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Abstract

Calcium (Ca) is a macronutrient and works as a modulator to mitigate oxidative stress

induced by heavy metals. In this study, we investigated the role of Ca to ameliorate the Cd

toxicity in Zea mays L. by modulating the growth, physio-biochemical traits, and cellular anti-

oxidant defense system. Maize genotype Sahiwal-2002 was grown under a controlled glass-

house environment with a day/night temperature of 24 ± 4˚C/14 ± 2˚C in a complete

randomized design with three replications and two Cd levels as (0 and 150 μM) and six

regimes of Ca (0, 0.5, 1, 2.5, 5, and 10 mM). Maize seedlings exposed to Cd at 150 μM con-

centration showed a notable decrease in growth, biomass, anthocyanins, chlorophylls, and

antioxidant enzymes activities. A higher level of Cd (150 μM) also caused an upsurge in oxi-

dative damage observed as higher electrolyte leakage (increased membrane permeability),

H2O2 production, and MDA accumulation. Supplementation of Ca notably improved growth

traits, photosynthetic pigments, cellular antioxidants (APX, POD, and ascorbic acid), antho-

cyanins, and levels of osmolytes. The significant improvement in the osmolytes (proteins

and amino acids), and enzymatic antioxidative defense system enhanced the membrane

stability and mitigated the damaging effects of Cd. The present results concluded that exog-

enously applied Ca potentially improve growth by regulating antioxidants and enabling

maize plants to withstand the Cd toxicity.

Introduction

While growing in natural environments, plants are exposed to various environmental stresses

that limit yield and productivity [1]. Heavy metal pollution is spreading in cultivated lands and
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is causing severe environmental hazards to crop plants, human health and ecosystems [2].

Cadmium (Cd) is regarded as the most toxic heavy metal, typically when present in agricul-

tural lands due to its higher mobility and toxicity [3]. Plants can readily absorb Cd directly

through roots from the soil along with essential nutrients [4]. Like other heavy metals, Cd

causes structural changes in plants and adversely affects the morphological, physiological, and

biochemical mechanisms eventually leading to loss of agricultural productivity [5]. Cadmium

is highly toxic to plants and imposes negative influences on growth and entire metabolism [6].

It is typically non-essential for agricultural crops as no known role is ascribed to Cd in the

growth and development of crop plants [1]. Therefore, Cd even in minor concentrations dis-

turbs photosynthesis, changes the ultrastructure of the chloroplast, increases lipid peroxidation

and enhance the production of ROS that leads to oxidative damage [7–9]. The dynamics of Cd

in the rhizosphere depends on uptake mechanisms, translocation, and toxicity of Cd in plants.

In crop plants, the toxicity of Cd reduces uptake and translocation of nutrients and water,

increases oxidative damage, disrupts plant metabolism, and inhibits plant morphology and

physiology [10]. In wheat, for example, Cd exposure reduced plant growth, yield, photosyn-

thetic efficiency, hormones, proteins and increased MDA, H2O2, soluble sugars and prolines

[11]. Another direct effect of high Cd is the production of excessive ROS (H2O2, OH−, O2
.-

,
1O2) resulting in lipids peroxidation which ultimately reduces plant growth [12].

Many defensive mechanisms are induced in plants to counteract Cd toxicity mainly by

hyper production of antioxidants (non-enzymatic or enzymatic) to control heavily produced

ROS [5, 13]. These enzymatic antioxidants (like peroxidase, superoxide dismutase, ascorbate

peroxidase, and catalases), and non-enzymatic antioxidants (such as α-tocopherol and gluta-

thione) have been reported to successfully mitigate Cd-induced oxidative damage in many

crop plants [12, 14]. Those plants protected by antioxidants show improved growth and yield

[15]. Other reports show that heavy metals may result in hyper-accumulation of proteins as an

effective strategy to mitigate Cd-induced toxicity [16]. The supplementation of Ca strengthens

the anti-oxidants, reduction in lipid peroxidation, and increases proline accumulation and

synthesis, clearly indicating protection against Cd stress by increasing the maintenance of sys-

tematic resistance criteria [17].

