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Diagnosis of the presence of tumors and subsequent prognosis based on tumor

microenvironment becomes more clinically practical because tumor-adjacent tissues are

easy to collect and they are more genetically homogeneous. The purpose of this study

was to identify new prognostic markers in prostate stroma that are near the tumor. We

have demonstrated the prognostic features of FGFR1, FRS2, S6K1, LDHB, MYPT1, and

P-LDHA in prostate tumors using tissue microarrays (TMAs) which consist of 241 patient

samples from Massachusetts General Hospital (MGH). In this study, we investigated

these six markers in the tumor microenvironment using an Aperio Imagescope system

in the same TMAs. The joint prognostic power of markers was further evaluated and

classified using a new algorithm named Weighted Dichotomizing. The classifier was

verified via rigorous 10-fold cross validation. Statistical analysis of the protein expression

indicated that in tumor-adjacent stroma FGFR1 and MYPT1 were significantly correlated

with patient outcomes and LDHB showed the outcome-association tendency. More

interestingly, these correlations were completely opposite regarding tumor tissue as

previously reported. The results suggest that prognostic testing should utilize either

tumor-enriched tissue or stroma with distinct signature profiles rather than using mixture

of both tissue types. The new classifier based on stroma tissue has potential value in the

clinical management of prostate cancer patients.

Keywords: prostate cancer, microenvironment, biochemical recurrence, tissue microarray, prognosis, offsetting

expression

INTRODUCTION

After decades of research, prostate cancer remains one of the leading worldwide concerns in male
health (1, 2). Three major challenges need to be better addressed through biomarker studies to
improve the management of the disease and save lives—early detection (3, 4), accurate prediction
of patients’ outcomes (5, 6), and development of effective personalized treatments for different types
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of prostate tumors (7). In the current study, we focused on the
identification and verification of biomarkers that are associated
with patients’ outcomes, i.e., whether biochemical recurrence
(BCR) will occur after prostatectomy, or how soon the disease
will come back (e.g., time to BCR) if the disease does recur.
Such biomarkers, once identified and validated, may be used
in clinical applications to distinguish the patients who require
surgery or/and adjuvant therapy from the patients who only need
active surveillance (8–10).

Gene expression profiles have been widely scrutinized for
years in order to develop expression signatures for the prediction
of BCR status (3). Nevertheless, very few clinically applicable
expression signatures have been developed, including Prolaris
(46-gene test) from Myriad Genetics Inc., 22-gene test from
Decipher Inc., and Genomic Prostate Score (17-gene test)
from Oncotype DX, all of which still leave great room for
improvement. The difficulty for development of prognostic
markers from prostate tumor tissue could be due to the
heterogenic nature of the prostate tumors and also because
of the offsetting expression of signature genes in the tumor
vs. its microenvironment, which makes it difficult to utilize
these gene markers in a mixture of tissues (a new discovery
of this study). A statistic-relevant explanation could be owing
to the relatively small sample size in individual studies such
that in each study the sample did not fully represent the
heterogeneous population of prostate tumors (3, 6, 11–13).
Another possibility could be that gene expression is controlled
by many complicated biological systems, such as subtle gene
networks (interaction among genes), epigenetic modification,
small RNA interference, and transcriptional modification such
as alternative splicing (14, 15). Multiple biochemical steps
are involved from DNA to protein through the Central
Dogma. It has been well-assumed that proteins (products
of gene transcription) directly reflect genes’ functions which
play critical roles in biological processes in vivo. However,
there is not always a correlation between protein expression
and mRNA expression (16, 17). Therefore, the quantification
of protein might be better correlated with the phenotypes
of interest, such as aggressiveness of the cancer. In many
studies, the expression of a protein has been used as a
measure of a disease phenotype, for example, prostate-specific
antigen (PSA), prostate-specific membrane antigen (PSMA),
prostatic acid phosphatase (PAP) and prostate stem cell
antigen (PSCA)/ alpha-fetoprotein (AFP), carcino-embryonic
antigen (CEA), and cancer antigen (CA-125) (18–23). Therefore,
predictive models based on the progression-associated antigens
(protein markers) may potentially have increased prognostic
power compared to the models that are solely based upon the
gene expression profiles.

