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The thalamocortical circuit is of central importance in relaying information to the cortex.
In development, subplate neurons (SPNs) form an integral part of the thalamocortical
pathway. These early born cortical neurons are the first neurons to receive thalamic
inputs and excite neurons in the cortical plate. This feed-forward circuit topology of SPNs
supports the role of SPNs in shaping the formation and plasticity of thalamocortical
connections. Recently it has been shown that SPNs also receive inputs from the
developing cortical plate and project to the thalamus. The cortical inputs to SPNs
in early ages are mediated by N-methyl-D-aspartate (NMDA)-receptor only containing
synapses while at later ages α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA)-receptors are present. Thus, SPNs perform a changing integrative function
over development. NMDA-receptor only synapses are crucially influenced by the resting
potential and thus insults to the developing brain that causes depolarizations, e.g.,
hypoxia, can influence the integrative function of SPNs. Since such insults in humans
cause symptoms of neurodevelopmental disorders, NMDA-receptor only synapses on
SPNs might provide a crucial link between early injuries and later circuit dysfunction.
We thus here review subplate associated circuits, their changing functions, and discuss
possible roles in development and disease.
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INTRODUCTION

The mammalian cerebral cortex is unique in that it is a laminated structure which is thought
to support hierarchical information processing. The transmission of information from the
thalamus to the cortex via thalamocortical circuits is of central importance for information
processing in the mammalian brain. In the adult, thalamic input to the cerebral cortex mainly
arrives in layer 4 but inputs to other layers can exist (Meyer et al., 2010; Bruno, 2011; Sherman,
2012, 2017; Constantinople and Bruno, 2013; Ji et al., 2016; Sun et al., 2016).

Given the laminar nature of the cerebral cortex, the development of the cortical layers is
a protracted process. Curiously, the development of the cortical layers occurs in an inside-out
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fashion such that deeper layers are generated before superficial
layers. The first postmitotic neurons from the ventricular zone
and the germinative zone of the rostromedial telencephalic wall
migrate radially and form the so-called preplate. Subsequent
rounds of cell division give rise to the excitatory neurons of the
cortical plate. Since these neurons migrate towards the pia, they
divide the preplate into the superficial marginal zone and the
deep subplate zone (Supèr et al., 1998; Kanold and Luhmann,
2010; Pedraza et al., 2014). Even though the subplate zone is
only present in the brain transiently, it plays an important role
in cortical development.

Studies both in cats and rodents have shown that subplate
neurons (SPNs) are responsible for the functional maturation
and segregation of the thalamocortical connections (Ghosh et al.,
1990; Ghosh and Shatz, 1992; McConnell et al., 1994; Kanold
et al., 2003; Tolner et al., 2012), as well as for the maturation
of cortical GABAergic inhibition (Kanold and Shatz, 2006), and
critical period plasticity (Kanold and Shatz, 2006). This key role
of SPNs is thought to stem from the fact that SPNs are the
first neurons to receive thalamic inputs (Friauf and Shatz, 1991;
Hanganu et al., 2002; Higashi et al., 2002, 2005; Molnár et al.,
2003; Zhao et al., 2009), respond to sensory stimuli (Wess et al.,
2017) and relay this information to the developing layer 4 (L4)
(Kanold, 2009; Zhao et al., 2009; Butts and Kanold, 2010; Kanold
and Luhmann, 2010; Deng et al., 2017; Figure 1A). Thus, the
subplate might form a functional protomap of the future cortical
organization (O’Leary and Borngasser, 2006; O’Leary et al., 2007;
Wess et al., 2017).

Given the key position of SPNs in the thalamocortical
pathway and their demonstrated role in cortical development, we
here aim to review the changing circuits associated with SPNs
and their possible functional relevance.

THE SUBPLATE ZONE CONTAINS A
DIVERSE POPULATION OF NEURONS

Both glutamatergic and GABAergic neurons are found in the
subplate zone. The majority of the cortex projecting SPNs
are glutamatergic in ferret, while some of them are positive
for GABAergic interneuron markers (Finney et al., 1998).
GABAergic SPNs are also found in mouse, cat, and primate
(Chun and Shatz, 1989; Antonini and Shatz, 1990; Meinecke and
Rakic, 1992; Higo et al., 2007; Kanold and Luhmann, 2010). SPNs
have diverse dendritic and axonal morphology. Several distinct
morphological types such as bitufted and monotufted horizontal,
multipolar, inverted pyramidal, polymorphous, and fusiform
SPNs have been identified (Mrzljak et al., 1988; Hanganu et al.,
2002; Marx et al., 2017). Some SPNs have extensive dendritic
trees in the cortical plate (Friauf et al., 1990; Finney et al., 1998;
Clancy and Cauller, 1999; Piñon et al., 2009; Viswanathan et al.,
2012), suggesting that they are integrating synaptic information
from other sources. Such sources could originate locally within
the cortical plate close to the SPN soma or from distant sources,
e.g., other cortical or subcortical regions. Molecular analysis has
shown that SPNs express a variety of molecular markers such
as CTGF, Nurr1, Cplx3, as well as others (Hoerder-Suabedissen
et al., 2009, 2013; Viswanathan et al., 2012). Molecularly defined