Calcium (Ca2+) is an essential macromolecule and divalent cation that performs an impera-

tive role in membrane permeability, metabolism and signal transduction [16, 18, 19]. It is a

central regulator in the physio-chemical process and regulates plant growth [20]. Exogenously

applied Ca alleviates oxidative stress by chelating with target proteins (for instance calcium-

binding proteins) and activating the antioxidant enzymes [21, 22]. Though, the induction of

the antioxidative defense system by Ca is not yet elucidated sufficiently, some reports support

that Ca is involved in the modulation of genes for antioxidant enzymes [23]. Ca mitigates Cd

toxicity in plants by modifications in the morphological and physiological processes [20, 24].

For example, Ca maintains permeability of membranes by a reduction in peroxidation of lipids

and solute leakage which ultimately reduces oxidative stress caused by Cd stress [25]. Calcium

is involved in controlling basic functions such as photomorphogenesis, cell division, cell elon-

gation, stress responses, and the maintenance of membrane structure and functions [24, 26].

In other reports, Ca improved growth and photosynthesis by restricting Cd translocation and

accumulation, scavenging ROS, enhancing antioxidant levels, and maintaining Ca-dependent

signal transduction [27, 28]. Still, the ameliorative role of Ca to alleviate heavy metals toxicity

remains inconclusive and therefore it is imperative to investigate its specific roles and associ-

ated mechanisms in improving the growth of Zea mays L. seedlings.

Maize is a valuable cereal crop and provides food for humans as well as fodder for livestock.

It contributes to 36% (782 Mt) of global grain production [29]. Maize seeds are enriched with

energy as 100g seeds contain 365 kilocalories of energy [30]. Among worldwide production,
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70–80% of maize is used as food and was ranked third in Pakistan for consumption after

wheat and rice. Pakistan was ranked 18th in the production with 6130 thousand tons of maize

produced annually that was cultivated at 1334 thousand hectares [31]. The requirement for

maize production has significantly increased recently due to excessive usage in the wet milling

industry as well as food for poultry [32]. This needs not only to increase the cultivation area

but also the exploration of new promising techniques to increase crop survival and yield under

stressful environments like in soils contaminated with heavy metals [33]. Maize plant is toler-

ant to certain levels of Cd, however, when exposure to high levels causes negative effects on dif-

ferent growth stages that are more severe on the emergence of the seedlings and at fourth leaf

stage [34].

Cadmium contamination is gradually increasing in soils and is causing significant crop

losses. Therefore, there is a dire need to devise new strategies to combat the problems associ-

ated with Cd toxicity. Considering many critical roles played by Ca in plant growth and metab-

olism, it was hypothesized that Ca supplementation should effectively ameliorate the adverse

effects of Cd imposed on germinating seeds of maize. The research questions included probing

into the toxic effects of Cd on the growth, physio-biochemical characteristics and to what

extent supplemental Ca can alleviate Cd toxicity in maize. Since the information is lacking

regarding the mechanisms involved in the amelioration of cadmium toxicity, this work will

suggest future directions to work out the underlying molecular mechanisms involved in the

mitigation of heavy metals in different plants.

Materials and methods

Plant materials

Maize seeds (Sahiwal-2002) were obtained from Maize and Millets Research Institute

(MMRI), Yousaf Wala Sahiwal, Pakistan. Seeds were immersed in 30% (v/v) H2O2 for 5 min.

for sterilization, washed with deionized water for 24 h, dried and stored till experimentation.

Selection of cadmium and calcium levels

A preliminary experiment was conducted with different concentrations of Cd in form of cad-

mium chloride (0, 50, 100, 150, 200 μM), and Ca in form of calcium nitrate (0, 0.5, 1, 2.5, 5 and

10 mM) were used to screen the optimal levels of Cd and Ca. Based on preliminary experi-

ment’s results, the 150 μM Cd stress caused 50% growth and germination inhibition, while 5

and 10 mM Ca showed best results to improve the negative impacts of Cd.

