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Abstract

Background: Transcription factor binding affinities to DNA play a key role for the gene regulation. Learning the
specificity of the mechanisms of binding TFs to DNA is important both to experimentalists and theoreticians. With
the development of high-throughput methods such as, e.g., ChiP-seq the need to provide unbiased models of
binding events has been made apparent. We present EMQIT a modification to the approach introduced by
Alamanova et al. and later implemented as 3DTF server. We observed that tuning of Boltzmann factor weights,
used for conversion of calculated energies to nucleotide probabilities, has a significant impact on the quality of
the associated PWM matrix.

Results: Consequently, we proposed to use receiver operator characteristics curves and the 10-fold cross-validation to
learn best weights using experimentally verified data from TRANSFAC database. We applied our method to data available
for various TFs. We verified the efficiency of detecting TF binding sites by the 3DTF matrices improved with our technique
using experimental data from the TRANSFAC database. The comparison showed a significant similarity and comparable
performance between the improved and the experimental matrices (TRANSFAC). Improved 3DTF matrices achieved
significantly higher AUC values than the original 3DTF matrices (at least by 0.1) and, at the same time, detected notably
more experimentally verified TFBSs.

Conclusions: The resulting new improved PWM matrices for analyzed factors show similarity to TRANSFAC matrices.
Matrices had comparable predictive capabilities. Moreover, improved PWMs achieve better results than matrices
downloaded from 3DTF server. Presented approach is general and applicable to any energy-based matrices.
EMQIT is available online at http://biosolvers.polsl.pl:3838/emqit.

Reviewers: This article was reviewed by Oliviero Carugo, Marek Kimmel and István Simon.
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Background
DNA-binding site models exist for over 1800 vertebrate
TFs and about 3600 known Transcription Factor Binding
Sites (TFBSs) in human and over 5000 in mouse. Total
number of binding sites in the multicellular genomes
could be at least an order of magnitude higher than the
number of coding genes [1].
Development of next-generation sequencing methods

like ChIP-Seq or ChIP-Chip, covering TF binding over
whole genome, remarkably simplifies analysis of gene

regulatory regions. Using data coming from such experi-
ments we are able to detect and confirm the exact position
and structure of the TFBSs [2, 3]. Bioinformatics ap-
proaches are very important for support of experimen-
tal identification of protein-DNA interactions.
Binding motifs in DNA are commonly represented by

the Position Weight Matrices (PWM) and the Phylogenetic
Motif Models (PMM). Experimentally derived PWM
models of TFBS profiles are usually deposited in the
Jaspar [4] and the TRANSFAC [1] databases. PWM
models combined with PWM scanning algorithms score
subsequences in the DNA data with respect to their simi-
larity to the TFBS profile, as coded in the PWM. This
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simple scheme that is commonly used assumes an additive
contribution from each position towards the score.
Recently Alamanova et al. [5] devised a method for

creating PWMs of transcription factors using 3D structure
based computation of protein-DNA free binding energies.
The atomistic detail model of TF-DNA interaction would
depend on the knowledge of relative spatial configuration
of TF amino acids and DNA bases upon binding and a
method to evaluate compatibility and strength of TF-DNA
interaction. Increasing although still limited number of high
quality crystallographic models of TF-DNA complexes
deposited in the PDB database [6] allows for detailed study
of binding modes and details of contact interfaces. Some
recent works report successful structure based predictions
of TF binding sites in DNA. Molecular modeling methods
require only the 3D structure of the TF-DNA complex. The
binding specificity to given DNA motif can be predicted by
many different approaches. Molecular dynamics methods,
based on the physical energy functions using different
terms (electrostatics, solvent release, hydrogen bonds,
atom or protein deformations, etc.), model interactions
between DNA and protein [7, 8]. Protein-DNA docking
allows to create protein-DNA complex for unbound
protein structure [9]. The protein-DNA interaction energy
is often evaluated by knowledge-based potential. The main
idea behind knowledge-based statistical potentials is to
analyze contacts between different residue (or atom) types
in the complex, based on information from known native
structures which are usually protein-DNA complexes de-
posited in structural databases like PDB. There exist a
large number of statistical potentials with different refer-
ence state, distance or protein representation [10–12].
Alamanova et al. successfully applied structure based