FIGURE 1 | (A) Changing circuits between thalamus (Th), subplate (SP) and
cortical layers 4 (L4) and 1 (L1). Insets show the existence of NMDA-R only
“silent” synapses at early ages. (B) Cartoon illustration mapping of
connections to subplate neurons (SPNs) via laser-scanning photostimulation
(LSPS). Patch clamp recordings in voltage clamp are made from SPNs and
locations are selectively stimulated. The SPN is recorded at −70 mV and
+40 mV membrane potential at each stimulation location. Traces
(a–c) indicate three potential outcomes of stimulation at the respective
locations. (a) Stimulation of presynaptic locations that were connected to the
SPN with AMPA and NMDARs resulted in excitatory postsynaptic currents
(EPSCs) at both −70 mV and +40 mV. (b) Stimulation of presynaptic locations
that were connected to the SPN with only NMDARs resulted in EPSCs at only
+40 mV. (c) Stimulation of presynaptic locations that were not connected to
the SPN resulted in no EPSCs at either −70 mV and +40 mV. Bottom shows
calculating the spatial connection probability from maps of NMDAR-only
connections (e.g., sites similar to site b). White circle indicates soma location
of SPN. Maps of individual neurons are aligned to the soma and the
probability of observing an EPSC is calculated for all relative spatial locations.
(C) Changing topology of silent synapses over development. Shown are
average connection probability and mean charge maps from LSPS
experiments (from Meng et al., 2014). Cartoon below summarizes these data.
At early ages, silent synapses are present between L4, L6/6, SP and SP and
have a large synaptic strength. Silent synapses are most abundant at P6-P9
and at older ages, the strength of silent synapses has decreased.

classes of SPNs have been shown to have dendritic trees in
the cortical plate (Viswanathan et al., 2012) suggesting that
molecular cellular identity might co-vary with morphology
(reviewed in Luhmann et al., 2018).
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OUTPUTS: SYNAPTIC TARGETS OF SPNs

While the subplate zone contains both glutamatergic and
GABAergic neurons, ventricular zone derived SPNs are
glutamatergic. SPNs send excitatory projections into the
developing cortical plate and axons from SPNs target excitatory
and GABAergic cells in L4 (Zhao et al., 2009; Deng et al.,
2017; Figure 1A). Besides L4, SP axons are found in sub-
as well as supragranular layers including layer 1 (L1) where
they can potentially activate L1 neurons as well as apical
dendrites of many other cortical cells (Clancy and Cauller,
1999; Viswanathan et al., 2017). Moreover, Cajal Retzius cells in
L1 have been shown to receive GABAergic inputs from subplate
(Myakhar et al., 2011), thus SPNs potentially target cells across
the cortical column.

At young ages, SPNs are also coupled to each other as
well as to some cortical plate neurons via gap junctions
(Figure 1A; Dupont et al., 2006). In the adult cerebral cortex gap
junction coupling is mostly present between GABAergic neurons
(Galarreta and Hestrin, 1999, 2001, 2002; Gibson et al., 1999;
Venance et al., 2000; Deans et al., 2001; Connors and Long,
2004; Butovas et al., 2006; Fukuda et al., 2006; Ma et al., 2011)
while in development gap junction coupling more widespread
(Niculescu and Lohmann, 2014). Gap junction coupling could
synchronize neuronal activity, cause network oscillations, and
contribute to circuit formation and plasticity (Peinado et al.,
1993a,b; Roerig and Feller, 2000; Connors and Long, 2004;
Cruikshank et al., 2005; Kotak et al., 2007; Postma et al., 2011;
Niculescu and Lohmann, 2014; Yao et al., 2016). Thus, gap
junctions between SPNs could synchronize local groups of SPNs
and thereby amplify their effects on synaptic targets.

SPNs are also thought to pioneer the corticothalamic
pathway (McConnell et al., 1994) and as such SPNs have
been shown to send projections to the thalamus (Viswanathan
et al., 2017; Hoerder-Suabedissen et al., 2018). The described
thalamic projecting SPNs have targeted higher-order thalamic
nuclei (Viswanathan et al., 2017; Hoerder-Suabedissen et al.,
2018), which develop early and also support multisensory
processing in early development (Henschke et al., 2018). Thus,
SPNs might play a role in early multisensory integration
or synchronization.

INPUTS: SUBPLATE NEURONS
INTEGRATE CORTICAL INFORMATION VIA
A VARYING SET OF SYNAPSES

Functional sources of cortical inputs to SPNs have been identified
by studies in brain slices of the developing mouse auditory cortex
(Viswanathan et al., 2012; Meng et al., 2014). These studies have
shown that SPNs receive excitatory AMPA receptor-mediated
and GABAergic inputs from the cortical plate (Viswanathan
et al., 2012). In particular, these inputs originated in deep
cortical layers, but subpopulations of SPNs also received inputs
from L4. SPNs receiving L4 input were more prominent after
thalamocortical connections to L4 were established roughly
around ear opening at∼P11 in the mouse (Figure 1C).

