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Abstract

Activated platelet-rich plasma (PRP) has been used in the clinical settings of wound healing

and regenerative medicine, with activation typically induced by the addition of bovine throm-

bin. To eliminate issues with availability, cost and potential side effects associated with

bovine thrombin, ex vivo PRP activation using pulse electric fields (PEF) has been proposed

and demonstrated. The present study characterizes the effect of PEF voltage and pulse

width, in combination with a range of calcium concentrations, on clot formation, growth fac-

tor release, and serotonin (5-HT) release from dense granules. The main findings are: 1)

increasing calcium concentrations with most PEF conditions leads to increased levels of

PDGF and 5-HT release; 2) whether EGF levels increase or decrease with increasing cal-

cium concentration depends on the specific PEF parameters; 3) the pattern of PDGF and

EGF levels in supernatants suggest that these molecules are localized differently within

platelets; 4) significant levels of PDGF, EGF, and 5-HT can be released without inducing

clot formation or hemoglobin release. In conclusion, voltage, pulse width and calcium con-

centration can be used to control and tune the release of growth factors, serotonin and

hemoglobin from PEF-activated PRP. Because growth factor requirements vary for different

types of wounds and for wounds at different stages of healing, the unique balance of factors

in supernatants of PEF-activated PRP may provide more clinically advantageous than the

current standard of bovine thrombin-activated PRP.
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Introduction

Platelet rich plasma has been explored for various clinical applications, leveraging the growth

factors and proteins released by platelets upon activation [1–6], Promotion of wound healing

by clinically administered platelet-rich plasma (PRP) includes several steps: blood draw from

the patient; PRP separation from whole blood; activation–typically with bovine thrombin

(although there is no clinical standard for bovine thrombin activation); topical application of

the activated PRP on the wound. For specific PRP applications, the activation step is omitted,

and non-activated PRP is directly injected at the site of the injury. These workflows attempt to

harvest the effects on the wound healing cascade of growth factors released from platelets. For

injections with non-activated PRP, it is considered that the platelets are activated in vivo, by

the collagen at the site of the injury. The clinical applications of PRP in wound healing and

regenerative medicine include diabetic foot ulcers [3], cardiac surgery [4], orthopedics and

sports medicine [7], dermatology and hair loss [8–10].

In vitro activation of PRP using pulse electric fields (PEF) offers an alternative to bovine

thrombin activation: an instrument-based, easy-to-standardize method, without the challenges

of bovine thrombin (side effects, cost, workflow); it should be noted that autologous thrombin

is another alternative to bovine thrombin, although this additional biomaterial needs to be

generated at the bed side; the activation potential of autologous thrombin is an area of ongoing

research. Initial pre-clinical studies produced promising wound healing results using PRP acti-

vated via PEF [11]. Mechanistically, it is believed that PEF may cause platelet activation with

growth factor release and clotting via Ca transport and platelet membrane and intracellular

organelle electro-permeabilization [12]. However, subsequent research discovered that PEF

treatment of PRP enables growth factor release with or without clotting [13]–a unique feature

that adds additional clinical functionality compared to the use of bovine thrombin. One could

envision PEF-induced growth factor release and clotting of PRP for use in topical applications,

and PEF-induced growth factor release without clotting of PRP for use in injections to acceler-

ate the healing of injured tendons, ligaments, muscles and joints.

The work presented here studies clotting features and platelet alpha granule content

(growth factors) and platelet dense granule content (serotonin [5-hydroxytryptamine (5-HT)])

release at multiple electric pulse (five types of electrical pulses) and CaCl2 parameters (four

CaCl2 conditions). In addition, because PRP prepared by a number of commercial systems

contains significant numbers of red blood cells (0.2–3.2 million RBCs per μL PRP) [14] we

investigate the effect of PEF on RBC lysis and release of hemoglobin which can catalyze oxida-

tion of neighboring molecules, generate free radicals, and lead to cell death [15–17].