Treatment application and experiment layout

Seeds were placed in Petri dishes lined with a double layer of Whatman # 02 filter papers. The

surface of each filter paper was moistened with 15 mL of H2O and kept in dark condition

25 ± 2˚C for 48 h. After germinations, six seeds were planted in plastic pots (depth; 40 cm and

diameter; 35 cm) in sterilized sand with a particular particle size of 0.25 mm. The sand was

soaked for 24 h in 30% (v/v) HCl solution to remove all cations and anions and then thor-

oughly rinsed with deionized water three times (with 24 h soaking). All pots were arranged as

a CRD design with 3 replications under a controlled glasshouse environment with a day/night

temperature of 24 ± 4˚C/14 ± 2˚C and of relative humidity 58–60% [35]. The½-strength

Hoagland’s (Hoagland 1938) nutrient solution was applied to all pots by saturating the sand at

an interval of 2 days until the complete emergence of the seedlings (20 days). Once a week, the

solution was completely drained by applying enough Hoagland’s nutrient solution to ensure

replacing any existing solution left in sand. After complete emergence, seedlings were thinned
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to 4 plants in each pot. The seedlings were then treated either with Cd2+ (using CdCl2) or Ca

(using Ca(NO3)2) by using analytical grades prepared in Hoagland solution. The pH of the

sand medium (6.7) and nutrient solution (7.5) was adjusted with HCl or NaOH and periodi-

cally measured with a portable pH meter (Ino LAB pH/Cond 720, WTW series).

Plant sampling and measurements

Plants materials were sampled at the seedling stage (4–6 leaf stage; 30 days after seedlings

emergence) to determine plant growth attributes, physio-biochemical traits, ROS, and

enzymes of an antioxidants defense system. Transplants were washed with distilled water and

growth attributes were recorded. Leaf samples of maize seedlings were frozen at –80˚C for

physio-biochemical traits and antioxidants. Sampled seedlings were dried in an oven at 70˚C

to achieve a constant dry weight for determination of root (RDW) and shoot (SDW) dry

weight.

Growth parameters

The shoot length (SL) of plants from each treatment was measured from sand level to the top-

most leaf of the plant. The roots of seedlings were carefully removed from the sand for record-

ing root length (RL). Root (RFW) and shoot fresh weight (SFW) of seedlings were measured

immediately after excision. The leaf area (LA) was estimated by measuring length and width

according to Kaleem and Hameed [36]

Leaf area ðcm2Þ ¼ maximum length�maximum width � correction factor 0:68Þ

Photosynthetic pigments measurement

Chlorophyll contents were assessed as described by Arnon [37] and carotenoids following the

method of Davis [38]. For the appraisal of chlorophyll contents, 0.1 g of leaf sample was

grounded in 5 mL of acetone (80%). The extract was filtered through a Whatman # 02 filter

paper (GE Healthcare, UK) and absorbance was recorded through a spectrophotometer (Hita-

chi U-2910, Tokyo, Japan) at 645, 663, and 480 nm. The values of photosynthetic pigments

were calculated by using the following formulas.

Chl. a (mg/g of leaf fresh weight) = [12.7(OD663)-2.69(OD645)] x V/1000 x W

Chl. b (mg/g of leaf fresh weight) = [22.9(OD645) - 4.68(OD663)] x V/1000 x W

Total Chl. (mg/g of leaf fresh weight) = [20.2(OD645) + 8.02 (OD663)] x V/1000 x W

Carotenoids (g/ ml of fresh leaf) = {[(OD480) +0.114 (OD663)– 0.638 (OD645)]/2500}

Where V characterizes the volume of acetone and (FW) showed the leaf fresh weight.

Determination of relative membrane permeability

The fresh leaf samples were collected and washed thoroughly with 4 changes of water to eradi-

cate any adhered electrolytes on the surface. The leaves were cut into small discs with a borer

and placed in the small glass test tube containing deionized water (10 mL), The ECo was mea-

sured with the help of Cond/Salinity meter (TPS AQUA-CPA). The test tubes were incubated

for 24 h at 4˚C and EC1 was measured. The tubes were then wrapped with aluminium foil,

autoclaved for 10 min. at 100 kPa and EC2 was recorded. The ratio of % ion leakage was com-

puted as designated by Yang et al. [39].