Besides glutamatergic and GABAergic inputs, SPNs also
receive neuromodulatory inputs from a variety of sources.
For example, SPNs have both acetylcholine (Ach; Hanganu
et al., 2002, 2009; Hanganu and Luhmann, 2004) and serotonin
receptors (Kanold and Luhmann, 2010; Liao and Lee, 2011,
2014), and cholinergic as well as serotonergic fibers are present
in the developing subplate (Krmpotíc-Nemaníc et al., 1983;
Voigt and de Lima, 1991; Nakazawa et al., 1992; Mechawar
and Descarries, 2001) suggesting that they form functional
circuits with SPNs.

SUBPLATE NEURONS RECEIVE
CORTICAL INFORMATION VIA SILENT
SYNAPSES

Ionotropic glutamatergic neural transmission is the major form
of excitatory neural transmission in the central nervous system.
Presynaptic release of glutamate is sensed by AMPA receptors
(AMPARs) and also by NMDA receptors (NMDARs) on the
postsynaptic sites. Binding of glutamate alone is not enough to
make NMDARs active. Membrane depolarization is also required
due to Mg2+ block of NMDARs (Nowak et al., 1984). Thus, when
glutamatergic synapses conducting currents only at depolarized
membrane potential were identified, they were named as ‘‘silent
synapses’’ (Isaac et al., 1995, 1997; Liao et al., 1995; Durand
et al., 1996; Isaac, 2003). This silent synapse phenomenon is
most likely due to lacking AMPARs on the postsynaptic site,
but other mechanisms could exist (Kullmann and Asztely, 1998;
Kullmann, 2003).

Due to the blockage by Mg2+ and lack of AMPARs in
early development many glutamatergic synapses in several brain
regions are mediated by silent synapses and the abundance of
silent synapses in cells decreases over development (Isaac et al.,
1997; Rumpel et al., 1998, 2004; Deng et al., 2017). Silent synapses
can be turned into AMPAR-containing synapses through
long-term potentiation protocols. Together, they support the
hypothesis that neural activity unsilencing silent synapses is a
mechanism for building mature neural circuits (Kerchner and
Nicoll, 2008; Hanse et al., 2013). Indeed, the glutamatergic
connections from layer 2/3 (L2/3) to L5 pyramidal neurons in the
cortex are mediated by silent synapses during the first postnatal
week. These NMDAR-only connections can be turned into
AMPAR-containing connections by elevated network activity
(Anastasiades and Butt, 2012).

In vitro studies in slices of neonatal mouse auditory cortex
using Laser Scanning Photostimulation (LSPS; Figure 1B)
showed that cortical input to SPNs were mediated by silent
synapses for most of SPNs from postnatal day 3 (P3) to
P15 (Meng et al., 2014), which encompasses the period from
before the formation of thalamocortical synapses past the critical
period. In these experiments, presynaptic neurons were activated
by uncaging glutamate sequentially in a grid over the A1,
while GABAergic transmission was blocked. By holding SPNs
either at −70 mV or +40 mV the nature of the connection
between the activated presynaptic neuron at each stimulus
location and the recorded SPN could be probed. Presence of
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AMPARs results in excitatory postsynaptic currents (EPSCs)
at both −70 mV and +40 mV (e.g., from within SP at
stimulation site a in Figure 1B). In contrast, when only
NMDARs are present, the connection is ‘‘silent’’ at −70 mV
and EPSCs are only observed at +40 mV (stimulation site b
in Figure 1B). By sequentially stimulating many locations to
cover the extent of the slice, maps of NMDAR-only (‘‘silent’’)
connections can be obtained. For each stimulation site, the
size of the evoked EPSCs is quantified. By mapping multiple
neurons, the probability of having NMDAR-only connections
from each spatial location can be calculated (Figure 1B
bottom). Mapping inputs to SPNs across age and calculating
the spatial connection probability as well as the average strength
of such a connection shows that circuits to SPNs change
over development (Figure 1C). SPNs had connections that
could either be NMDAR-only or AMPAR-containing. Overall,
SPNs at young ages have silent connections mediating inputs
from cortical cells located at larger distances from the SPN
soma (Figure 1C). Many of these silent connections at early
ages originated in L4. Comparing the abundance of silent
connections, a transient increase in silent connections from
the cortical plate occurred from P6 to P9 suggesting the
formation of glutamatergic connections during this time period.
A population analysis revealed that SPNs could be categorized
into four different groups based on their functional connectivity
patterns and in particular, their inputs from L4 (Meng et al.,
2014; Figures 2A,B). Moreover, groups of SPNs varied in their
amount and extent of intralaminar integration along the rostro-
caudal direction, which in A1 is the dominant tonotopic axis.
For example, SPNs in both groups 2 and 4 receive ‘‘silent’’
L4 input but vary in the amount of rostro-caudal integration
and thus presumably in their functional integration across the
frequency axis. These studies indicate that SPNs form a diverse
integrative neural circuit and that the nature of integration
varies with age. In particular, feedback inputs from L4 are
mediated by NMDARs at early ages but contain AMPARs
at older ages.

