhere (152), but here, we briefly discuss the
benefits of toxicity testing in human b-cells with diverse genetic
backgrounds. There is much to be learned from comparing the
impact of environmental contaminants on b-like cells generated
using iPSCs from a spectrum of patients with different types of
diabetes (T1D, T2D, maturity onset diabetes of the young
(MODY), or neonatal diabetes) or known genetic risk factors
for diabetes (153–160), relative to iPSCs derived from control
subjects. One particularly exciting avenue to explore in the
context of T1D is how environmental toxins influence immune
interactions between iPSC-derived b-cells and autologous
immune cells from the same donor (159). Zhou and colleagues
also demonstrated the potential for using iPSCs to explore
mechanisms of toxicity (140). They used 10 different iPSC
lines with heterogeneous expression of a phase 2 xenobiotic
metabolism enzyme, GSTT1, and found that pesticide-induced
INS+ cell death was significantly higher in lines lacking GSTT1
compared to those with at least one copy of GSTT1 (140). Their
results were also validated in isogenic hESC lines with GSTT1
deletion by CRISPR-based genome editing; INS+ cells generated
from GSTT1-/- hESCs were more susceptible to pesticide-induced
cell death than INS+ cells from wildtype hESCs. Importantly,
with the advent of CRISPR-Cas9 technology, modifying the
genome of hPSCs has become broadly accessible and the
number of gene-edited hPSC lines that effectively recapitulate
different aspects of diabetes-related phenotypes is increasing
rapidly (140, 151, 155, 161–164).

One final consideration for disease modeling is that despite
being reprogrammed back to their embryonic/pluripotent state,
iPSCs retain DNA methylation marks, lineage bias, and other
memory of previous environmental exposures (165). For this
reason, there is a strong argument for developmental models of
pancreatic toxicity being limited to hESCs rather than iPSCs. On
the other hand, the genetic variability of iPSCs, combined with
the ability to create targeted genome-edited hPSC lines with
isogenic wildtype controls, should be harnessed to explore the
biological diversity of gene-environment interactions in adult b-
like cells.

Diversity of Human Cell Types
Another unique advantage of hPSCs is their ability to be directed
into diverse cell types. For example, the toxicology field is already
using hPSCs to test for adverse drug reactions in iPSC-derived
hepatocyte-like cells to model hepatoxicity (166–168) and iPSC-
derived cardiomyocytes to model cardiotoxicity (145–147, 168–
172).While our Perspective focusedon the application of hPSCs for
toxicity testing in pancreatic lineage cells specifically, there is
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immense value in a more integrated approach to screen for MDCs
that adversely impact different metabolic target tissues, all derived
from the same hPSC source. For example, Zhou and colleagues
differentiated hESCs into CD29+/CD73+ mesenchymal stem cells,
CTNT+ cardiomyocytes, A1AT+ hepatocytes, and HuC/D+

neurons (140). They found that much like hESC-derived INS+

cells, HuC/D+ neurons were also highly susceptible to pesticide-
induced cell death, suggesting that the pesticide flagged in their
high-content screening could be involved in the pathogenesis of
both diabetes and Parkinson’s disease. An even more complex,
but intriguing application of hPSCs is the potential to develop
multi-organ systems in amicrofluidic device (173) or other platform
containing numerous hPSC-derived metabolic tissues such as
liver, adipose, and b-cells to determine how environmental
contaminants influence metabolic tissue cross-talk.
CONCLUSION

Despite the critical importance of pancreatic endocrine cells for
maintaining metabolic homeostasis, the pancreas has not
traditionally been studied as a key target tissue of chemical
toxicity. Given the metabolic-disrupting nature of many
environmental pollutants, we propose that islet toxicity should be
considered a key toxicological endpoint. With the staggering
number of poorly studied chemicals in commerce, physiologically
Frontiers in Endocrinology | www.frontiersin.org 8
relevant models that can be scaled up for efficient chemical
screening are urgently needed. Human stem cells offer a unique
solution to many of the limitations posed by other in vitro model
systems of pancreatic endocrine cells. Most importantly, hPSCs are
scalable and amenable to high-throughput screening for assessing
the impact of environmental contaminants on either adult b-like
cells or critical windows of pancreas development.
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