methodology to create PWM matrices of NF-κB family
namely p50p50, p50RelB and p50p65 dimers and other
factors: p53, GABP and ERα. Homology modeling can
be used for TF-DNA complexes for which crystallo-
graphic data is not yet available. The original Alamanova
et al. approach was implemented as the 3DTF web-
server available at http://www.gene-regulation.com/pub/
programs/3dtf/index.html [5, 13]. Approaches based on
crystallographic models and simulation techniques of TF-
DNA complexes are a natural intermediate stage between
purely bioinformatics-based models and experimental
techniques such as ChIP-Chip or ChIP-Seq.
In this work we propose a modification to the Alamanova

et al. approach. We observed that tuning of Boltzmann
factor weights, used for conversion of calculated ener-
gies to nucleotide probabilities, has a significant impact
on the quality of the associated PWM matrix [14]. Conse-
quently, we developed EMQIT (Energy Matrix Quality
Improvement Tool), a web-server that uses ROC curves
and the 10-fold cross-validation to learn the best weights
thereby obtaining better predictive models of TFBSs. The

method relies of experimentally confirmed TFBSs data
form the TRANSFAC database [1]. The general workflow
is presented in Fig. 1.
We applied our method to data available for p50p50,

p50p65, p53, GABP, HSF1 and ERα. What is very important,
our modification significantly improved quality of original
3DTF matrices. The presented approach is general and can
be applied to any existing PWM models. The EMQIT web-
server is available at http://biosolvers.polsl.pl:3838/emqit.

Methods
Dataset
We applied the presented method to data available for
the p53 tetramer (PDB entry 2GEQ), ERα (1HCQ), GABP
(1AWC), HSF1 (3HTS) and for two members of the NF-kB
family: p50p50 (1NFK) and p50p65 (1VKX). We improved
PWMs computed with 3DTF server. First we downloaded
vectors of estimated weights from the 3DTF server [13]
consequently they were used to construct PWMs in our
machine learning improvement procedure. According to
the Gabdoulline et al. [13] 3DTF server is an online
implementation of Alamanova et al. method [5], and
uses statistical potential developed by Robertson and
Varani [15]. However, in authors opinion the imple-
mentation must differ in some way from original, as
the matrices created with 3DTF, although based on the
same PDB structures, differ from those originally pub-
lished in [5].
We compared PWMs downloaded from 3DTF and im-

proved using our technique with matrices downloaded
from the TRANSFAC (2016.1) database and the original
3DTF matrices. The data set created for the p53 consisted
of 21 human promoter sequences of 19 genes, which are
known to be regulated by p53 transcription factor. In case
of remaining TFs namely Erα, GABP, HSF1, p50p50 and
p50p65, the data sets contained 26 (23 genes), 12 (11
genes), 26 (13 genes), 19 (15 genes), and 46 (36 genes) frag-
ments of human promoter sequences, respectively. We
compared improved matrices with all available matrices in
the TRANSFAC database for examined TFs. We used
the following (the most recent and the highest-quality
TRANSFAC matrices available) V$P53_Q3_01 for p53,
V$ERALPHA_Q6_02 for Erα, V$HSF1_Q6_01 for HSF1,
V$P50P50_Q3 for p50p50 and V$P50RELAP65_Q5_01
for p50p65 in the final comparison.
For every considered transcription factor we prepared

positive and negative datasets (of equal size - the dimen-
sions of datasets for given TF are given in the previous
paragraph) based on information stored in TRANSFAC
database. The positive set consisted of short promoter
sequences (−1900 to 100 bp from the transcription start
site) of human genes known to be regulated by given TF,
which included TFBSs used to create all the TRANSFAC
PWMs for the TF under study. TFBSs did not have fixed
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length. The negative set was constructed from randomly
selected promoters of human genes from the TRANS-
FAC database, not regulated by analysed TFs.

Tuning of Boltzmann factor weights
Original Alamanova et al. method used intermediate en-
ergy matrices (generated according to [5]) to create final
PWMs. The nucleotide probabilities piα were calculated
using Boltzmann formula:

pia ¼
exp −βΔGi

a

� �

P
γ¼1

4 exp −βΔGi
γ

� �

where ΔGi
α is the energy contribution from the particular

nucleotide α, γ = [A, T, G, C]. Original Alamanova et al. ap-
proach simply assumed β = 1/RT, where R is the universal
gas constant and T temperature in K. We observed that
value of the β parameter has significant impact on the qual-
ity of associated PWM matrix, measured as number of

Fig. 1 Workflow of PWM matrix improvement procedure
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properly detected experimentally confirmed TFBSs (true
positives). In our improvement technique we implement
the Boltzmann factor weight (β) parameter tuning using
Receiver Operating Characteristic (ROC) curves and the
10-fold cross-validation to learn best weights using experi-
mentally confirmed TFBS from TRANSFAC database. For
input matrix (e.g downloaded from 3DTF server) subject to
improvement, we calculate number of matrices for β value
ranging from minimum to maximum β = 1/RT with step
equal to 10−6. The minimum β value was selected inde-
pendently for each TF and corresponds to a PWM matrix
for which nucleotide probabilities at any chosen position
are at least equal to 0.6. This step eliminates very unspecific
PWMs, for which probabilities of each A, T, G, C nucleo-
tide were equal to 0.25 (what happened for β values lower
than the selected minimum).