SPNs are not the only cerebral cortical neurons sporting silent
synapses. GABAergic neurons have also been shown to have
silent synapses and some of these silent synapses originate from
connections from SPNs (Deng et al., 2017). Thus, the presence
of silent synapses on cortical neurons seems to be a ubiquitous
feature of the developing cerebral cortex.

HOW THEN ARE SILENT CONNECTIONS
TO SPNs UNSILENCED?

The neural activity necessary to depolarize SPNs in order
to displace the Mg2+ could come from depolarizing network
activity during development. There are multiple non-exclusive
sources of depolarizing inputs: (i) ascending sensory inputs;
(ii) depolarizing GABAergic inputs; and (iii) depolarizing
neuromodulatory inputs.

Ascending sensory activity mediated by AMPARs at
thalamocortical terminals could provide depolarizing neural
activity to SPNs and regulate the unsilencing of silent
synapses on SPNs. Perturbing sensory activity resulted in

the prolonged existence of silent synapses in the visual and
somatosensory cortices (Ashby and Isaac, 2011; Funahashi
et al., 2013; Han et al., 2017). Similarly, removing auditory
inputs by cochlear ablation in early life altered the spatial
distribution of AMPAR- and NMDAR-mediated connections
on GABAergic neurons in the auditory cortex (Deng et al.,
2017). In deaf mice, AMPAR-mediated connections were
present for more distal connections from L2/3 neurons while
L5/6 connections originated from more proximal locations.
The spatial pattern of NMDAR-only connections was also
altered in deaf animals. This suggests that glutamatergic
synapse maturation is regulated with input specificity but
that both extrinsic and intrinsic cortical activity such as
sensory-evoked activity as well as endogenous cortical activity
might play a role.

A second source of depolarizing activity might be
provided by GABAergic inputs. When silent synapses
are gradually replaced by AMPAR-containing synapses,
the dominant form of cortical network activity is driven
by depolarizing GABA (Ben-Ari et al., 1997; Ben-Ari,
2002; Allène et al., 2008). This suggests that depolarizing
GABA may provide the neural activity for the unsilencing
of silent synapses (Ben-Ari et al., 1997; Ben-Ari, 2002).
Indeed GABA receptor-mediated depolarization is required
for the unsilencing of silent synapses in the developing
neocortex (Wang and Kriegstein, 2008) and during the
development of adult-generated dentate granule cells
(Chancey et al., 2013), but silent synapses can also
be unsilenced by seizure activity (Zhou et al., 2011;
Sun et al., 2018).

Besides the depolarizing action of GABA, neuromodulators
which depolarize SPNs could also play a role in unsilencing
silent connections. SPNs have both ACh (Hanganu et al.,
2002; Hanganu and Luhmann, 2004) as well as serotonin
receptors (Kanold and Luhmann, 2010; Liao and Lee, 2011,
2014) which can act depolarizing. Thus, the actions of these
neuromodulators could contribute to the functional unsilencing
of silent connections to SPNs.

Thus, in summary, there are multiple non-exclusive sources
of depolarizing inputs that might individually or jointly act in
unsilencing silent connections to SPNs.

WHAT ARE SILENT SYNAPSES GOOD
FOR? WHAT DO THEY TELL US?

NMDAR-mediated connections are not only present in the
developing mammalian cerebral cortex but also in other
structures. Thus, the computational roles of such connections
might be similar. First, it is well-established that NMDAR-only
mediated synaptic connections can function as a coincidence
detector. The activation of NMDAR not only requires glutamate
binding but also membrane depolarization to remove the
Mg2+ from the channel pore. One role of a coincidence
detector is to enable the refinement of topographic connections
as illustrated in the retinogeniculate system. During early
development, structured spontaneous activity is present in
the retina (Galli and Maffei, 1988; Meister et al., 1991;
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FIGURE 2 | (A) SPNs can be classified into four groups based on their inputs from L4 (from Meng et al., 2014; no copyright permission as required for use of this
image). Some classes show silent or AMPAR-containing inputs from L4 while others broadly integrate within the subplate (e.g., group 3). (B) Cartoon illustration how
the changing presence of silent synapses on L4 inputs can change the functional association between thalamic inputs and L4 inputs. Vertical bars indicate
presynaptic spikes and SPN membrane potential indicated below. At young ages, thalamic inputs might gate L4 inputs such that an SPN depolarization is only
present when both thalamic and L4 activity occurs. At older aged SPN depolarizations occur when either is active and inputs sum. (C) Silent synapses might enable
the conditional association of inputs e.g., from different locations within the same lamina.

Feller et al., 1996; Firth et al., 2005) and competition between
the two eyes drives retino-geniculate (Penn et al., 1998) and
retino-collicular (Shah and Crair, 2008) segregation. Blockade
of NMDA signaling alters the segregation of retinal ganglion
afferents in both the lateral geniculate nucleus as well as
the optic tectum (Hahm et al., 1991; Ruthazer et al., 2003;
Ben Fredj et al., 2010).