Methods

Donors, blood collection and preparation of PRP

This study was reviewed and approved by the Boston Children’s Hospital Committee on Clini-

cal Investigation and all subjects provided written informed consent. Healthy volunteers

(n = 3) were qualified for enrollment if they were aged�18 years, free of aspirin or other anti-

platelet medication (�10 days), and free of all other non-steroidal anti-inflammatory drugs

(� 3 days). Following a 2 mL discard, 120 mL of blood was collected from each of 3 volunteers

into 1/10th volume of acid-citrate-dextrose solution A (ACD-A). PRP was prepared according

to the manufacturer’s recommendation using the Harvest SmartPreP2 System (Harvest Tech-

nologies, Plymouth, MA, USA) with two 60 mL cartridges. The resultant PRP was pooled

prior to further treatment. Complete blood cell counts were performed on the ACD-anticoa-

gulated whole blood and the concentrated PRP in a Sysmex XN Hematology Analyzer. Prior
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to activation, to increase the total number of conditions that could be evaluated for each

donor, the PRP was diluted with platelet-poor plasma to obtain a total volume of 24 mL.

Study design

PRP activation by PEF (conditions described below) was evaluated in the presence of buffer

(no added CaCl2) or added CaCl2 (5.35 mM, 11.61 mM, or 17.04 mM) calculated to result in

final free ionized calcium levels of 0.05 mM, 0.2 mM, 0.8 mM, or 3.0 mM. Controls included

unactivated PRP, PRP activated with bovine thrombin (1 U/mL final concentration, Biopharm

Laboratories LLC, Bluffdale, UT, USA) in the presence of 17 mM added CaCl2, and PRP lysed

by freezing and thawing three times. Endpoints measured included: 1) clot formation kinetics

and strength by thromboelastography (TEG); 2) hemolysis as reflected by hemoglobin release;

3) release of epidermal growth factor (EGF) vs. a representative known alpha granule constitu-

ent, platelet-derived growth factor (PDGF); 4) serotonin (5-HT) release into the supernatant

from platelet dense granules. All endpoints except TEG were measured in samples taken 15

min after activation.

For analysis by TEG, 360 μL of activated PRP was quickly transferred to the TEG cup and

recordings initiated immediately. A separate independent sample was activated under identical

conditions and allowed to stand 15 min at room temperature following activation, then clots

were removed using the wooden handle of a cotton swab and the resulting serum was frozen

at -80˚C for later evaluation of released hemoglobin, growth factors, and 5-HT.

Pulse electric field stimulation of PRP

Electrical stimulation of PRP was performed using a specially designed instrument prototype

(GE Research, Niskayuna, NY, USA), which has previously been described [18]. The instru-

ment takes into account the specific electrical properties of PRP which is typically more con-

ductive than the buffers used in electroporation. Concentrated PRP (~500 μL) was placed in a

2 mm electroporation cuvette (Molecular BioProducts, San Diego, CA, USA), pre-loaded with

1/100th volume buffer or CaCl2 (5.35 mM, 11.61 mM, and 17.04 mM final concentration), and

exposed to one of five PEF conditions (Pulses 1–5, see Fig 1): Pulse 1: 3.3 kV peak voltage,

pulse duration 5 us, one pulse applied; Pulse 2: 1.6 kV peak voltage, pulse duration 5 us, one

pulse applied; Pulse 3: 1.5 kV peak voltage, pulse duration 450 ns, one pulse applied; Pulse 4:

500 V peak voltage, pulse duration 350 ns, one pulse applied; Pulse 5: 80 pairs of bipolar pulses,

one pair per second, ~ 150 ns pulse duration and ~ 650 V peak voltage for each bipolar pulses,

the two bipolar pulses separated by ~ 600 ns.

A Tektronix DPO4104 oscilloscope and a Tektronix P6015A high voltage probe were used

to measure the voltage pulses applied to cuvettes with PRP for activation.

Thromboelastography

Immediately following exposure of PRP to activating conditions, 360 μL of treated PRP was

placed in a TEG cup and analyzed by a TEG 5000 Hemostasis Analyzer System (Haemonetics

Corporation, Braintree, MA, USA). Clotting kinetics and characteristics were followed for 30

minutes.