In our previous studies, we have demonstrated the prognostic
potential for six proteins (FGFR1, FRS2, S6K1, LDHB, MYPT1,
and P-LDHA) using a tissue microarray (TMA) system that
was developed in-house at Massachusetts General Hospital
(MGH) (5, 24–26). All the protein expression data were obtained
through manual evaluation of the TMAs by pathologists,
which may have led to possibly inconsistent readings and an

artificially enlarged variation of the data (27). These six proteins
showed differentially expressed levels between relapsed tumors
and non-relapsed tumors. Independent RT-PCR experiments
demonstrated similar expression patterns in mRNA levels for
these proteins. In the current study, we explored the possibility
of extending the application of these prognostic markers to
the tumor microenvironment. It is difficult to diagnose the
presence of prostate tumors, especially in their early stage,
with biopsies due to their small volumes. Thus, methods have
been developed to detect prostate tumors using surrounding
tissues (with significant larger effective volumes) based on the
assumption that tumor-adjacent tissues are restructured by the
nearby tumor via paracrine (3, 28–30). We hypothesized that
tumor microenvironments respond differentially to aggressive
tumors vs. indolent tumors, and such differences, including
differentially expressed proteins, may be used as signatures
for prognosis.

To test this hypothesis, we reevaluated these MGH TMAs
by only selecting the non-tumor regions that are adjacent to
tumors. The array data of these six proteins were individually
analyzed using an automated Aperio Imagescope system, as
described in our previous study in PCa diagnosis with tumor-
free cells (30), rather than manual evaluation. The Aperio
system utilized a single standard to read the TMA image and
calculated the average immunohistochemistry reaction intensity
for each sample on the TMA, yielding reliable expression
data. Additional within array normalization was carried out to
remove potential systematic differences between various batches
of array reactions. The objective data were then analyzed
using various statistical methods to evaluate the association
between each of the protein markers and BCR status or time
to BCR. We found in tumor-adjacent stroma that FGFR1 was
negatively associated with the risk of BCR (p-value = 0.005),
MYPT1 was positively associated with the risk of BCR (p-value
= 0.008), and LDHB showed a positive-association tendency
(p-value = 0.164); however, such association patterns, either
positive or negative, were completely opposite to what had been
reported in tumor tissues (5, 24–32). We refer to “opposite”
the distinct association patterns between the protein expression
and risk of recurrence in the tumor site versus the tumor-
adjacent stroma site. This interesting phenomenon may reflect
the intricate interaction between tumor and microenvironment,
the understanding of which may benefit clinical diagnosis
and prognosis of the disease. Moreover, the results suggested
prognosis of prostate cancer should be based on either highly
enriched tumor tissue or stroma tissue (close to tumor) with
distinct signature profiles rather than a mixture of both
tissue types.

A newly developed approach, named Weighted
Dichotomizing, was used to train a predictive classifier
using these three prognostic markers. The results showed an
accuracy of 71% in predicting the BCR status for the patients
using the classifier. The model has been verified using 10-fold
cross validation. The properties of the new predictive classifier,
its clinical potential, and the potential for improvement have
been discussed.
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MATERIALS AND METHODS

Prostate Tissues and Tissue Microarray
(TMA) Assays
TMAs include formalin-fixed and paraffin-embedded (FFPE)
specimens from 241 patients who were confirmed to have PCa
and received radical prostatectomy at MGH from September
1993 to March 1995 (5, 24–27).

The study was approved by the human study ethics
committees at Massachusetts General Hospital (Boston, MA) and
the Ministry of Public Health of the People’s Republic of China.
All specimens in this study were anonymously handled according
to ethical and legal standards.

The clinicopathological characteristics of all cases represented
on TMAs are summarized in Table S1, and the data for the 105
cases (36 aggressive cases and 69 indolent cases) are summarized
in Table 1. Clinicopathological data including pre-operation
PSA, Gleason scores (GS, reassigned based on the current
grading recommendation provided by the International Society
of Urological Pathology), American Joint Committee on Cancer
(AJCC) T stage, surgical margin status, time to biochemical
recurrence (BCR) or PSA failure, time to metastasis, and overall
survival time have been collected. The time to BCR was defined
as the time interval between initial operation and first appearance
of two consecutive rises of PSA. The time to metastasis was
defined as the time interval between the initial operation and
the detection of metastatic sites. The overall survival time was
calculated from the date of surgery to the data of the last follow-
up or death. None of the patients or subjects recruited for the
study had chemotherapy or radiotherapy before the surgery. All
tissues were reconfirmed by HE staining.

