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The chemical shift is sensitive to changes in the local environments and can report the structural changes.The structure information
of a protein can be represented by the average chemical shifts (ACS) composition, which has been broadly applied for enhancing
the prediction accuracy in protein subcellular locations and protein classification. However, different kinds of ACS composition can
solve different problems. We established an online web server named acACS, which can convert secondary structure into average
chemical shift and then compose the vector for representing a protein by using the algorithm of auto covariance. Our solution is
easy to use and can meet the needs of users.

1. Introduction

Knowledge of subcellular localization information of a pro-
tein may help to unravel its normal cellular function [1]. The
proteins within the different compartments have different
biological activity and functions; in turn, knowing the sub-
cellular localization of a given protein helps in elucidating its
functional role.

Recently, many computational approaches for subcellular
localization predictions have been developed and plenty of
methods for improving the accuracy of the prediction were
applied. From two aspects the predictor can be described.
One is the predicting algorithms, like support vectormachine
(SVM) [2–11], neural network [12], increment of diversity
(ID) [13], random forest (RF) [14], K-nearest neighbor (K-
NN) [15, 16], generating algorithm [17], and so on, or the
combination of them [16, 18]. The other is the information
source, such as widely used sequence-based information
source, which are amino acid composition (AAC) and sorting
signals [19–21], and textual descriptions of proteins [22, 23],

which are protein physiochemical property [24], gene ontol-
ogy (GO) [25], and so on. Actually, the structure information
of a protein is very important, especially when it is used for
representing the subcellular locations of a protein. However,
the structure information of a protein cannot be easily
described, and few methods using the structure information
can be learned to our knowledge.

However, in NMR spectroscopy, as an important param-
eter, chemical shift, which is sensitive to changes in the
local environments, can report the structural changes. Sibley
et al. [26], Mielke and Krishnan [27], Spera and Bax [28],
and Zhao et al. [29] have found that the ACS of a protein
has intrinsic correlation with the protein’s secondary struc-
ture and the function of this protein is determined by its
structure. According to this point of view, there must be
some relationship among the averaged chemical shift, protein
structure, and functions [30, 31].Wishart has developed aweb
server, namely, CS23D, for rapidly generating accurate 3D
protein structures using only assigned NMR chemical shifts
[32]. More than 100 proteins from BMRB [33] were tested
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and found that the resulting structures generally exhibit good
geometry and chemical shift agreement [32]. Also, there are
some algorithms, which can predict the chemical shift from
protein sequences and conformation [34–37]; fewworks have
been done to determine a protein’s functions by the chemical
shifts [38, 39]. Therefore, how to use the chemical shift is still
important and urgent.

In this paper, a benchmark data set of chemical shift was
constructed, which consists of 1,552 proteins derived from
BMRB website [33] and then extracted chemical shift values
of 15N, 13C

𝛼
, 1H
𝛼
, and 1H

𝑁
for 20 amino acid residues.Then

four types of average chemical shift for 20 amino acid residues
were calculated and the autocovariance algorithmwas used to
convert the average chemical shift into the vector to describe
the protein sample. The algorithm acACS (autocovariance
of averaged chemical shifts) has been used to enhance the
prediction accuracy in protein subcellular locations. The
proposed acACS descriptor can be considered as a mode
of generalized pseudoamino acid composition, which was
summarized in [40]. Recently, the generalized pseudoamino
acid composition methods have been systematically imple-
mented by two powerful software, PseAAC-Builder [41] and
PseAAC-General [42]. For the readers’ convenience in using
the current method, the acACS descriptor may be integrated
into this software in future works. The details of how to deal
with this calculation and how to use this method is shown as
follows.

2. Material and Methods

2.1. Data Sets. When an electron moves around a proton, it
will produce somemagnetic field, which could affect proton’s
external electron field. Thus, the absorption frequencies of
proton in different chemical environments would shift rela-
tively to the absorption frequencies under standard magnetic
fields. Chemical shift is the relative resonance frequencies
shift of protons between different chemical environment and
standard, which can bemeasured byNMR spectroscopy. Due
to its sensitivity to local environments, such as the backbone
dihedral angles and the secondary structure types [26, 27, 29],
chemical shift can be an indicator for the changes of local
conformations.