RMP ð%Þ ¼ ðEC1� EC0Þ=ðEC2� EC0Þ � 100

Where, RMP: relative membrane permeability, EC0; Electrical conductivity before incuba-

tion, EC1; Electrical conductivity after incubation, EC2; Electrical conductivity after autoclave.
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Anthocyanin contents measurement

Anthocyanin content was appraised according to the method of Giusti & Wrolstad [40]. The

0.1 g of a leaf was pulverized in trichloroacetic acid (TCA) by using a pestle and mortar. The

homogenized material was transferred to test tubes and shifted to a water bath at 80˚C for 20

min. Homogenized material was centrifuged at 12,000 xg for 10 min. in the absorbance was

noted at 516 and 700 nm using a spectrophotometer (Hitachi U-2910, Tokyo, Japan). Acetone

was run as blank and the amount of monomeric anthocyanin contents was calculated as fol-

lows.

Monomeric anthocyanin pigments ðmg=LÞ ¼ ðA�MW� DF� 1000Þ=ðε� 1Þ

Where, A = (A510-A700), MW = 449.2 and ε = 26900 [ε is the molar absorptivity measured

the amount of cyanidin-3-glucoside pigment and DF is the dilution factor].

Oxidative stress markers (MDA and H2O2)

Lipids peroxidation (LPX) was quantified by means of malondialdehyde (MDA contents)

according to the method of Heath and Packer [41]. LPX content was determined by the reac-

tion of thiobarbituric acid-TBA with MDA. The 0.25 g leaf sample was grinded in 500 μL of

TCA (0.1%) and then centrifuged at 15,000 xg. An aliquot (1 mL) was taken and mixed with 2

mL of 0.5% of TBA and 20% TCA. Test tubes containing reactants were incubated at 85˚C for

20 min. and reaction was terminated in an icebox. Absorption was recorded at 532 and 600

nm by spectrophotometer (Hitachi U2910, Tokyo, Japan). All absorption ODs (at 532nm)

were subtracted from 600 nm. LPX concentration was calculated by using 155 mM cm-1 as an

extinction coefficient.

The Amount of H2O2 was quantified by measuring the oxidation of ferrous ions medicated

by peroxidase and ferric ions react with the xylenol [42]. Leaf sample 0.5 g was grounded in 5

mL of 10 mM sodium phosphate buffer (SPB). Centrifugation of homogenized material was

done at 15,000 xg. A 2 mL of aliquot was reacted with the assay reagent containing 200 mM

sorbitol, 200 μM xylenol, 50 mm H2SO4, and 500 μM ammonium ferrous sulphate. The reac-

tant material was incubated at 24˚C for 1 h and absorption of yellow colour intensity of super-

natant was recorded at 560 nm by using a spectrophotometer (Hitachi U-2910, Tokyo, Japan).

The final concentration of H2O2 was calculated by using the coefficient of emission (0.28

mmol–1 cm–1).

Cellular antioxidants (APX and POD)

The maize seedlings, leaves were grounded in liquid nitrogen and extracted with 1 mM L–1 of

5% polyvinylpyrrolidone, and, 50 mM sodium phosphate buffer (SPB) having 1.0% w/v at pH

7.8 as homogenizing material. The extracted material was centrifuged at 15,000 xg. Enzyme

crude extract was stored at 4˚C for 36 h until analysis.

Ascorbate peroxidase activity (APX)

Activity of APX was quantified by oxidation of ascorbate [43]. The reaction was started by add-

ing 10 μL of crude enzyme extract to 2 mL of assay reagent (30% H2O2, 0.5 mM C6H8O6, and

sodium phosphate buffer (SPB) having pH 7.2,). After 30 s of reaction initiation, a shift in

absorption was noted at 290 nm for 4 min. on a spectrophotometer (Hitachi U-2910, Tokyo,

Japan). Activity of enzyme was estimated through extinction coefficient (2.8 mM cm-1), while

the specific activity of the enzyme was calculated on the basis of protein contents and

expressed as an mg–1 min.-1 FW.
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Peroxidase activity (POD)

Peroxidase activity was appraised spectrophotometrically by using the method of Goliber [44]

based on oxidisation of guaiacol in the presence of H2O2 and expressed as a Units mg-1 pro-

teins. A 20 μL of the enzyme extract was added to the assay reagent (20 mM guaiacol, 10 mM

H2O2, and 0.1 M phosphate buffer) and volume was maintained up to 3 mL. Enzyme activity

was measured at 460 nm after 60 s interval through a spectrophotometer (Hitachi U-2910,

Tokyo, Japan). Enzyme specific activity was expressed on the base of proteins.