Immunohistochemical staining of formalin-fixed and
paraffin-embedded sections was performed using a standard
immunohistochemistry (IHC) protocol. Briefly, after
deparaffinization and rehydration using a Leica autostainer
XL ST5010 system, the TMA slides were pretreated with 10mM
sodium citrate buffer (pH 6.0) for 5–10min in a microwave for
antigen retrieval. The endogenous peroxidase was quenched
by adding the hydrogen peroxide (3% H2O2 in 70% methanol)
at room temperature for 15min. After washing, the slides
were blocked for 30min. The blocking buffer was removed
and the slides were then incubated for 1 h with primary
antibodies (FGFR1, FRS2, LDHB, MYPT1, P-LDHA, and S6K1),
respectively, with the optimized dilutions at room temperature.
The catalog numbers for these six antibodies are ab10646
(Abcam Co Ltd, USA), sc-8318 (Santa Cruz, CA, USA), ab85319,
(Abcam Co Ltd, USA), ab59235 (Abcam Co Ltd, USA), 8176
(Cell Signaling Technology, CA, USA), and ab32359 (Abcam
Co Ltd, USA), respectively. The optimized dilutions for the six
antibodies in the TMA reactions are 1:200, 1:200, 1:200, 1:300,
1:200, and 1:50 respectively.

Slides were washed with the 1×PBS solution and further
incubated with DAKO Envision+/HRP for 30min at
room temperature. Detection was based on the use of the
3, 3′-diaminobenzidene as instructed (DAB kit, DAKO,
Denmark). Slides were counterstained with hematoxylin before
microscopic analysis. An H-Score was initially calculated

TABLE 1 | Characteristics of 105 selected cases.

Clinicopathological feature Cases selected

Number 105

AGE FOR PATIENTS ONLY (YEAR)

Minimum 45

Maximum 77

Median 62

PRE-OPERATION PSA (ng/ml)

≤4 15(14%)

>4 72(69%)

N/A 18(17%)

GLEASON SCORE

≤6 44(42%)

7 42(40%)

≥8 19(18%)

AJCC PATHOLOGIC T STAGE

2 (T2) 70(67%)

3 (T3) 35(33%)

SURGICAL MARGIN STATUS

Negative 57(54%)

Positive 48(46%)

METASTASIS

Negative 93(89%)

Positive 12(11%)

OVERALL SURVIVAL

Alive 85(81%)

Die 20(19%)

BIOCHEMICAL RECURRENCE

Negative 69(66%)

Positive 36(34%)

based on scoring of stained cells according to published
method (33).

Image Analysis
The expressions of each protein in a TMA were measured by
analyzing the staining signal intensity using Aperio image scope
v11 (Aperio, USA). Briefly, in Aperio Imagescope windows,
epithelial cancer cells and tumor-free micro-environmental area
were compartmentalized by an experienced pathologist using
pen tool, based on typical pathological features. The brown
staining (positive) in the intensely stained image and the blue
staining (negative) in the least intensely stained area were selected
for further data processing. The subsequent staining intensity
was measured as the densitometry of the digital image (×400),
and the counted positive pixels were transformed to three
intensity bins.

A total of 181 tumor-bearing cases were considered in the
study. For each case, tumor areas were first identified by an
experienced pathologist with the aid of the Aperio Imagescope
system. The pen tool in the Aperio Imagescope system was then
used to select stroma that were close to tumor regions from
each IHC image (shown in Figure 1), and the image data were
then translated to numerical data, such as intensities of positive
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signal, intensities of negative signal, number of positive signals,
and number of negative signals. The average intensity, which is
the ratio of the sum of the intensities of positive signals (weak
positive, positive, and strong positive) and the sum of the number
of positive signals (weak positive, positive, and strong positive), is
calculated and used for further statistical analysis.

Redefinition of Study Cases
From the 181 tumor-bearing cases, we redefined 36 aggressive
cases as the patients who had experienced BCR within 3 years
after surgery removal of the gland and 69 indolent cases as
the patients who did not show BCR for 6 or more years after
the surgery.