In order to find out the correlation between chemical shift
and the secondary structure of a protein, we construct a high-
quality working data set, which started from the following
steps: (1) the proteins star file with NMR spectroscopy data
were downloaded from BMRB [33]; (2) the proteins less
than 50 residues or not matched to PDB [43] entries were
discarded; (3) the proteins with sequence identity higher than
40% were excluded by CD-HIT [44]. Finally, the benchmark
data set has 1,552 proteins. The data set was available at
our website. The data set contained 1,552 proteins sequences
and BMRB star file, which was the original chemical shifts
data file for all kinds of backbone atoms of each protein.
We analyzed the averaged chemical shifts for every kind of
amino acids type and secondary structure in order to find
out the rules among averaged chemical shifts with every kind
of amino acids type and secondary structure types and then

used the autocovariance algorithm to calculate the feature
vectors of the protein sequences from the statistic results.
The feature vectors representing the protein sequences can be
used in problems of subcellular location prediction or other
protein classifications. Researchers may also develop better
algorithms for protein representation using the data set.

2.2. Averaged Chemical Shift (ACS). In order to find the rule
between the chemical shifts and structure information, the
statistic about averaged chemical shift related to secondary
structure and amino acids type was carried out.

Firstly, four types chemical shift values 𝜔 of 15N, 13C
𝛼
,

1H
𝛼
, and 1H

𝑁
from every amino acid residue were extracted

from the BMRB star file for further calculation. In the BMRB
star file, the amino acid residues, four kinds of protein
backbone atoms of each amino acid residue, and matched
PDB file were given. For example, the “bmr447.str” was
extracted into four files:N 447.txt, Ca 447.txt,Ha 447.txt, and
Hn 447.txt, which correspond to 15N, 13C

𝛼
, 1H
𝛼
, and 1H

𝑁

protein backbone atoms.
Secondly, the secondary structure information was

extracted from PDB file which matched to BMRB star file.
The secondary structure types of each amino acid residue are
denoted byH, E, and C.Then the averaged chemical shifts for
all the residues were calculated.

For protein backbone atoms “𝑖” of amino acid type “𝑗”
with secondary structure type “𝑘,” the averaged chemical shift
(ACS) is defined as

𝐶
𝑖

𝑘
(𝑗) =

1

𝑁

∑

𝑁

𝜔
𝑖

𝑘
(𝑗) . (1)

Here 𝑖 = 15N, 13C
𝛼
, 1H
𝛼
, or 1H

𝑁
, 𝑗 is one kind of 20 amino

acids and 𝑘 stands for the secondary structure types (H, E, or
C) from DSSP [45] (H = helix, E = strand, and C = the rest).
𝜔
𝑖

𝑘
(𝑗) is the chemical shift value extracted from the BMRB

star file and𝑁 is the counts of 𝜔𝑖
𝑘
(𝑗) items.

By calculating the residues’ ACSwith (1) for 1552 proteins,
we found that the ACS regularly varies with the secondary
structure types and residues. The statistic results of averaged
chemical shifts were listed in four tables, which can be
accessed from our website. Take the 1H

𝛼
as an example,

the ACS of 1H
𝛼
for each of 20 native amino acid residues

with three types of secondary structure is shown in Figure 1.
According to Figure 1, it can be concluded that we can use the
ACS to represent the protein’s secondary structure. In order
to illustrate the algorithm, the flowchart of ACS is given in
Figure 2.

2.3. Algorithm of Autocovariance of Average Chemical Shift
(acACS). In order to obtain the correlation information
between amino acids of a protein, the autocovariance of ACS
was calculated. For a protein 𝑃,

𝑃 = [𝑗
1
, 𝑗
2
⋅ ⋅ ⋅ 𝑗
𝑙
⋅ ⋅ ⋅ 𝑗
𝐿
] . (2)

Here, 𝐿 is the sequence length and 𝑗
𝑙
is the amino acid in

position 𝑙.
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Figure 1: The average chemical shifts (ACS) of 1H
𝛼
for each of

20 native amino acid residues (𝑗) with three types of secondary
structure (𝑘).

The secondary structure of protein 𝑃 was predicted from
Porter [46, 47] and then

𝑃 = [𝑘
1
, 𝑘
2
⋅ ⋅ ⋅ 𝑘
𝑙
⋅ ⋅ ⋅ 𝑘
𝐿
] . (3)

Here 𝑘 is the secondary structure types.
Then, the amino acid 𝑗

𝑙
in protein 𝑃 was replaced by its

ACS “𝐶𝑖
𝑘𝑙
(𝑗
𝑙
)” according to its secondary structure type 𝑘

𝑙
.

When 𝐶𝑖
𝑘𝑙
(𝑗
𝑙
) was redefined as 𝑆𝑖

𝑙
, 𝑃 can be expressed as

𝑃 = [𝑆
𝑖

1
, 𝑆
𝑖

2
⋅ ⋅ ⋅ 𝑆
𝑖

𝑙
⋅ ⋅ ⋅ 𝑆
𝑖

𝐿
] (𝑖 =

15N, 13C
𝛼
,
1H
𝛼
,
1H
𝑁
) .