Spectrophotometric determination of hemoglobin

Plasma hemoglobin was measured using a spectrophotometric method [19]. Briefly, normal

donor blood was centrifuged for 10 min at 800 x g and the PRP upper layer removed, leaving

packed RBCs. Total hemoglobin in the packed RBCs was measured using a Sysmex XN
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automated cell analyzer. Standards with different know hemoglobin concentrations were then

generated from this sample by dilution in 10 mM HEPES, 0.15 M sodium chloride, supple-

mented with 7% bovine serum albumin. Standards and unknowns were mixed with 0.04%

ammonium hydroxide and allowed to stand at room temperature for 1 hour before reading

the absorbance at 576 nm on a Molecular Dynamics 96 well plate reader. An initial subjective

estimate of the hemoglobin in samples was made by comparing the color of the sample to that

of the standards. Based on this comparison, for samples appearing dark red in color, 5 μL of

sample was mixed with 45 μL 0.04% ammonium hydroxide and compared to 5 μL of standards

mixed with 45 μL 0.04% ammonium hydroxide. For samples appearing to have less hemolysis,

20 μL of sample was mixed with 180 μL 0.04% ammonium hydroxide and compared to stan-

dards prepared in the same way. All samples were within the linear range of the standard curve

after dilution.

Measurement of EGF, PDGF, and 5-HT

Levels of EGF, PDGF and 5-HT in the supernatants of the treated PRP were measured using

commercially available ELISA kits (EGF and PDGF R&D Systems, Minneapolis, MN, USA;

5-HT, BA E-5900, Rocky Mountain Diagnostics, Colorado Springs, CO, USA). N = 3 for each

data point.

Fig 1. Pulse Electric Field (PEF) conditions used in this study.

https://doi.org/10.1371/journal.pone.0249209.g001
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Results

Blood cell counts for the collected whole blood and prepared PRP are shown in Table 1.

Platelet count was increased ~4-fold and WBC count was increased ~2.6-fold in PRP com-

pared to levels in whole blood, while RBC count and hematocrit in PRP were ~40% of those in

whole blood. The amounts of hemoglobin present in the supernatants of activated samples are

shown in Table 2 and Fig 2.

Release of hemoglobin was dependent on both the PEF condition and the final free calcium

concentration, with greater amounts of hemoglobin release at higher voltage settings and

higher calcium concentrations. Lower time settings (Pulse 3, Pulse 4 vs. Pulse 2) resulted in vir-

tually no release of hemoglobin from RBCs even at high calcium concentrations.

Clot formation as measured by thromboelastography is shown in Fig 3 and Table 3.

Regardless of activating conditions, clots were not detected by thromboelastography

with no added calcium (estimated free Ca++ [Ca2+
Free] 0.03–0.06 mM) and with 5.35 mM

added calcium (estimated Ca2+
Free 0.2 mM). Clot formation occurred more quickly with

17 mM than with 11.6 mM added calcium chloride (shorter R times). However maximal

clot strength achieved was similar. Clot formation with bovine thrombin was more rapid

than with PEF but, again, maximal clot strength (MA) was similar for PEF vs. thrombin

(Fig 3).

Table 1. Cell composition and fold concentration of PRP prepared using the Harvest system.

Parameter Whole Blood PRP Diluted PRP Fold-Concentration of PRP Compared to Whole Blood

WBC (×109/L) 4.83 ± 0.85 12.63 ± 1.42 10.22 ± 1.05 2.65 ± 0.4

RBC (×1012/L 4.23 ± 0.51 1.68 ± 0.36 1.38 ± 0.2 0.41 ± 0.13

Hgb (g/dL) 12.7 ± 1.92 4.93 ± 1 4.03 ± 0.64 0.4 ± 0.14

HCT (%) 37.7 ± 4.2 15.5 ± 3.7 12.7 ± 2.3 0.42 ± 0.14

PLT (×109/L) 228 ± 73 944 ± 298 777 ± 210 4.14 ± 0.11

Abbreviations: HCT, hematocrit; PLT, platelet; PPP, platelet-poor plasma; PRP, platelet-rich plasma; RBC, red blood cell; WBC, white blood cell. Data are mean ± SD,

n = 3.

https://doi.org/10.1371/journal.pone.0249209.t001

Table 2. Hemoglobin in supernatants of activated samples.