Basic Statistical Analyses
Pearson’s Correlation Analysis was used to evaluate the
relationship between the protein markers and the clinical
variables. Survival analyses including Cox regression model and
Kaplan-Meier were used to assess the association between protein
markers and time to BCR. ROC curve and area under the curve
(AUC) were used for the evaluation of the classification model. A
p-value ≤ 0.05 was used for claiming a significant result for the
statistical tests. Box plot and density plot were used for examining
the distribution of the expression levels of each protein based on
the patient’s disease phenotype variables.

Weighted Dichotomizing Algorithm

We proposed to develop a composite predictive classifier using
a multi-marker signature when different markers have various
levels of predictability. The training set was first divided into a
few subgroups based on a certain observed criterion, for example
the binary clinical outcome of BCR status in the current study
(aggressive group indicated by 1 and indolent group indicated
by 0). For each marker, we sorted the patient cases based on the
marker’s expression level from lowest to highest. We sequentially
used each of the sorted expression values of the marker as a
cutoff to define predicted aggressive cases and predicted indolent
cases. If the marker represents a protein product of an oncogene
(i.e., higher expression levels are associated with more aggressive
cases), the training cases with expression levels less than the
cutoff were defined as predicted indolent cases and the training
cases with expression levels greater than the cutoff were defined
as predicted aggressive cases. If the marker is a product of
a tumor suppressor gene, we defined the predicted indolent
cases and predicted aggressive cases in the opposite way. The
predicted indolent/aggressive classifications were then compared
to the observed indolent/aggressive classifications to calculate
the classification accuracy. Note that each cutoff was associated
with a classification accuracy rate. In the process of developing
a composite classifier, the cutoff with the highest classification
accuracy was selected as the optimal cutoff for themarker, and the
highest classification accuracy was used to calculate the weight
for the marker in the composite classifier. A composite multi-
marker classifier consisted of two components for classification
calculation, i.e., the optimal cutoffs and the weights for the
markers. Two steps were involved in the classification calculation
when the composite classifier was applied to a test patient case.

Suppose the composite classifier was composed of k markers or
proteins (for example, k= 3 in the study because 3 proteins were
analyzed). First, for the ith marker, we used the optimal cutoff to
predict the patient outcome Si, with Si = 1 for aggressive case and
Si = 0 for indolent case, where i = 1 to k. The weighed score for
the outcome was calculated using the following formula:

S =

k∑

i=1

Siwi, (1)

where wi was the weight for the ith marker which was
calculated as:

wi =
αi

∑k
i=1 αi

, (2)

where ai was the highest classification accuracy that was achieved
for the ith marker in the training process. The test patient was
predicted as an aggressive case if S≥ 0.5 and predicted as indolent
case if S < 0.5.

RESULTS

Quantifying Expression Levels of Protein
Markers Using an Aperio System
The images of selected tumor-adjacent stroma regions on all the
tissue microarrays were analyzed and transformed to numerical
expression values (average intensity I) using an Aperio System
(see Figure 1). Normalization had been carried out for each
sample within a TMA using the following formula

I′ =
I −M

R
(3)

where I and I’ are the original and adjusted intensities,
respectively, for a sample, M is the median intensity value for
all the samples on the TMA, and R is the range of the intensity
values for all the samples on the TMA. We only selected tumor-
bearing tissues from a total of 181 patients who did not receive
any adjuvant therapies after surgery for the study.

Statistical Analysis of the Association
Between Markers and Clinical Variables
Pairwise Pearson’s correlation was first examined among the
six proteins and with four clinical variables including pre-
operation PSA, Gleason score, time to biochemical recurrence
(BCR), and time to metastasis. No significant correlation was
detected between any protein marker and the four important
clinical variables which have been widely utilized in disease
management (Figure 2).

We then analyzed the association between each of these 6
proteins and patients’ biochemical recurrence (BCR) time using
survival analysis. The patient cases were divided into two groups
(H and L) based on the median expression value for the protein
(5, 25, 34–41); the cases with expression levels greater than
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FIGURE 1 | Representative IHC images for FGFR1, LDHB, MYPT1. The tissue regions labeled with T mainly represent tumor enriched area from patients’ prostate

glands; the tissue regions labeled with N represent tumor stroma areas of the prostate glands from the same patients.