(4)

Then, the autocovariance algorithm was used to calculate
the correlation between amino acid 𝑙 and 𝑙+𝜆 by the following
equation:

𝜃
𝑖
(𝜆) =

1

𝐿 − 𝜆

𝐿−𝜆

∑

𝑙=1

[𝑆
𝑖

𝑙
− 𝑆
𝑖

(𝑙+𝜆)
]

2

,

(𝑖 =
15N, 13C

𝛼
,
1H
𝛼
,
1H
𝑁
, 0 < 𝜆 < 𝐿) .

(5)

After the above calculation, the protein 𝑃 can be
expressed as follows:

𝑃acACS = [𝜃
𝑖
(0) , 𝜃
𝑖
(1) , 𝜃
𝑖
(2) , 𝜃
𝑖
(3) , . . . , 𝜃

𝑖
(𝜆) ; . . .]

(𝑖 =
15N, 13C

𝛼
,
1H
𝛼
,
1H
𝑁
, 0 < 𝜆 < 𝐿) .

(6)

Here, 𝜃𝑖(𝜆) is the correlation factor of average chemical shift
𝑆
𝑖

𝑙
with average chemical shift 𝑆𝑖

𝑙+𝜆
. In particular, when 𝜆 = 0,

with (5), 𝜃𝑖(0) = 0. In order to take use of ACS, the 𝜃𝑖(0)
was replaced by the average chemical shift 𝑆𝑖

𝑙
. The factor 𝜆

is a nonnegative integer and reflects the rank of correlation
[40]. Based on different problems, in order to get a best result,

Table 1: The comparison of the results with and without the acACS
for predicting submitochondria locations and three membrane
protein types with comparison to that without acACS.

With acACS Without acACS
Submitochondria locations 93.57% 91.46%
Three membrane protein types 97.79% 96.10%
Data set of Du [24] 94.95% 93.43%

Table 2:The comparison of the results with and without the acACS
for predicting mycobacterial subcellular localizations and three
membrane protein types.

With acACS Without acACS
Mycobacterial subcellular
localizations 87.77% 86.19%

Three membrane protein
types 85.03% 83.71%

Data set of Rashid [53] 98.12% 96.85%

a certain right number for factor 𝜆 should be given and so
does 𝑖.

In order to give a pictorial representation of chemical
shifting technique, a flow diagram is given in Figure 3, which
shows how the acACS works.

3. Results and Discussion

By using the acACS algorithm, we successfully represented
the protein samples and accurately predicted submitochon-
dria locations. We used the model to test the SML3-983
data set that was along with the SubMito-PSPCP [48]. The
data set has 983 proteins sequences which were divided into
three locations. Among the data set, there are 661 sequences
from inner membrane, 177 sequences from matrix, and
145 sequences from outer membrane. We selected acACS
combined with AAC, DC, PSSM, and GO and reduced
physicochemical properties (Hn) as feature vectors for repre-
senting the proteins and then trained themodel.Then 90.74%
accuracy was obtained for SML3-983 data set with Jackknife
cross-validation, which was 1.63% higher than SubMito-
PSPCP. In order to compare the performance of acACS,
the feature vector was recombined with AAC, DC, PSSM,
GO, and Hn, without acACS. Then we trained the model
and obtained the predicting accuracy of 89.52%, which was
dropped about 1.2%.

The acACS algorithm has also been checked in our
previous works [49–52]. In subcellular location prediction,
we compared the results with and without the acACS in
the submitochondria locations and mycobacterial proteins
subcellular locations and got the better result whichwas listed
in Tables 1 and 2. Actually, the acACS as a feature vector for
representing the protein samples can also be used for other
kinds of proteins prediction problem. In acidic and alkaline
enzymes prediction and bioluminescent and nonbiolumines-
cent proteins discrimination, we also improved the predicting
accuracy by about 1.3%, which was listed in Table 3.
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Figure 2: The flowchart of calculating the ACS. The AA denotes the amino acids and the SS denotes the secondary structure.
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Figure 3: The flow diagram of the processing of the acACS.

Table 3: The comparison of the results with and without the acACS for other kinds of proteins prediction.

With acACS Without acACS
Acidic and alkaline enzymes 94.01% 92.52%
Bioluminescent and nonbioluminescent proteins 82.16% 80.90%
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acACS Web Server
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CCCEECCCHHHHHHHHHHHHHHHHCCCHHHHHHHHHCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHCC
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MPQLLPFYFVNQISFAFLGLFVLLFVFSKYILPAFVELFVSRMYITKL

CCCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC

Lambda (?): 12

Select atoms with chemical shift (?):

Please Input your Protein sequences in Fasta format (maximum 500 proteins for each
submission) (?):

Note: please input your protein sequences in Fasta format in one line and the second
structure in another line!!