A

Ca2+
free 0.05 mM Ca2+

free 0.2 mM Ca2+
free 0.8 mM Ca2+

free 3.0 mM

Pulse 1 0.18 ± 0.05 0.2 ± 0.16 0.68 ± 0.63 1.49 ± 0.83

Pulse 2 0.06 ± 0.03 0.08 ± 0.01 0.44 ± 0.62 0.78 ± 0.31

Pulse 3 0.05 ± 0.02 0.02 0.08 ± 0.06 0.04 ± 0.01

Pulse 4 0.03 ± 0.01 0.03 ± 0.02 0.04 ± 0.02 0.04 ± 0.02

Pulse 5 0.03 ± 0.02 0.04 ± 0.02 0.06 ± 0.03 0.2 ± 0.22

B

Ca2+
free 0.05 mM Ca2+

free 0.2 mM Ca2+
free 0.8 mM Ca2+

free 3.0 mM

Pulse 1 4.7 ± 2.2 5.5 ± 5.3 19.7 ± 20.4 37.2 ± 14

Pulse 2 1.51 ± 0.63 1.9 ± 0.6 10.2 ± 14 19.2 ± 6.3

Pulse 3 1.26 ± 0.6 0.6 2.2 ± 2.1 0.9 ± 0.2

Pulse 4 0.8 ± 0.16 0.8 ± 0.4 0.9 ± 0.4 0.9 ± 0.3

Pulse 5 0.82 ± 0.39 0.9 ± 0.3 1.8 ± 1 4.8 ± 4.9

Column headings show the calculated free calcium (Ca2+
free) present in each sample. A: g/dL, B: % of total. Results shown are means ± SD, n = 3.

https://doi.org/10.1371/journal.pone.0249209.t002
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Release of EGF, PDGF, and 5-HT

PDGF is present in platelet alpha granules whereas the localization of EGF within platelets is

less clear [20]. 5-HT is present in platelet dense granules [20]. The levels of each of these mole-

cules in supernatants following PEF activation of PRP are shown in Fig 4 and the levels

released by bovine thrombin activation and freeze/thaw treatment are shown in Fig 5.

Fig 2. Hemoglobin in supernatants of electrical activated samples. Upper panel, g/dL, lower panel, % of total hemoglobin. Results are means ± SEM, n = 3.

Asterisks indicate significant differences within each pulse treatment for 0.2, 0.8 and 3.0 mM Ca2+
free vs. 0.05 Ca2+

free.
�p<0.05, ��<0.01, ���<0.001, ����

<0.0001, Tukey’s multiple comparisons test adjusted for multiplicity.

https://doi.org/10.1371/journal.pone.0249209.g002
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PDGF levels with PEF and high calcium (Fig 4) were ~50% of those released by thrombin

or freeze/thaw treatment (Fig 5). PDGF decreased slightly with increasing calcium with Pulse

1 and increased slightly with increasing calcium with Pulse 2. In contrast, PEF Pulse 3 and

Pulse 4 with low or no added calcium resulted in virtually no released PDGF (Fig 5). EGF

release with Pulse 1 was strongly affected by calcium concentrations, with the highest EGF lev-

els in supernatants when no calcium was added. The level of EGF release with Pulse 1 and no

added calcium was similar to the level of EGF release with freeze/thaw treatment. Levels of

EGF were low with Pulses 3–5 regardless of added calcium. The difference in released EGF vs.
PDGF levels may suggest differences in their subcellular localization. 5-HT, which is stored in

platelet dense granules, showed a pattern of release similar, but not identical, to that of PDGF.

For Pulses 2, 3, and 4, which have decreasing time settings, but the same voltage setting, the

levels of 5-HT decreased with decreasing time, but at each PEF condition, higher 5-HT levels

were released with higher added calcium (Table 4).