FIGURE 2 | Results of pairwise correlation between six proteins and four clinical variables. The numbers in the grids are correlation coefficients in the pairwise

correlation analysis.
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the median expression value were placed in group H and the
cases with expression levels less than the median expression
value were placed in group L. Kaplan-Meier curves were plotted
in Figure 3 and p-values indicating the level of difference in

survival between H and L groups were calculated using a Cox
regression model (42). The results showed that FGFR1 (p-
value = 0.005) and MYPT1 (p-value = 0.008) are significantly
associated with the time to BCR, and LDHB (p-value = 0.164)

FIGURE 3 | Survival analysis in terms of biochemical recurrence when tumor-adjacent stroma tissues were used. H: the subgroup of cases with expression levels

greater than the median value. L: the subgroup of cases with expression levels less than the median value.

FIGURE 4 | Distribution of expression levels in regard with BCR status. (A) Boxplots showing the differences in expression of three proteins between aggressive cases

(labeled as 1 or blue) and indolent cases (labeled as 0 or red). (B) Distributions of expression of three proteins between aggressive cases (blue) and indolent cases (red).
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FIGURE 5 | Systematic search for the optimal cutoffs. The x-axis represents the expression scores for protein markers, and the y-axis represents the classification

accuracies achieved by various cutoff expression values.

is also relevant to the aggressiveness of the disease (Figure 3),
which is consistent with the boxplots in Figure 4. However, the
outcome-associations for these three proteins in tumor associated
stroma are completely opposite to what we have observed in
tumor tissues.

Evaluation of Three Markers Jointly Using
Weighted Dichotomizing Method
In order to evaluate the prognostic potential for these three
protein markers simultaneously, we developed a novel algorithm,
named Weighted Dichotomizing (WD), for developing a
multi-marker predictive classifier. There is a total of 36
aggressive cases and 69 indolent cases in the training set
(see Materials and Methods). For each of the three proteins,
we sorted the patient cases based on the expression level
of the protein and then systematically searched for the
threshold expression value for this protein that optimally
distinguished the aggressive cases from the indolent cases,
i.e., the cutoff expression value with the highest classification
accuracy (Figure 5).

A composite classifier was developed based on the calculation
of the sum of the weighted classification using the three selected

threshold values (as described in Materials and Methods). The
weights used for the three markers were the highest classification
accuracies (0.724, 0.676 and 0.667) that were achieved by the
individual threshold expression values for the markers. When
the classifier was applied to the training set, the classification
accuracy or area under the curve (AUC) was 0.71 (see Figure 6
for ROC curve), with positive predictive value (PPV) and
negative predictive value (NPV) being 0.70 and 0.69, respectively.
We also verified the method using 10-fold cross validation as
described below. The 105 patients (36 aggressive cases + 69
indolent cases) were arbitrarily divided into ten portions which
were roughly of equal size with about 3 aggressive cases and 6
indolent cases in each portion. In each cross-validation step, we
developed a classifier (as described above) using nine portions
(∼90%) of the cases and tested the classifier on the remaining one
portion (∼10%) which was not used for classifier development.
We iteratively repeated this cross validation until each of the
ten portions had been used exactly once for testing. Thus, we
have predicted outcomes for each patient which can be compared
with the observed outcomes to evaluate the performance of the
classifier. The overall accuracy for the 10-fold cross validation
was 0.66.
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FIGURE 6 | ROC curve showing the prognostic value of the 3-gene classifier.

Comparison of Prognostic Factors Using
Survival Analysis
Univariate andmultivariate analyses using the Cox Proportional-
Hazards Model were performed to compare prognostic factors
including the profiles the three 3 proteins (FGFR, LDHB,
and MYPT1), the composite scores (WD Score) calculated
from these protein profiles using the WD algorithm, and
four primary clinical variables, i.e., Pre-OP PSA, Gleason
score, Margin, and Stage (Table 2). The results of univariate
analysis showed that the profiles of each of three proteins
are significantly correlated with the time to BCR, however,
the composite scores (WD Score) with the combined protein
profiles demonstrated substantially stronger association with
BCR, indicating an increase in prognostic power by combining
prognostic biomarkers. The univariate analysis also showed that
all four well-known pathological variables were individually
associated with the time to BCR, with the Gleason score being the
strongest predictor.