However, the functional contribution of silent synapses to
these processes remains unclear possibly because few retino-
geniculate connections are truly ‘‘silent’’ (Hohnke et al., 2000).
Moreover, it seems that at least in the retino-geniculate system,
silent synapses peak after the increase in sensory-driven activity,
thus might play a role at slightly later stages in development (Lu
and Constantine-Paton, 2004).

A second potential role of NMDAR-only mediated synaptic
connections is to integrate multiple subthreshold EPSCs over
time and improve the synchrony between different cells due to
a longer activation time scale. This is consistent with the role of
NMDARs in supporting synchronized oscillations in the rodent
somatosensory cortex (Dupont et al., 2006; Yang et al., 2009).

A third role of silent synapses has been shown recently in
the mammalian retina to enhance motion processing by enabling
differential processing of a single source of glutamate by two cells
(Sethuramanujam et al., 2017).

Given the fact that activity in developing networks is slow and
adapting, it seems likely that silent synapses on SPNs are involved
in associating activity over longer time scales but do not enhance
processing of stimuli, activity, or coincidence on fast time scales.

Moreover, since silent synapses can be unsilenced by
correlated activity thus, by extension, the pattern of unsilenced,
AMPAR- and NMDAR-containing, connections are in effect
a readout of the past amount of correlated activity of inputs
to a particular neuron. However, since unsilencing requires
coincidence, the pattern of unsilenced neurons might not
necessarily reflect the amount of activity per se. Thus, the
presence of AMPAR-containing synapses on connections from
deep layers indicates that those layers were likely correlated
with SPNs. The emergence of AMPAR-containing synapses from
L4 to SPNs after ear opening in the auditory cortex (Meng
et al., 2014) indicates that L4 activity likely was correlated
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with SPN activity just before ear opening (Figure 1B). Such an
interpretation would be consistent with the increased evoked
correlated activity between SPNs and L4 at similar stages of
development in ferret (Wess et al., 2017). Interestingly, just
before ear opening, correlated activity is largest in the beta
band, possibly indicating that such activity might be effective
in unsilencing of synapses. Moreover, the spatial pattern of
unsilenced synapses from the cortical plate shows a columnar
pattern indicating synchronous activity across a cortical column
consistent with microelectrode studies (Yang et al., 2009, 2013;
Colonnese and Khazipov, 2010; Minlebaev et al., 2011).

SPN MIGHT ENABLE THE GENERATION
OF NORMAL ACTIVITY PATTERNS IN THE
DEVELOPING CORTEX

The existence of abundant NMDAR-only silent synapses in
SPNs and other cortical neurons suggests that most excitatory
activity during early development is mediated by NMDARs.
Accordingly, cortical network activity in vitro during the first
postnatal week can be almost completely blocked by application
of the NMDAR antagonist AP5 (Allène et al., 2008). These
results suggest that NMDAR-only ‘‘silent’’ synapses are in fact
not ‘‘silent’’ but conduct current and regulate cortical network
activity. Thus, NMDAR-only synapses are not truly ‘‘silent’’
but represent a unique early developmental mode of activity
generation and propagation.

The electrical activity in the developing brain and especially
the cortex is dominated by oscillations. These oscillations can be
present spontaneously, that is without any overt external trigger,
or they can be evoked by sensory stimuli such as light flashes,
motor twitches, or sounds (Khazipov et al., 2004; Hanganu et al.,
2006; Marcano-Reik and Blumberg, 2008; Yang et al., 2009;
Colonnese and Khazipov, 2010; Chipaux et al., 2013; Blumberg
et al., 2015). Moreover, spontaneous activity can be generated
endogenously in the cortex (Garaschuk et al., 2000; Adelsberger
et al., 2005; Siegel et al., 2012) or even in cortical slice culture
(Stewart and Plenz, 2008) as well as be reflective of spontaneously
generated activity in the sensory periphery e.g., the retina or
cochlea (Galli and Maffei, 1988; Meister et al., 1991; Feller et al.,
1996; Firth et al., 2005; Tritsch et al., 2007; Siegel et al., 2012;
Wang and Bergles, 2015).

These activity patterns are complex and are comprised of
fast nested oscillatory patterns, the so-called ‘‘spindles,’’ and
slower transients, ‘‘SATs’’ (Vanhatalo et al., 2002; Tolonen et al.,
2007; Benders et al., 2015). Centrally and peripherally generated
spontaneous activity show different amounts of synchronizing,
wave progression, and developmental profile (Siegel et al.,
2012). These early activity patterns are thought to be crucially
required for the functional maturation of cortical circuits as
they enable high local synchrony of activity (Vanhatalo and
Kaila, 2006; Tolonen et al., 2007; Kilb et al., 2011; Siegel
et al., 2012; Khazipov et al., 2013; Winnubst et al., 2015; Yang
et al., 2016; Luhmann and Khazipov, 2018). Many activity
patterns can be replicated using in vitro preparations indicating
that at minimum cortical circuits and thalamocortical inputs