Ascorbic acid determination

Ascorbic acid was determined as described by Nino and Shah [45]. Plant tissues (100 mg) were

pulverized in thiobarbituric acid (TBA) and centrifuged 10,000 ×g for 10 min. An aliquot

(500 μL) was taken with 500 μL of dithiocarbamate (DTC) in glass tubes. Reactants were left

for½ h at 37˚C. Test tubes containing reactant material was transferred to the ice bath to ter-

minate the reaction. After that, 2 mL of dilute H2SO4 was mixed slowly and leftover for½ h at

37˚ C in an incubator. The extracted material was centrifuged at 12,000 xg. The shift in absorp-

tion was measured at 520 nm with the help of a spectrophotometer (Hitachi U-2910, Tokyo,

Japan).

Total free amino acids

The free amino acid was quantified followed by Hamilton & Van-Slyke [46] method. The 0.1 g

of the leaf sample was grinded and immersed in a potassium phosphate buffer (SPB) overnight.

After incubation, 1 mL of plant extract was transferred to 25 mL test tubes after adding 1 mL

each of 10% ninhydrin and 2% of pyridine solution. The test tubes containing reactants were

placed in a boiling water bath for 1 h. The final volume of samples was made to 25 mL by

using deionized H2O. Absorbance was recorded at 570 nm spectrophotometrically (Hitachi U-

2910, Tokyo, Japan) and resulting absorbance was compared with the standard curve plotted

for leucine.

Soluble proteins

Soluble proteins were appraised following Lowry et al. [47]. Plant sample (0.1 g) was grounded

in 50 mM sodium phosphate buffer (SPB) having pH 6.8. The extracted aliquot (500 μL) was

mixed in 0.3 mL of deionized H2O and 3 mL of Bio-Rad protein assay dye and vortexed for 15

s. The absorbance was measured spectrophotometrically at 750 nm (Hitachi U-2910, Tokyo,

Japan). Soluble proteins were estimated by comparing the absorbance of samples with bovine

serum albumin (BSA) using a standard value.

Statistical analysis

Statistical analysis and data visualization were executed by using R statistical software (R Core

Team, 2021) through the R integrated development environment in R Studio (R Studio Team,

2021). Data within three replicates were subjected to an analysis of variance (ANOVA) and

means values were compared by using the Tukey pairwise comparison test at (P� 0.05) to test

the effects of Ca under Cd stress on maize seedlings. Bar plots were constructed by using the

“agricolae” package of the R software. The effect of Ca and Cd treatments was assessed by

using multivariate analysis (PCA by ggbiplot), correlation matrix (ggbiplot2) and heatmaps

were plotted by customized code (pheatmap) by using R statistical software (R Studio Team,

2021). Response curves under cadmium and calcium stress treatments were constructed by fit-

ting a generalized linear model (GLM) in CONACO version 5 for windows.
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Results

Plant growth traits

Growth traits such as SL, RL, SFW, SDW, RFW, RDW and LA significantly (P� 0.05)

decreased at Cd applied at 150 μm concentration as compared to non-stressed plants (0 μM).

The reduction was 75.3%, 88.3%, 77.83%, 98.6%, 91.6%, 99.86%, 68.1%, respectively. However,

different levels of Ca significantly alleviated Cd toxicity and enhanced all growth traits. The

increase in growth traits was more obvious in response to a higher level of Ca applied at 10

mM under Cd stress (150 μm). The percent increase was 64.6%, 28.4%, 66.2%, 23.2%, 40.3%,

46.4%, and 35.5, respectively (Table 1).

Photosynthetic pigments

Under Cd stress (150 μM), a significant (P� 0.05) reduction occurred in the concentration of

photosynthetic pigments such as Chl a, Chl b, carotenoids (Caro), and total chlorophyll (T.

Chl) of maize seedlings. The reduction was 96.4%, 98.6%, 99.8%, and 94.9% as compared to

the non-stressed control (Ca-0 mM) and stressed (Cd-0 μM) seedlings of the maize. The Exog-

enously supplied Ca significantly increased photosynthetic pigments (Chl a, Chl b, Caro, T.