When theWD Score was combined with the four pathological
variables in the multivariate analysis, Gleason, WD Score
and pre-OP PSA were still statistically significantly associated
with the time to BCR (in a descending order), whereas
the previous associations of Margin or Stage with the time
to BCR in the univariate analysis had vanished. These
results indicated (1) the prognostic information provided
by Margin or Stage in the univariate analysis may be well-
represented by the data of either protein profiles or other clinical
variables, and (2) combining protein profiles with nomograms
based on clinical characteristics will potentially increase
prognostic accuracy.

TABLE 2 | Comparison of prognostic factors using cox proportional-hazards

model.

Factor Coef. S.E. of Coef. Z P

Univariate FGFR −3.0704 0.9774 −3.14 0.0017

LDHB 1.659 0.874 1.9 0.058

MYPT1 2.36 1.13 2.09 0.037

WD Score 2.56 0.64 4 6.2e−05

Pre OP PSA 0.0897 0.0225 3.99 6.5e−05

Gleason 0.968 0.155 6.24 4.3e−10

Margin 0.938 0.348 2.7 0.007

Stage 1.083 0.334 3.24 0.0012

Multivariate WD Score 2.4481 0.7145 3.43 0.00061

Pre OP PSA 0.0532 0.0247 2.15 0.03123

Gleason 1.0877 0.2174 5.00 5.6e−07

Margin −0.1812 0.4315 −0.42 0.67444

Stage 0.0523 0.4625 0.11 0.90994

Coef., estimated coefficient; S.E. of Coef., standard error of estimated coefficient;

Z, z score; P, p-value.

DISCUSSION

We investigated the profiles for six protein markers, FGFR1,
FRS2, S6K1, LDHB, MYPT1, and P-LDHA, in tumor-adjacent
stroma. The results indicated that FGFR1, MYPT1, and
LDHB are relevant to disease progression, i.e., FGFR1 is
negatively correlated with tumor progression whereas MYPT1
and LDHB are positively correlated with tumor progression in
tumor-adjacent stroma. However, these correlations in tumor-
adjacent stroma (in the current study) are completely opposite
those in tumor tissue (as previously reported (5, 24–27, 31,
32)). Such a difference may reflect the intricate interaction
between tumors and their associated stroma tissues. More
importantly, the results suggested that prognosis of prostate
cancer should be based on either highly enriched tumor tissue
or stroma tissue (close to tumor) with distinct signature profiles
rather than a mixture of both tissue types. This is because
the expression of these marker genes in two tissue types
may be offset in the mixture samples, yielding ambiguous
test results.

Due to the heterogenic nature of the prostate tumors,
it has been difficult to develop clinically useful biomarkers
for prognosis. Compared to tumor tissues, tumor-adjacent
stroma is much more genetically stable and homogenous.
As the cancer develops, grows, and progresses, the stroma
tissue in the surrounding microenvironment co-evolves into an
activated state through continuous paracrine communication.
Studies have suggested that tumors restructure surrounding
stroma tissues such that these tumor-adjacent stroma tissues
become quite different from the remote stroma, and such
differences depend on the tumors’ properties, i.e., aggressive
tumors and indolent tumors (43, 44). However, research
on prognostic markers in tumor-adjacent stroma has been
inadequate. In this study, we mainly focused on the exploitation
of prognostic markers in tumor-adjacent stroma using existing
TMA data.
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FGFR1 has been intensively studied in prostate cancer (45–
47). In the normal human prostate gland, expression of FGFR1
is restricted to stroma and is not expressed in epithelial cells
(48). Nevertheless, prostate tumors exhibit aberrant expression
of FGFR1 in epithelial carcinoma cells (49, 50), and increased
expression of FGFR1 seemed to be associated with aggressive
tumors. However, contradictory results have been reported for
the FGFR family—for example, down-regulation of FGFR2
is associated with neoplastic progression (49–52). Moreover,
previous studies found that cloned FGF family epithelial cells
from the non-malignant PCa, when implanted in rat hosts in the
absence of stromal cells, can progress to malignant PCa (53). As a
key regulator of vascular smooth muscle, MYPT1 is a member
of the myosin phosphatase targeting protein (MYPT) family,
which is most abundant in smooth muscle cells (54). Expression
of MYPT1 is associated with many human diseases, including
cancers (55–57). A previous study also revealed that MYPT1
could affect the cell cycle, migration, and adhesion processes
of cancer cells (55). Our previous study indicated that MYPT1
stimulation could antagonize the pro-tumor effect induced by
Mir 30d-upregulation in PCa epithelial cells (25). Nevertheless,
our current study showed that MYPT1 in tumor stroma was
positively correlated with tumor progression. As for LDHB, it
is one of the subunits of LDH which catalyzes the reversible
conversion of pyruvate to lactate. It has been reported that
reduced expression of LDHB is associated with progression of
PCa and other forms of cancer (58–60). A previous study showed
that loss of LDHB expression in prostate cancer was due to
promoter hypermethylation (32). However, our results indicated
that LDHB was positively correlated with tumor progression in
tumor-adjacent stroma, which was also opposite to the previous
study in tumor tissues. As discussed above, studies are needed to
disclose tumor-stroma interactions.