Construction of ROC curves
We used PWMs created in the previous step to scan the
positive and the negative datasets with Match™ tool [16].
To construct ROC curves we changed the Matrix Similar-
ity Score (MSS) parameter from 0.60 to 1.00. Conse-
quently, for every PWM matrix, we calculated the number
of properly detected transcription factor binding sites in
the positive dataset (true positives). We define false posi-
tives as TFBSs detected in negative dataset (sequences of
genes not regulated by given TF) but also TFBSs detected
in positive dataset (sequences of genes known to be regu-
lated by given TF) outside the region annotated as TFBS
in TRANSFAC database. This seeming inconsequence is
due to the fact that promoter region is considerably longer
than true, experimentally confirmed TFBS and may con-
tain motifs which although reported by PWM as TFBSs,
located outside region annotated as true TFBS and thus
considered false positive.
The ROC curves were constructed in the 10-fold cross

validation procedure. We used the classical n-fold cross
validation method. The datasets (positive and negative)
were randomly split into 10 subsets. A training data was
built using nine out of ten subsets, and the remaining
one subset was used as the test set. The k-fold cross val-
idation is an efficient model evaluation method in cases
when independent test data is not available and available
dataset does not contain large number of samples. Using
the whole dataset in different instances of training and
test steps prevents overfitting of the model.
Consequently, a ROC curve was constructed for each

PWM matrix. From a set of PWM matrices calculated
for different β values, only one PWM matrix, with the
largest area under the curve (AUC) value, was selected
and used to scan the test set with Match™ tool. The 10-
fold cross validation was repeated ten times. The results
(AUC values and β values) were averaged after all ten
repeats. Matrix which most frequently appeared as top

scoring one (with highest AUC value) was selected and
presented as final result.

The EMQIT tool
Presented method was implemented as a web-server avail-
able at http://biosolvers.polsl.pl:3838/emqit/. The tool pre-
forms automated processing of energy matrices, which can
be obtained from the 3DTF server. As a result one receives
an improved 3DTF matrix represented as nucleotide prob-
abilities and matrix logo. Moreover, EMQIT compares im-
proved PWM with matrices available in the TRANSFAC
database and the original 3DTF matrix. The EMQIT appli-
cation was written in the R/Shiny package [17].

Example of using the EMQIT tool
We used the EMQIT tool to improve the quality of the
energy matrix obtained for the GABP transcription
factor (Additional file 1: Figure S2). The energy matrix
for the 1AWC complex from the PDB was created using
3DTF server and downloaded as TAB-separated text file.
The EMQIT tool performed our improvement proced-
ure using the GABP energy matrix as input and the
V$GABP_B TRANSFAC matrix as the reference. The
positive set consisted of experimentally verified TFBSs,
which were used to construct V$GABP_B TRANSFAC
matrix. The EMQIT uses only TFBSs which exact posi-
tions can be mapped to the hg38 human reference
genome. The GABP positive set included 12 TFBSs in
11 genes. The results of the EMQIT tool are shown
under four categories: Summary, Logos, AUC Values
and the PWM scan results. The Summary includes the
TF name, the improved and the original PWMs, the
Logos show motif logos of analyzed matrices and one or
more TRANSFAC matrices corresponding to the input
TF. The AUC values tab shows two tables: upper table
contains information about AUC values obtained for im-
proved and original PWMs, the lower one presents the
AUC value for the TRANSFAC matrix or matrices. The
PWM scan result stores the information about the num-
ber of TFBSs in genes in EMQIT positive set, which
were involved in computations. Moreover, it includes
comparison of detected TFBSs for the Match™ MSS
thresholds 0.6 and 0.8 for the input and improved matri-
ces. The EMQITallows downloading of the final improved
energy matrix as plain text file. We provided 3DTF P53
energy matrix as an example input. The example matrix is
available for download in the main panel.