are required (Sun and Luhmann, 2007; Sun et al., 2010). The
origin of early cortical oscillations is not known but likely
involve the complex interplay of ascending thalamocortical and
descending corticothalamic circuits (Yang et al., 2013, 2016;
Murata and Colonnese, 2016). Due to their location at the
center of thalamocortical and corticothalamic circuits, SPNs can
influence cortical activity patterns. Indeed, electrical stimulation
of SPNs in an in vitro preparation could cause oscillations
(Sun and Luhmann, 2007) and removal of SPNs in vitro
abolishes oscillations (Dupont et al., 2006). Further evidence
for the crucial role of SPNs in the development of cortical
oscillations came from selective ablation studies (Tolner et al.,
2012). These in vivo ablation studies showed that SPNs are
required for both spontaneous and sensory-evoked oscillations
(Tolner et al., 2012). Together, these observations point to a
key role of SPNs in the generation or transmission of cortical
oscillations. Since, during the time when spontaneous activity
is present, many connections to SPNs are NMDAR-only, this
suggests that NMDAR-only synapses on SPNs might play a key
role in controlling cortical oscillations. Indeed, the synchronized
oscillations in developing somatosensory cortex are mediated
through NMDARs (Dupont et al., 2006; Minlebaev et al., 2009;
Yang et al., 2009).

SPNs MIGHT CONDITIONALLY INTEGRATE
ASCENDING AND INTRACORTICAL
ACTIVITY VIA SILENT SYNAPSES

The above reflections and the emerging connectivity diagram
suggest that the presence of abundant silent and non-silent
synapses on SPNs enables SPNs to play important associative
roles during development. As mentioned above, SPNs are
heterogenous and can functionally be classified into two main
groups based on their amount of L4 input but which can
further be subdivided based on the amount of intralaminar
connectivity which in auditory cortex likely reflects integration
across the frequency axis (Meng et al., 2014). One group of SPNs
(Figure 2A groups 1 and 3) does not receive L4 inputs and thus
primarily depends on feed-forward inputs. The second group
(Figure 2A groups 2 and 4) does not only integrate feed-forward
thalamocortical inputs from MGB but also receives significant
feedback inputs from L4. Thus, both feed-forward and feed-back
inputs are affected by the resting potential. Both groups of
SPNs can be further subdivided based on the amount of lateral
intralaminar integration. Given the heterogeneity, the role of
silent connections likely differs between these subgroups of SPNs.

On one hand, SPNs receive early spontaneous and sensory-
evoked inputs via the thalamus and on the other hand, they
receive early cortical inputs. While sensory stimulation can lead
to activity in the matching cortical area (e.g., sounds in auditory
cortex or touch in somatosensory cortex), other sources of
intracortical activity can also be present such as activity, e.g.,
multisensory, originating in other cortical areas or intrinsically
generated non-sensory evoked activity (Garaschuk et al., 2000;
Adelsberger et al., 2005; Khazipov and Luhmann, 2006; Siegel
et al., 2012). Thus, by virtue of their position between ascending
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thalamic circuits and cortical circuits, SPNs can potentially
associate ascending and intracortical activity. Moreover, the
presence of NMDARs, and not AMPARs, allows SPNs to
directly gate and associate cortical activity with ascending
thalamic information (Figure 2B). This is due to the fact
that NMDARs will not signal unless SPNs are depolarized.
Ascending thalamic input can depolarize SPNs and thus remove
the Mg2+ block from NMDARs. If sufficient cortical activity
is present at the same time then cortico-SP synapses will
signal, enhancing the SPN response. Since SPNs innervate
L4 and beyond, a temporal coincidence of cortical activity
with the ascending activity will boost the ascending thalamic
signal. Moreover, because SPNs also project to the thalamus
(Viswanathan et al., 2017; Hoerder-Suabedissen et al., 2018),
which is involved in generating oscillatory activity, boosted
SPN activity has the potential to influence the generation of
thalamocortical oscillations. Thus, over time this scenario likely
leads to an association or synchronization of both sources
of activity.

The changing presence of silent synapses changes the
association between thalamic and cortical inputs. The addition
of AMPARs at intracortical inputs at later ages transforms the
initial conditional or gating association of thalamic and cortical
inputs into an additive association (Figure 2B).

Besides ascending thalamic inputs other sources of activity
can activate silent synapses and change the associative properties
of SPNs. Because developing SPNs might have a slightly
depolarized resting potential (Zhao et al., 2009), NMDAR-
mediated synapses can potentially be activated by slight
depolarizations from the resting potentials. In particular, the
GABAR-mediated inputs to SPNs can be depolarizing due to
high intracellular Cl− level at early ages (Luhmann et al., 2016).
Thus, depolarizing GABA might be able to activate the silent
synapses on SPNs. Besides, since developing SPNs tend to have
higher membrane resistances (Zhao et al., 2009), which leads
to longer time constants, weak depolarizing inputs could be
integrated in SPNs and potentially activate the NMDAR-only
mediated inputs.