It has been routine that pathologists or specially trained
personnel read the TMA image file to provide scores for
evaluating the expression levels for the protein of interest.
These scores often take ordinal form, for example, 0 for
negative signal, 1 for weak signal, 2 for moderate signal, and
3 for strong signal. The ordinal scale does not provide precise
measurement because the intermediate levels between the ordinal
numbers are not represented. Moreover, different pathologists
may use different standards which are based on individual
experiences, sometime yielding discordant data. The Pearson’s
correlation test between the scores provided by three pathologists
showed poor concordance between them (Figure S1). In the
study, we evaluated the TMAs to provide quantitative data
using an automated way through the image software Aperio
image scope v11 (Aperio, USA), avoiding potential bias or
erroneous scoring due tomanual work. Additional normalization
was used to remove systematical errors between different
batches of the arrays to achieve reliable data. Thus, TMAs
analyzed using different antibodies with different batches may
be analyzed at the same time to increase analytic power and
reduce manpower.

Simple Pearson’s correlation could not identify any substantial
association between protein markers or between any marker and
clinical variables. The results indicated that the markers, if they

are relevant to a certain clinical outcome, may not be linked to
the clinical variable in a linearly related manner. For example, a
threshold expression level may exist for a protein marker such
that patients with protein expression higher than that threshold
exhibit one phenotype whereas patients with protein expression
lower than that threshold have another phenotype; however, no
correlation can be detected if we simply calculate the Pearson’s
correlation coefficient based on all the patients. This was also
true when we used the median expression level as a cutoff to
subdivide the training set into two equal groups and checked the
survival in regard to BCR. It is also in agreement with the various
dominance-recessive relations between phenotypes that are due
to the gene dosage, i.e., haplo-sufficient or haplo-insufficient (61).
The survival analysis indicated that FGFR1 (tumor suppressor
gene), LDHB (oncogene), andMYPT1 (oncogene) are all relevant
to the time to BCR; however, the lack of correlation among
these three markers themselves well-support the “threshold”
theory. When we check the distribution of expression levels
for these three proteins between BCR status (0 for non-relapse
and 1 for relapse), there was a substantial overlap between the
non-relapse group and the relapse group. The results suggested
that to distinguish aggressive cases from indolent cases, we
need to use both the BCR status (relapse/non-relapse) and the
time to BCR to deal with the censored data. From a total of
181 tumor-bearing cases, we redefined 36 aggressive cases as
the patients who had experienced BCR within 3 years after
surgical removal of the gland, and redefined 69 indolent cases
as the patients who did not show BCR for 6 or more years
after the surgery. Indeed, the aggressive and indolent cases here
refer to the early relapse cases and non-relapse cases with long
follow-up period, respectively. The censored data in clinical
studies can also be properly analyzed by the Cox Proportional-
Hazards Model. Table 2 showed that the Cox regression can
detect the associations between protein profiles or well-known
pathological variables with the time to BCR which had been
missed by Pearson’s correlation analysis. The multivariate
Cox regression analysis suggested that protein markers and
clinical variables may correlate with disease outcomes in
different manners; thus, combining different types of predictors
has potential to increase prognostic power, which warrants
future research.