Results and discussion
NF-κB family is one of the most important TF families
in eukaryotic cells. It takes part in regulation of innate
immunity, in carcinogenesis, and interacts with other
important families such as p53 and HSF1. Understand-
ing of transcription regulation of NF-κB is important
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not only for biology but also for medicine. On the other
hand, developing novel bioinformatics, physical model-
ing and evolutionary analysis tools and techniques ap-
plicable to NF-κB and its targets, will significantly aid
research on other transcription factor families.
The application of the PWM quality improvement

method allowed to determine the best β parameter value
for each considered TF (see Additional file 1: Table S1).
Sequence logos of improved PWMs are presented in
Additional file 1: Figures S1-S6. Matrix logos were cre-
ated with the R seqLogo package [18]. The general mo-
tifs observed in each matrix logo set were similar. The
differences were observed in height of individual letters
corresponding to information content (bits). Both NF-κB
matrices improved in this study are less specific in their
inner part (positions 5 and 6) then matrices obtained
from the 3DTF server. Improved matrices were con-
structed for lower values of β (Additional file 1: Table S1
and Figures S1-S6). There are noticeable differences in
our matrix motifs and TRANSFAC PWMs, what can be
attributed to different lengths of motifs. To test pro-
posed approach we constructed the ROC curves and
computed the AUC values for all matrices (Table 1).
All matrices achieved relatively high values of AUC

parameter (min. 0.577 and max. 0.934). The best AUC
results were obtained for improved matrices for all cases,
improved PWMs had better quality and detected less
number of false positive TFBSs than TRANSFAC and
original 3DTF matrices (Table 2). An improved p50p50
matrix has the highest AUC value among all considered
matrices (0.934). Both improved NF-κB matrices have
AUC values more than 0.2 higher than original 3DTF
matrices and more than 0.1 higher compared to
TRANSFAC matrices. In the other cases the differences
in AUC value between improved and original 3DTF
matrices were 0.366 for p53, 0.329 for GABP, 0.187 for
Erα and 0.206 for HSF1 in favor of the improved PWM
matrices. We did not observe a significant changes in
AUC values in a group of TRANSFAC matrices, the
average AUC value was equal to 0.76. The differences
between improved and TRANSFAC matrices were 0.143,
0.167, 0.058 and 0.15 for p53, GABP, Erα and HSF1 re-
spectively, in favor of the improved PWM matrices.

We scanned positive data sets created for every TF with
Match™. The MSS parameter was set to 0.8 (the default
value). We compared scan results for improved PWMs
and original 3DTF energy matrices (Additional file 1:
Figures S7-S12). The best results has been obtained
with TRANSFAC matrices (data not shown), which is
understandable because all positive data sets were con-
structed based on these matrices. Improved matrices
detected different number of binding sites for all TFs,
because of the significant differences in the encoded
motifs and lower specificity of these matrices. The im-
proved p50p65 matrix detected 17 out of 46 TFBSs, which
represent 37% of the whole positive set for this particular
TF. The original 3DTF p50p65 matrix recovered only one
less TFBS. The best scan result was obtained for the im-
proved GABP matrix, which found 75% of the positive
TFBSs set for the MSS = 0.8 and 83% TFBSs for the
MSS = 0.6 (Table 2). For the same TF the original 3DTF
matrix detected 42% for the MSS = 0.8 and 50% for the
MSS = 0.6. The p53 original 3DTF matrix recovered only
5% TFBSs for the MSS = 0.8, which was the worst result.
In comparison, the improved p53 matrix detected 19%
TFBSs of the positive set. The remaining improved matri-
ces found 26% TFBSs for p50p50, 35% for HSF1 and 23%
for Erα for the MSS = 0.8. Finally improved matrices have
the ability to recover extra TFBSs, which were not found
by other matrices. We noticed differences between the
number of TFBSs reported by original 3DTF matrices and
PWMs improved in our procedure for the MSS = 0.8. In
all cases improved matrices detected higher number of
TFBSs, while for the MSS = 0.6 the number of detected
TFBSs were the same for almost all cases.