Chl) both in Cd stressed and non-stressed seedlings. Calcium applied at 10 mM level was

more beneficial in increasing chlorophyll and carotenoids contents of maize seedlings at

150 μM concentration of Cd. The percent increase was 286.2%, 266.0%, 215.4% and 140.8%,

respectively (Table 2).

Antioxidative enzyme activities

Mean values for antioxidant activity was higher in Cd stressed (150 μM) as compared to non-

stressed plants (0 μM). However, the activity of APX significantly enhanced as levels of Ca

increased both in non-stressed (0 μM) and stressed plants (150 μM). The maximum activity of

the APX (74.8%) and POD (148.9%) was recorded at 10 mM Ca concentration as compared to

its control. However, significant reduction was recorded in stressed seedlings (150 μM) as

compared to non-stressed (0 μM) control plants under no supplementation of the Ca as 98.8%

and 99.5%, respectively (Table 2).

Table 1. Morphological characteristics of maize seedlings under Ca and Cd treatments.

Cd stress (μM) Ca treatments (mM) SL (cm) RL (cm) SFW (g) SDW (g) RFW (g) RDW (g) LA (cm2)

0 0 57.44±5.71d 18.66±1.32d 32.65±1.66d 3.12±0.13d 2.43±0.08d 0.26±0.02c 49.51±2.23d

0.5 66.22±1.92c 23.61±1.28d 40.72±1.82c 3.55±0.09d 3.09±0.16c 0.36±0.04c 57.79±0.86c

1 66.22±1.34c 30.94±0.80c 47.14±0.95c 4.46±0.15c 3.29±0.04c 0.45±0.03b 60.99±4.06c

2.5 73.00±0.84b 40.66±2.47b 48.31±1.85c 4.54±0.36c 3.73±0.06b 0.56±0.02b 73.04±3.07b

5 93.66±2.95b 45.61±3.11b 59.00±1.51b 5.87±0.22b 4.63±0.12a 0.62±0.02a 75.91±3.60b

10 105.7±2.01a 65.94±2.84a 81.91±3.19a 7.75±0.10a 5.60±0.11a 0.66±0.03a 95.87±2.34a

150 0 24.64±2.38d 11.61±2.22d 22.17±1.74d 1.40±0.22c 1.35±0.17c 0.14±0.02c 31.96±1.06d

0.5 52.44±3.75c 18.95±0.80c 28.45±1.63d 1.61±0.03c 1.99±0.11c 0.16±0.01c 39.30±0.94d

1 63.22±3.74b 20.34±2.35c 56.50±2.39c 1.91±0.39c 2.11±0.15b 0.21±0.01b 53.40±5.49c

2.5 72.44±2.92b 30.60±1.45b 73.11±2.11b 2.81±0.28b 2.94±0.26a 0.23±0.01b 54.09±5.11c

5 82.77±4.29a 35.10±2.69b 77.96±5.19b 3.26±0.11b 3.10±0.18a 0.32±0.03a 62.96±1.46b

10 91.55±3.83a 51.14±3.16a 90.64±1.52a 4.97±0.20a 3.11±0.09a 0.30±0.04a 76.99±2.57a

Means provided with error bars; in columns different letter indicates significance (P�0.05) between treatments

Abbreviation: Shoot length (SL); Root length (RL); Shoot fresh weight (SFW); Shoot dry weight (SDW); Root fresh weight (RFW); Root dry weight (RDW); Leaf area

(LA)

https://doi.org/10.1371/journal.pone.0269162.t001
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Anthocyanin and relative membrane permeability

Under Cd stress, maximum RMP values were observed which indicate a high level of electro-

lyte leakage due to membrane damage. A significant (P� 0.05) reduction (69.9%) was

observed as the level of Ca increased (Fig 1A). Cadmium applied at 150 μm level and without

any Ca supplementation had the most toxic effects as the highest electrolyte leakage was

observed at this treatment level. Anthocyanin contents (ACC) under both treatments of Cd

significantly increased as levels of Ca increased. Maximum increase (133.4%) in ACC were

noticed in stressed plants (150 μM) at 10 mM Ca concentration (Fig 1D).