We developed a new algorithm, named Weighted
Dichotomizing, to uncover the association between the
protein markers and the aggressiveness of the tumors that are
embodied by the BCR status and the time to BCR. For each
marker, we first identify the threshold (or cutoff value) that
optimally separates aggressive cases from indolent cases with the
highest classification accuracy. We then combined the markers
to form a composite classifier by considering the different
predictive potentials for the markers, i.e., the combined model
put more weight on the protein markers that had achieved higher
classification accuracies in training. The prognostic classifier
trained using the proposed method achieved an overall accuracy
of 71% based on only three protein markers, and the approach
was verified by 10-fold cross validation, with an overall accuracy
of 66%. Note that only 3 protein marks and 105 patient samples
have been used for development of the model. The performance
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of the classifier will increase if more markers and more patient
samples are used to develop the composite model.

The in-house TMAs by MGH may be used to identify
and validate more potential protein markers which could be
identified by mining the publicly available databases, such as
The Cancer Genome Atlas (TCGA) (62). However, in order
to translate to clinical use, other platforms for easily analyzing
proteins are needed, for example Quantitative Infrared Westerns
(63), reverse phase protein microarrays (64), or isobaric tags
for relative and absolute quantitation (65). Multicolor staining
technology should be applied to future study. In our own
future study, we will identify and validate more protein markers
using the MGH TMAs and develop a composite classifier with
improved accuracy. Also, we will use the MGH TMAs to
analyze a few proteins of house-keeping genes to outline the
basal expressions for these reference proteins. Normalization
based on these reference proteins, which are assumed to
have stable expressions across disease statuses, will be used
to refine the classifier algorithm. A fluorescent multiplex
immunohistochemistry (mIHC) protocol may be developed to
reduce the potential systematic bias (66–68). The well-established
classifier algorithm can be used to calculate risk score based on
the data that are generated from other lab-friendly platforms.
TMAs with improved quality and with more patients being
included will certainly help develop a classifier with improved
performance in clinic.

The potential limitation of the study is that different scoring
methods were used for tumor assay and stroma assay, i.e.,
tumor samples in the previous studies were scored manually
by pathologists (5, 24–27, 34–36), whereas the stromal regions
in the current study were digitally scored using the Aperio
Imagescope system. Further validation is needed to employ the
same scoring method (i.e., digital scoring) and assay to analyze
both tumor tissues and stroma tissues in new patient cases.
Compared to tumors, stroma appears to be more homogenous.
There are multiple cell-types in stroma; however, predominant
cells in the tumorous stroma are fibroblasts/myofibroblasts
(69). In the current study, we used the pen tool in the Aperio
Imagescope system to select tumor-adjacent stroma for
the analysis. Advanced methods, such as microdissection,
may be used to collect more homogeneous samples
for verification.

CONCLUSIONS

The results suggest that prognosis of prostate cancer should
utilize either tumor-enriched tissue or stroma (close to tumor)
tissue with distinct signature profiles rather than using a mixture
of both tissue types. This is because the expression of these
marker genes in the two tissue types may offset in the mixture
samples, yielding ambiguous test results. More importantly, the
new classifier based on stroma tissue has potential value in
clinical management of prostate cancer patients.

Statement of Translational Relevance
Our study indicated that the protein expression of three markers
(FGFR1, LDHB, and MYPT1) were correlated with prostate
cancer patients’ outcomes (biochemical recurrence) in tumor-
adjacent stroma, and such correlations were surprisingly opposite
to those in tumor tissues. The results suggested prognosis of
prostate cancer should be based on either highly enriched tumor
tissue or stroma tissue (adjacent to tumor) with distinct signature
profiles, rather than amixture of both tissue types. This is because
the expression of these marker genes in two tissue types may
offset in the mixture samples, yielding ambiguous test results.
We further evaluated the joint prognostic power of these three
protein markers in tumor-adjacent stroma by using a composite
classifier developed through a new algorithm, named Weighted
Dichotomizing, which was verified by rigorous 10-fold cross
validation. The new classifier demonstrated potential value in
clinical management of prostate cancer patients.
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