Conclusions
The resulting new improved PWM matrices for analyzed
factors show similarity to TRANSFAC matrices. Matrices
had comparable predictive capabilities. Moreover, improved
PWMs achieve better results than matrices downloaded
from 3DTF server. Presented approach is general and
applicable to any energy-based matrices. Experimentally
obtained TFBS motifs are available only for a limited
number of TFs what motivates development of distinct

Table 1 The AUC values estimated for all analysed matrices

TFs Improved
3DTF matrix

Original 3DTF matrix TRANSFAC matrix

The P53 tetramer 0.900 0.534 0.757

ERα 0.792 0.605 0.734

GABP 0.906 0.577 0.739

p50p50 0.934 0.683 0.788

p50p65 0.887 0.680 0.767

HSF1 0.908 0.702 0.758

Table 2 The number of detected TFBSs by improved and
original 3DFT matrices for the MSS 0.6

TFs Improved 3DTF matrix Original 3DTF matrix

p53 9 9

ERα 9 9

GABP 10 6

p50p50 9 9

p50p65 25 31

HSF1 14 16
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computational TFBS modeling techniques. EMQIT allows
to create TFBS motif models which performance is com-
parable to experimental ones. Computational solution is a
method of choice when experimental PWM is not avail-
able, or its quality is low. For TF-DNA complexes for
which crystallographic data is not yet available, protein
homology modeling and protein-DNA docking can be
used. Our method although based on TRANSFAC data-
base, can be easily modified to include custom sequence
data for the TFs of interest.

Reviewers’ comments
Reviewer’s report 1
Oliviero Carugo, University of Vienna, Austria.
Reviewer comments:
The manuscript by Karolina Smolinska and Marcin

Pacholczyk describes a computational strategy to improve
the PWM matrices, originally developed by Alamanova,
Stegmaier and Kel (BMC Bioinformatics 11:225), by fine-
tuning the values of the Boltzmann exponent. The new
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results are presented only in Additional file 1: Table S3
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We appreciate Prof. Carugo’s interest in our work and
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Reviewer comment continued:
I also find embarrassing that the data, which were
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about this issue but I am personally skeptical about this.
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Author’s response:
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sites in the positive dataset (true positives) and the num-
ber of remainder TFBSs detected in positive and negative
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the true positives are the TFBSs detected in the positive
dataset, the true negative cannot be the TFBS detected in
both datasets (positive and negative). Usually a true nega-
tive is a TFBSs detected in the negative dataset only.
Minor points. In lines 103–104 the Authors write “For
every considered transcription factor we prepared positive
and negative datasets (of equal size)…” I think that it is
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these datasets. If they are too small, the value of the
conclusions would be questionable. In lines 120–121 the
Authors write “we calculate number of matrices for β
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the coefficient beta of the form beta = 1/(RT) (as done
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it optimizes the ROC curves wrt the area under the
curve (AUC). This has resulted in quality improvements
and made the probability weight matrices (PWM) ob-
tained comparable to those available from TRANSFAC,
which are sometimes considered gold standard. In my
opinion, the method, although not necessarily optimal,
provides good to very good PWMs, but first of all a
methodology of constructing PWM, also applicable in
other circumstances. My technical comments are summed
up in the “Recommendations to Authors”. 1. I am not sure
how the methodology is affected by overfitting and how
effective the 10-fold cross-validation is. Usually, the data
set at researcher’s disposal is split into training and vali-
dations sets. The method is trained on the training set
and validated based on the validation set. It is a rule it
performs worse on the latter. Might the authors at least
discuss this issue? 2. I understand that TRANSFAC is
used for validation. How different is it from the training
date set with respect to the characteristics of the se-
quences investigated? 3. The Discussion might provide
more specific information on other applications of the
methodology developed in the manuscript.
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sure the best possible quality of our models we acquired
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number of annotated TFBS. We decided to use as much
data as possible for learning purposes. Usually models
selected in k-fold cross validation perform better than models
simply trained on dataset divided into training and test (or
validation) part as one exploits more data in k training
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learning set (one training and one testing set) and model
with high variance (e.g. leave one out, k equal to the
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that used in cross-validation procedure to made final
evaluation of the model performance in so called “nested
cross-validation” [20] but given relatively small number
of known TFBS we decided to limit our approach to
10-fold cross-validation. This decision is in our view
unavoidable trade-off between generality of the model
and maximal use of available data. Our goal was also
automation of presented procedure (and web server
deployment) which always require some simplifying
assumptions to be made. Presented approach can be
easily modified to include more rigorous model valid-
ation as more data will become available.
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Reviewer comments:
This is a nice and correct work. The authors made

some improvement on the accuracy of the original predic-
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this server five years ago, were cited 8 times according to
the web of science, will the original paper of Alamanova D.
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this paper.
Author’s response:
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affinities of transcription factors to binding sites will
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TFBS modeling.
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