Tutorials:
1: Paster your protein sequences along
with second structure in Fasta format

2: Input the Lamda and select the atom of
chemical shifts

3: Push the submit, the prediction result
will display in the result page
For the more information, please see the
Help

Read Me Citation

ACS of Atoms data set

1H𝛼
1HN

15N 13C𝛼

>O93853

>C6Y4A3

>P81451

>Q0H8Y5

submit reset

Figure 4: A screenshot for the top page of the web server acACS at http://wlxy.imu.edu.cn/college/biostation/fuwu/acACS/index.asp.

The protein functions, including its subcellular locations,
are largely determined by its structure. Developing a novel
method for improving the performance of predicting protein
subcellular locations is urgent.However, the feature vectors in
the methods were almost sequence-based in the past. There-
fore, almost state-of-the-art methods tried to incorporate
some other sequence-based information as its complement.
Our method provides structure-based information and can
be perfect complement to the sequence-based methods and
can be used for other kinds of protein related problems.
Actually, these methods can work side by side to help each
other in a practical study.

For the chemical shift, it incorporates the structure
information in the first place, so it can represent the protein
sample better. What is the better ways to use of the chemical
shift is still a hot topic for biologist and chemist. In this
work, we used the autocovariance algorithm to process the
averaged chemical shift and got the better results, but there
are certainly some improvements that could be made for
acACS. Actually other algorithms can be adopted to try to
find the better method for representing the protein samples
in the future. At present stage, it is not convenient for the
user, for both the secondary structure information and the
protein sequence that are used, to calculate the chemical shift.
In the future, the secondary structure information will not be
necessary, and it will be integrated into the algorithm.

4. Conclusions

In this work, the raw chemical shifts data set and averaged
chemical shift data set were constructed. Then, the averaged
chemical shift was calculated and the algorithm of acACSwas
presented. In order to check the performance of the acACS
we got, proteins submitochondria locations, mycobacterial

proteins subcellular locations, bioluminescent proteins dis-
crimination, and acidic and alkaline enzymes classification
were predicted. Based on the results we obtain, it can be
concluded that the acACS can improve the accuracy of pre-
diction at least 1%-2%, the performance of which is correlated
with the correlation factor 𝜆 and the backbone atoms 𝑖. Some
recent studies showed that the profile-based features [54–56],
pseudoamino acid composition (PseAAC) [57], and features
based on physicochemical proprieties of amino acids [58]
were able to improve the performance ofmany computational
predictors for protein remote homology detection, protein
binding site identification, and so forth. Therefore, these
features should be studied for protein subcellular location
prediction in the future studies.

We have developed a web server acACS, which could
automatically produce the vectors of proteins, when a custom
submitted the protein sequences along with the secondary
structure in batch mode. The data set can be a very useful
addition to biomolecular NMR spectroscopists. The acACS
will be of benefit to the proteomic research.The current work
will become an important progress in the prediction of the
protein subcellular locations and promote the study in the
related areas.

5. Web Server and User Guide

To enhance the value of its practical applications, a web server
for the acACS generator was established. Moreover, for the
convenience of the user, here a step-to-step guide is provided
for how to use the web server to get the desired results.

Step 1.Open theweb server at http://wlxy.imu.edu.cn/college/
biostation/fuwu/acACS/index.asp and you will see the top
page of the acACS on your computer screen, as shown
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in Figure 4. Click on the Read Me button to see a brief
introduction about the acACS.

Step 2. Either type or copy/paste the query protein sequences
into the input box at the center of Figure 4, and then
copy/paste the secondary structure of the protein sequence in
the next line. The input sequence should be in “ONE LINE”
format. For the examples of sequences in ONE LINE format,
click the “?” button above the input box.

Step 3. Input the Lambda value in the input box right of the
Lambda label.

Step 4. Check atoms with chemical shift.

Step 5. Click on the Submit button to see the result page. For
example, if you use the default example sequences, Lambda
and atoms in the window, after clicking the Submit button,
you will see the following message shown on the screen of
your computer: “The lamda you have chosen is 12”; “The
Atom of chemical shift you have chosen are 1H

𝛼
, 1H
𝑁
”; “The

acACSs of the proteins you submitted are......”.Then the acACS
of 1H

𝛼
atom was given and the acACS of 1H

𝑁
atom followed

for the first protein, then the acACS of second protein, the
third, and so forth.

Step 6. Click the ACS of atoms and data set button to
download the benchmark dataset used to calculate the ACS.

Step 7. Click the Citation button to find the relevant papers
that document the detailed development and algorithm of
acACS.
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