With Pulse 1 and no or low added calcium, conditions which did not result in measurable

clot formation, significant amounts of PDGF, EGF, and 5-HT were released into the superna-

tant. Thus, release of these factors does not require clot formation. Similarly, with Pulse 1 and

no or low calcium, hemoglobin release was minimal, suggesting that the release of PDGF,

EGF, and 5-HT is not the result of mechanical cell breakdown.

Fig 3. TEG analysis of clot formation and strength. A) R (min), reaction time for first significant clot formation, B) K (min), time required to achieve a pre-

specified clot strength, C) Angle (deg), rate of clot development, D) maximum amplitude (MA, mm), maximum clot strength (related to elastic modulus). Results are

means ± SEM, n = 3. Asterisks indicate significant differences within each pulse treatment for 0.2, 0.8 and 3.0 mM Ca2+
free vs. 0.05 Ca2+

free.
�p<0.05, ��<0.01,

���<0.001, ���� <0.0001, Tukey’s multiple comparisons test adjusted for multiplicity.

https://doi.org/10.1371/journal.pone.0249209.g003
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Discussion

The present study characterizes the effect of PEF parameters (voltage amplitude and pulse

width), in combination with a range of calcium concentrations, on clot formation, hemoglobin

release, growth factor release, and dense granule serotonin release. The main findings are: 1)

increasing calcium concentrations with most PEF conditions leads to increased levels of PDGF

and 5-HT release; 2) whether EGF levels increase or decrease with increasing calcium concen-

tration depends on the PEF condition; 3) the pattern of PDGF and EGF levels in supernatants

suggest that these molecules are localized differently within platelets; 4) significant levels of

PDGF, EGF, and 5-HT can be released without inducing clot formation or hemoglobin

release. Taken together, these data suggest that the combination of PEF parameters (voltage

and pulse width) and calcium concentration can be used to tune the balance of growth factors,

serotonin and hemoglobin released into the supernatant of PRP. Because growth factor

requirements vary for different types of wounds and for wounds at different stages of healing,

the unique balance of factors in supernatants of PEF-activated PRP may better meet the needs

of individual clinical situations than bovine thrombin-activated PRP.

Table 3. Clot formation and strength parameters.

