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ABSTRACT Clover yellow mosaic virus (ClYMV) infecting white clover was isolated
in Japan, and the complete genome sequence was determined.

C lover yellow mosaic virus (ClYMV) is a member of the genus Potexvirus in the family
Alphaflexiviridae (1). The genome is a positive-sense single-stranded RNA (2).

ClYMV is an important pathogen of clovers; it causes yellow or light-green stripes and
reduces clover winter hardiness and yield (3). ClYMV infects clover, broad bean, pea,
alfalfa, Chenopodium album, chickweed, apple (3), Verbena spp. (4, 5), and tulips (6).
ClYMV has been reported in North America (2, 3), Europe (4, 5, 7), and Oceania (8);
however, its complete genome sequence has been reported for only two isolates from
Canada (2) and Poland (5). The present study reports a complete genome sequence of
ClYMV isolated in Japan.

In 2021, white clover plants (Trifolium repens) with yellow mosaic symptoms were
collected in Midori-cho (Nishitokyo, Tokyo, Japan). Crude sap from the symptomatic
leaf was stained with 2% phosphotungstic acid. Transmission electron microscopy
showed flexuous filamentous potexvirus-like particles (Fig. 1). Total RNA was extracted
from the symptomatic leaf using a plant total RNA mini kit (Favorgen, Taiwan), and the
DNA was eliminated using DNase I (Nippon Gene, Japan). Reverse transcription PCR
(RT-PCR) was performed with primers specific to an internal region of the potexvirus
replicase gene (9) (Table 1), as described previously (10). The amplified fragment was
directly sequenced by Sanger sequencing using the same primers. A BLASTn search
revealed that the sequenced 708 nucleotides (nt) shared 82.0% identity with partial
sequences of ClYMV isolates.

Next, we determined the complete genome sequence of the virus. Three cycles of single
local lesion transfers were performed on Chenopodium quinoa leaves to obtain a ClYMV iso-
late (ClYMV-JPN-2021). Virion purification and phenol-chloroform RNA extraction were con-
ducted as described previously (11). Prior to whole-genome amplification, the 59-terminal
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sequence was determined. Using two reverse primers designed on 59-proximal regions
(Table 1), 59 RACE and sequencing of the 59 RACE product were performed as described
previously (10). To obtain full-length cDNA from ClYMV-JPN-2021, reverse transcription was
conducted using GeneRacer oligo(dT) primer (Invitrogen, USA), which hybridizes the 39
poly(A) tail of the potexvirus genome. PCR was performed on the cDNA using a ClYMV 1F
primer designed on the 59-end sequence determined by 59 RACE and a KpGR3nest primer
designed on the GeneRacer oligo(dT) primer (12). The amplified ClYMV-JPN-2021 genome
was inserted into the pPPVOu binary vector (13) as described previously (12), and six clones
were sequenced by primer walking using the primers listed in Table 1. Using ATGC v4.3.5
software (Genetyx, Japan), all sequence reads from the six clones were trimmed and
assembled into a single contig with 100% identity in each of the overlapping regions.

The complete genome sequence of ClYMV-JPN-2021 was 6,985 nt long with 47.8% GC
content, excluding the 39 poly(A) tail. The NCBI open reading frame (ORF) finder (https://
www.ncbi.nlm.nih.gov/orffinder/) was used to predict five ORFs typical of potexviruses.
Sequence identities between ClYMV-JPN-2021 and the other two ClYMV isolates (GenBank
accession numbers D29630.1 and MT176428.1) were calculated using the MUSCLE algo-
rithm (14) in the program SDT v1.2 (15). The analysis revealed nucleotide and amino acid
identities of 77.5 to 78.6% and 85.2 to 85.4% for the replicase and 79.5 to 81.4% and 92.9
to 95.8% for the coat protein, respectively. According to the current sequence-based spe-
cies demarcation criterion for the genus Potexvirus (16), ClYMV-JPN-2021 was identified as
an isolate of ClYMV that is distantly related to the previously reported isolates.

Data availability. The ClYMV-JPN-2021 genome sequence has been deposited in
the DNA Data Bank of Japan under the accession number LC682768.1.
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Primer Sequence (59 to 39) Purpose Reference
Potex 1 CAYCARCARGCNAARGAYSA Amplification of an internal region of potexvirus replicase Gibbs et al. (9)
Potex 2 TCDGTRTTDGCRTCRAADGT Amplification of an internal region of potexvirus replicase Gibbs et al. (9)
ClYMV RACEa R1 CCTAAATCTTCCAGCAGGTC 59 RACE This study
ClYMV RACE R2 TACATTCTCATATTGGTCGC 59 RACE This study
GeneRacer 59
primer

CGACTGGAGCACGAGGACACTGA 59 RACE GeneRacer kit
(Invitrogen)

GeneRacer oligo
(dT) primer

GCTGTCAACGATACGCTACGTAACGGCATGACAGTG(T)18 cDNA synthesis GeneRacer kit
(Invitrogen)

ClYMV 1F GAAAACGAAACAAACCAAAACGAAAC Amplification of the ClYMV genome This study
KpGR3nest GGGGTACCGCTACGTAACGGCATGACAGTG Amplification of the ClYMV genome Yusa et al. (12)
KpGR3nesF CCGTTACGTAGCGGTACCCCTCAAACATTTGGCAATAAA Cloning of the ClYMV genome into the pPPVOu vector Yusa et al. (12)
ClYMV35S R TTTGGTTTGTTTCGTTTTCCCTCTCCAAATGAAATGAAC Cloning of the ClYMV genome into the pPPVOu vector This study
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ClYMV 3278R GTGAGGTGATTGATCATAGC Sequencing by primer walking This study
ClYMV 3773F TCCCTGTTGAGAATGAGAAC Sequencing by primer walking This study
ClYMV 4010R TTCAGCCTGAACTCCTCAAG Sequencing by primer walking This study
ClYMV 4535F CAGAAGCAATCATTCAAGGC Sequencing by primer walking This study
ClYMV 5279F ACCTCCATACTACCTTACAC Sequencing by primer walking This study
ClYMV 6107F TCAATGGACACTCAGCCTTC Sequencing by primer walking This study
ClYMV 6546F TTTGGAACTATGCTCTCAGG Sequencing by primer walking This study
a RACE, rapid amplification of cDNA ends.
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