Thus, the existence of silent synapses from spatially specific
presynaptic cells suggests a very interesting hypothesis on
the functional topology of the developing cortical circuit: the
inter- and intra-columnar connections involving SPNs could be
dynamic (Figure 2C). In other words, silent synapses can enable
SPNs to integrate inputs from either close by or farther away in a
state-dependent manner.

Since a crucial variable in acutely unsilencing silent synapses
is the resting membrane potential, relatively slow acting
neuromodulatory inputs could play a major role in determining
the amount of integration taking place in SPNs. As mentioned
above, SPNs have ACh as well as serotonin receptors (Hanganu
et al., 2002, 2009; Hanganu and Luhmann, 2004; Kanold and
Luhmann, 2010; Liao and Lee, 2011, 2014). Moreover, layer 6b
neurons in adult, a subset of which represents surviving SPNs
(Marx et al., 2017), are modulated by neurotensin controlling
wakefulness (Case and Broberger, 2018). It is possible that SPNs
are modulated by neuropeptides even at early ages and that
their function varies thru the sleep-wake cycle due to differential

recruitment of local AMPAR-mediated vs. distal NMDAR-only
mediated inputs.

DISRUPTION OF SPN IN CLINICAL
CONDITIONS AND POTENTIAL ROLE OF
SILENT SYNAPSES

Given the central position of SPNs, disruption of SPNs can alter
many aspects of cortical development (Ghosh et al., 1990; Ghosh
and Shatz, 1992; McConnell et al., 1994; Kanold et al., 2003;
Kanold and Shatz, 2006; Tolner et al., 2012). Because of their
early maturation and connectivity, SPNs are also susceptible to
injury and resulting malfunction. For example, neonatal hypoxic-
ischemic (HI) injuries in animals can lesion SPNs or in milder
forms cause hyperconnectivity of SPNs (McQuillen et al., 2003;
Mikhailova et al., 2017; Sheikh et al., 2019; Figure 3A). Such
injuries are associated with altered cortical function and plasticity
(Failor et al., 2010; Ranasinghe et al., 2015) similar to those
observed after SPN lesion (Kanold et al., 2003; Kanold and Shatz,
2006; Tolner et al., 2012) suggesting that SPN damage after the
HI injury might be leading to the downstream effects in the
cortical plate.

In humans, SPN generation begins around the fifth
postconceptional week and fully formed between the 20–26th
week (Kanold and Luhmann, 2010). Environmental insults
that occur during the first trimester can increase the risk of
autism. For instance, valproate (VPA) exposure during the first
trimester correlates negatively with language outcome in children
(Nadebaum et al., 2011). In mice, subplate birth occurs between
E11–13, and full formation of subplate by E14 (Kanold and
Luhmann, 2010). Although this is outside of the first ‘‘trimester,’’
maternal VPA exposure during this narrow time window results
in autistic phenotypes in the offspring (Mabunga et al., 2015;
Nicolini and Fahnestock, 2018). Recent in vitro studies in rodents
have shown that such prenatal VPA exposure causes miswiring
of circuits to SPNs (Nagode et al., 2017). While these circuit
changes were detected shortly after birth (Nagode et al., 2017),
earlier ages were not studied, thus it is possible that even earlier
effects of VPA on SPNs are present. Together, these studies in
animal models suggest that SPNs might form a key element in the
progression from prenatal insult to disease phenotype in multiple
neurodevelopmental disorders.

Because subplate disappears before the onset of ASD
symptoms, no direct link has been made between subplate and
ASD in humans. However, one of the more intriguing indirect
links is the relatively consistent finding of a blurred gray-white
matter boundary in the brains of ASD individuals (Avino and
Hutsler, 2010; Hutsler and Casanova, 2016), possibly due to an
increase in the number of interstitial neurons in the superficial
white matter. Interstitial neurons are believed to be remnants of
the fetal subplate (Chun and Shatz, 1989; Reep, 2000; Torres-
Reveron and Friedlander, 2007; Suárez-Solá et al., 2009; Judaš
et al., 2010), and their overabundance could reflect dysfunctional
apoptotic mechanisms in ASD (Courchesne and Pierce, 2005;
Avino and Hutsler, 2010; Courchesne et al., 2011; McFadden and
Minshew, 2013). Autistic patients also show an altered columnar
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FIGURE 3 | (A) SPNs show functional and morphological hyperconnectivity after hypoxic-ischemic (HI; from Sheikh et al., 2019; no copyright permission as
required for use of this image). Shown are LSPS maps of connection probability and neurolucida reconstructions. (B) Cartoon illustrating how depolarization caused
by HI can lead to unsilencing of synapses on SPNs (middle). If presynaptic cells are active (indicated by spike train), the coincidence between presynaptic activity and
postsynaptic depolarization might result in a subsequent increase in AMPARs (right, black).

structure in frontal cortex (Buxhoeveden et al., 2006) and patches
of disorganization are seen in L4 and L5 of the prefrontal cortex
in children with autism (Stoner et al., 2014). Given the putative
role of subplate in setting up protomaps of cortical organization
(O’Leary and Borngasser, 2006; O’Leary et al., 2007; Wess et al.,
2017; Kanold, 2019) and given that alterations are present in
the target layers of SPNs, these observations are consistent with
a potential role of early SPN dysfunction in the emergence of
ASDs. However, the ultimate test of this possibility would require
to reverse or to prevent the changes in the SPNs, which in turn
could lead to treatment and prevention approaches in humans.
The consequences of increased ‘‘adult subplate’’ or interstitial
cells on circuit function are not known.