A. R (min)

Ca2+
free 0.05 mM Ca2+

free 0.2 mM Ca2+
free 0.8 mM Ca2+

free 3.0 mM

Pulse 1 30 ± 0 30 ± 0 6.23 ± 1.03 4.6 ± 1.59

Pulse 2 30 ± 0 30 ± 0 11.3 ± 2.7 6.87 ± 0.8

Pulse 3 30 ± 0 30 ± 0 19.13 ± 9.56 12.13 ± 2.11

Pulse 4 30 ± 0 20.7 ± 16.11 13.1 ± 2.65 9.73 ± 2.61

Pulse 5 30 ± 0 30 ± 0 13.03 ± 5.06 9.13 ± 2.21

B. K (min)

Ca2+
free 0.05 mM Ca2+

free 0.2 mM Ca2+
free 0.8 mM Ca2+

free 3.0 mM

Pulse 1 0 ± 0 0 ± 0 1.73 ± 3 5.57 ± 8.29

Pulse 2 0 ± 0 0 ± 0 1.7 ± 0.85 1.37 ± 0.15

Pulse 3 0 ± 0 0 ± 0 2 ± 1.91 2.4 ± 0.56

Pulse 4 0 ± 0 0 ± 0 3.2 ± 1.4 1.7 ± 0.82

Pulse 5 0 ± 0 0 ± 0 2.63 ± 1.76 1.7 ± 0.72

C. Angle (deg)

Ca2+
free 0.05 mM Ca2+

free 0.2 mM Ca2+
free 0.8 mM Ca2+

free 3.0 mM

Pulse 1 0 ± 0 0 ± 0 54.2 ± 13.2 61.47 ± 8.95

Pulse 2 0 ± 0 0 ± 0 65.5 ± 7.73 69.2 ± 2.65

Pulse 3 0 ± 0 0 ± 0 39.6 ± 35.43 60.43 ± 8.92

Pulse 4 0 ± 0 0 ± 0 55.97 ± 12.69 69.3 ± 10.23

Pulse 5 0 ± 0 0 ± 0 65.13 ± 14.39 67.77 ± 10.13

D. MA (mm)

Ca2+
free 0.05 mM Ca2+

free 0.2 mM Ca2+
free 0.8 mM Ca2+

free 3.0 mM

Pulse 1 0 ± 0 0 ± 0 19.9 ± 5.6 35.03 ± 26.34

Pulse 2 0 ± 0 0 ± 0 65.17 ± 5.05 64.77 ± 6.44

Pulse 3 0 ± 0 0 ± 0 49.33 ± 42.88 72.6 ± 5.96

Pulse 4 0 ± 0 0 ± 0 68.3 ± 8.96 76.7 ± 4.52

Pulse 5 0 ± 0 0 ± 0 73.07 ± 6.58 76.37 ± 3.61

Results shown are means ± SD, n = 3.

https://doi.org/10.1371/journal.pone.0249209.t003
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There are two main clinical protocols involving PRP: topical application of activated/clotted

PRP and injection with non-activated PRP. During injections with non-activated PRP it is sug-

gested that activation is triggered in vivo by collagen present at the site of the injury [21]. The

experiments here demonstrated that various PEF and CaCl2 parameters enable growth factor

release, serotonin release and minimum hemoglobin release–all without clotting. These plate-

let activation methods could be applied for topical uses of clotted PRP, but also for PRP injec-

tion workflows when clotting is not desirable, but growth factor and serotonin release may be

beneficial.

The present study was performed using PRP that includes RBCs, sometimes called “red”

PRP. Some PRP preparation devices in clinical practice produce “white” PRP [22, 23]–PRP

with most RBCs removed. The results of the present study demonstrate the ability to activate

“red” PRP while tuning/controlling the hemoglobin release (Fig 2). It should be noted that

recent results suggest clinical efficacy of hemoglobin sprays in wound healing [24].

This paper quantifies for the first-time serotonin release during platelet activation with

PEF. The results are surprising: serotonin release with PEF is more than 2x higher than with

Fig 4. PDGF, EGF and 5-HT in supernatants of electrical activated samples. Results are means ± SEM, n = 3. Abbreviations: EGF, epidermal growth factor; PDGF,

platelet-derived growth factor; PEF, pulse electric field. Asterisks indicate significant differences within each pulse treatment for 0.2, 0.8 and 3.0 mM Ca2+
free vs. 0.05

Ca2+
free.

�p<0.05, ��<0.01, ���<0.001, ���� <0.0001, Tukey’s multiple comparisons test adjusted for multiplicity.

https://doi.org/10.1371/journal.pone.0249209.g004
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bovine thrombin and via freeze/thaw cycles. Of note, serotonin effects on wound healing are

beneficial [25].

The electric pulse parameters and CaCl2 concentrations described here may not represent

the optimum settings for specific workflows. In order to meet specific experimental metrics–

growth factor release, clotting features, serotonin release, level of hemoglobin release, etc.–one

may need to further optimize these parameters. Also, different PRP formulations may need

additional optimization for these activation parameters via electrical stimulation, since their

electrical properties may be different than the “red” PRP utilized in our study here.

While the initial motivation for pursuing electrical activation of PRP was to enable an

instrument based process [26–31] that bypasses the use of thrombin and its potential side

effects, cost, availability and workflow, results shown here open opportunities for tunability of

PRP composition towards topical use (activated PRP, where thrombin is utilized) and

injectable use (when no thrombin is utilized). It should be noted that ex vivo electric treatment

of whole blood also enables platelet activation and growth factor release [32]–some clinicians

Fig 5. PDGF, EGF, and 5-HT in supernatants of control samples: Negative controls (no activation) and positive controls (thrombin activation and freeze /

thaw). Results are means ± SEM, n = 3. Abbreviations: EGF, epidermal growth factor; Hgb, hemoglobin; PDGF, platelet-derived growth factor. Asterisks indicate

significant differences in the amount of PDGF, EGF and 5-HT in the supernatants of un-activated, thrombin/Ca++ activated or freeze/thaw treated PRP. �p<0.05,
��<0.01, ���<0.001 by ANOVA with Tukey’s multiple comparisons test adjusted for multiplicity.

https://doi.org/10.1371/journal.pone.0249209.g005
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that have successfully tested PRP injections for specific clinical applications, have decided to

move towards whole blood injections to reduce the cost and complexity of the procedure, via

bypassing the step of PRP separation from whole blood.

In conclusion, voltage, pulse width and calcium concentration can be used to control and

tune the release of growth factors, serotonin and hemoglobin from PEF-activated PRP.

Because growth factor requirements vary for different types of wounds and for wounds at dif-

ferent stages of healing, the unique balance of factors in supernatants of PEF-activated PRP

may be more clinically advantageous than the current standard of bovine thrombin-activated

PRP. Next steps in this research are evaluating opportunities for pilot clinical trials for wound

healing using electrically activated, tunable PRP, to be completed after the ongoing Covid 19

pandemic subsides.
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free 0.05 mM Ca2+

free 0.2 mM Ca2+
free 0.8 mM Ca2+

free 3.0 mM

Pulse1 1694 ± 830 1085 ± 539 866 ± 484 513 ± 249

Pulse2 330 ± 437 840 ± 567 821 ± 223 819 ± 363

Pulse3 76 ± 125 50 ± 38 116 ± 119 50 ± 63

Pulse4 33 ± 51 62 ± 89 280 ± 421 174 ± 239

Pulse5 50 ± 81 94 ± 132 117 ± 143 82 ± 136

5-HT (ng/mL)

Ca2+
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https://doi.org/10.1371/journal.pone.0249209.t004

PLOS ONE Activation of platelet-rich plasma by electric pulses: Tuning of growth factors, serotonin and hemoglobin

PLOS ONE | https://doi.org/10.1371/journal.pone.0249209 April 23, 2021 11 / 13

https://doi.org/10.1371/journal.pone.0249209.t004
https://doi.org/10.1371/journal.pone.0249209


Investigation: Andrew L. Frelinger, III, Anja J. Gerrits, Thomas Gremmel, Emma E. Forde,

Steven Klopman, Sabrina L. Carmichael, Alan D. Michelson.

Methodology: Alan D. Michelson.

Project administration: Bogdan Neculaes.

Supervision: Andrew L. Frelinger, III, Alan D. Michelson.

Writing – original draft: Bogdan Neculaes, Andrew L. Frelinger, III, Alan D. Michelson.

Writing – review & editing: Bogdan Neculaes, Andrew L. Frelinger, III, Alan D. Michelson.

References
1. Klement GL, Shai S, Varon D (2013) The role of platelets in angiogenesis. In: Michelson AD, editor.

Platelets. 3rd ed. San Diego: Elsevier/Academic Press. pp. 487–502.

2. Lacci KM, Dardik A (2010) Platelet-rich plasma: support for its use in wound healing. Yale J Biol Med

83: 1–9. PMID: 20351977

3. Driver VR, Hanft J, Fylling CP, Beriou JM, Autologel Diabetic Foot Ulcer Study Group (2006) A prospec-

tive, randomized, controlled trial of autologous platelet-rich plasma gel for the treatment of diabetic foot

ulcers. Ostomy Wound Management 52: 68–74. PMID: 16799184

4. Gunaydin S, McCusker K, Sari T, Onur M, Gurpinar A, et al. (2008) Clinical impact and biomaterial eval-

uation of autologous platelet gel in cardiac surgery. Perfusion 23: 179–186. https://doi.org/10.1177/

0267659108097783 PMID: 19029269

5. Bielecki TM, Gazdzik TS, Arendt J, Szczepanski T, Krol W, et al. (2007) Antibacterial effect of autolo-

gous platelet gel enriched with growth factors and other active substances: an in vitro study. J Bone

Joint Surg Br 89: 417–420. https://doi.org/10.1302/0301-620X.89B3.18491 PMID: 17356164

6. Everts Peter, Onishi Kentaro, Jayaram Prathap, José Fábio Lana and Kenneth Mautner, “Platelet-Rich
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