Additional indirect evidence points to a role of SPNs in ASDs.
Expression profiling has identified an enrichment in subplate
genes for association with ASDs (Hoerder-Suabedissen et al.,
2013) but there are additional potential links between subplate
damage and ASDs. Hypoxia/ischemia preferentially damages
SPNs in rodents (McQuillen et al., 2003; Mikhailova et al., 2017;
Sheikh et al., 2019). Birth injuries or preterm labor can lead to
hypoxic situations, and both of these have been shown to increase
the risk of ASD (reviewed in Rennie et al., 2007; Agrawal et al.,
2018; Rogers et al., 2018). Perinatal anoxia in rats also causes ASD

phenotypes (Laviola et al., 2004). Importantly, preterm birth is
also associated with an increased risk of ASD, and this might be
due to an increase in the incidence of pre-eclampsia in mother of
preterm infants, among other things (Buchmayer et al., 2009).

Thus, while direct evidence of SPN disruptions in ASDs
is currently lacking, multiple lines of evidence suggest that
understanding SPN function and susceptibility will be important
in understanding the etiology of many neurodevelopmental
disorders. One common thread is the vulnerability of SPNs to
hypoxia/ischemia. While the acute effects of hypoxic/ischemic
injuries on SPNs are unknown, anoxia can induce depolarization
in cortical pyramidal cells (Luhmann et al., 1993; Rosen and
Morris, 1994; O’Reilly and Haddad, 1996; Pisani et al., 1997).
Thus, hypoxia might be able to ‘‘unsilence’’ silent synapses
onto SPNs leading to an increased co-activation of presynaptic
neurons and postsynaptic SPNs (Figure 3B). Such co-activation
would be expected to result in increased connectivity, which is
experimentally seen after HI (Sheikh et al., 2019). Indeed, in vitro
studies showed that combined oxygen and glucose deprivation
depolarizes SPNs (Albrecht et al., 2005). Moreover, hypoxia-
induced seizures can diminish silent synapses in hippocampus
consistent with such a scenario (Zhou et al., 2011). Thus,
activation of silent synapses on SPNs by hypoxia or other
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insults might be a key step in linking early insults to later
circuit dysfunctions.

CONCLUSION AND OPEN QUESTIONS

While SPNs as a population of neurons are coming into clearer
view, many unknowns remain. SPNs as a group are both
the target of initial thalamic inputs but also receive extensive
cortical input. In particular, there is an extensive connectivity
of SPNs with the cortical plate mediated by NMDAR-only
containing ‘‘silent’’ synapses at the earliest ages. These synapses
are very sensitive to the resting potential of the cell, thus
subtle modulation of the resting potential can modulate their
activity and thus their ability to integrate inputs. Activation
of silent synapses on SPNs by hypoxia or other insults might
be the initial key step in a cascade of events leading to
the manifestation of neurodevelopmental disorders. Therefore,
interventions that limit the amount of depolarization or NMDAR
signaling might be effective in preventing this chain of events.
Indeed, hypothermia has been shown to be effective in reducing
the effects of hypoxia on cortical neurons (Hiramatsu et al., 1993;
Rosen and Morris, 1994) and improves clinical outcomes (Gunn
and Bennet, 2008; Jacobs et al., 2013; Papile et al., 2014).

It is becoming clear that multiple classes of SPNs exist, but the
functional roles of the subclasses are unknown. Moreover, given
that SPNs are present in all cortical areas, it is likely that there
are functional differences between SPNs in different cortical
areas. This has not been explored at all. Most importantly,
the role of SPNs in development has only been assessed in
primary sensory areas, thus important roles of SPNs in other
areas, e.g., frontal areas, that might relate to a potential role
of SPNs in neurodevelopmental disorders is lacking. SPNs
are present in all mammalian species but given that the size
of the subplate zone varies between species, it is likely that
there are species-dependent differences in SPN organization and

possibly function. Such differences have not been elucidated. In
particular, the function of SPNs in primates has not been studied.
Thus, future studies need to address the functional diversity of
SPN within but also across species. Moreover, there is growing
evidence of SPN dysfunction in multiple neurodevelopmental
disorders. What is lacking is direct functional evidence of SPN
disruption in human patients at the relevant early developmental
ages. Moreover, while SPNs have been studied in primary sensory
areas the phenotypes of many neurodevelopmental disorders
have been most prevalent in frontal areas leaving open the
possibility that dysfunctions might be more widespread or
that a selective vulnerability exists for circuits in frontal areas.
Functional imaging or EEG methods might be able to provide
such evidence.
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