Lipid peroxidation (LPX) and ROS

The accumulation of H2O2 and MDA significantly increased in maize seedlings under Cd

stress. However, the elevated levels of Ca significantly reduced the generation of H2O2 and

LPX. The LPX in terms of MDA contents significantly decreased as the level of Ca increased in

the growth medium of the stressed seedlings. The maximum decrease (59.9%) was observed

under 10 mM concentration of Ca. The 10 mM concentration of Ca also cause reduction

(61.2%) in the generations of H2O2 in Cd stressed seedlings (Fig 1C).

Organic osmolytes

Organic osmolyte (proteins and amino acids) production was significantly increased in maize

seedlings in stressed and non-stressed maize seedlings. In stressed plants, the increase was

133.2% and 66.6%, respectively. However, soluble proteins were significantly higher in non-

stressed maize seedlings as the level of Ca increased. In Cd stressed seedlings (150 μM), the

concentration of soluble proteins significantly increased and the maximum was observed

under 10 mM Ca concentration (Fig 2A). Applications of Ca substantially increased the con-

centration of amino acids in both stressed and non-stressed seedlings and almost parallel

results were observed as noted for soluble proteins (Fig 2B).

Table 2. Physiological traits of maize seedlings under various levels of Ca and Cd treatments.

Cd stress

(μM)

Ca levels (mM) Chl a (mg g-1 FW) Chl b (mg g-1 FW) Caro. (mg g-1 FW) T. Chl (mg g-1 FW) APX (Units mg-1 Pro) POD (Units mg-1 Pro)

0 0 9.76±0.25c 2.34±0.09c 0.35±0.01d 10.69±0.26c 0.92±0.05c 0.55±0.11c

0.5 12.98±0.54c 2.84±0.23c 0.43±0.01c 11.43±0.75c 1.02±0.04c 0.60±0.12c

1 16.56±0.84b 4.44±0.15b 0.48±0.02c 14.02±0.64b 1.98±0.02b 0.73±0.04b

2.5 18.32±0.62a 4.57±0.19b 0.51±0.02b 14.93±0.83b 1.93±0.02b 0.78±0.03b

5 18.60±0.38a 5.48±0.18a 0.52±0.03b 16.00±1.06a 1.98±0.06b 0.87±0.07a

10 19.26±0.76a 6.49±0.10a 0.70±0.02a 16.02±0.25a 2.17±0.03a 0.91±0.06a

150 0 3.63±0.22d 1.41±0.03c 0.13±0.01c 5.02±0.23d 1.27±0.03c 0.45±0.09d

0.5 5.33±0.19c 2.85±0.12c 0.17±0.01c 6.35±0.46c 1.39±0.19b 0.72±0.02c

1 6.50±0.82c 3.08±0.08b 0.22±0.01b 7.25±0.45c 2.01±0.04b 0.85±0.06b

2.5 10.72±0.47b 3.47±0.14b 0.27±0.01b 8.22±0.22b 2.17±0.03a 0.82±0.06b

5 12.42±1.11b 4.13±0.13a 0.32±0.03a 9.18±0.37b 2.10±0.02a 1.10±0.01a

10 14.02±0.53a 5.16±0.20a 0.41±0.03a 12.09±0.52a 2.22±0.01a 1.12±0.06a

Means provided with error bars; in columns different letter indicates significance (P�0.05) between treatments

Abbreviations: Chlorophyll a (Chl a); Chlorophyll b (Chl b); Carotenoids (Caro); Total chlorophyll (T. Chl); Ascorbate per oxidase (APX); Peroxidase (POD); Protein

(Pro)

https://doi.org/10.1371/journal.pone.0269162.t002
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Ascorbic acid contents measurement

Ascorbic acid contents were substantially improved as Ca levels increased in maize seedlings

under normal and stress conditions. Maximum values of ascorbic contents were observed

under 10 mM concentration of Ca in both stressed and non-stressed conditions (Fig 2C). The

concentration of ascorbic acid was significantly increased (197.0%) in stressed plants at the

higher concentration of the Ca in the soil medium.

Principal component analysis (PCAs)

PCAs results demonstrated high variations in the effects of Cd and Ca treatments among dif-

ferent growth and physio-biochemical traits of maize seedlings (Fig 3). The first and second

PCAs explained 75.8% and 17.2% (total 93%) variation among treatments and seedlings char-

acteristics. The major contributors to the 150 μM Cd level were amino acids (A-Ac), peroxi-

dase (POD), H2O2, and RMP with high positive eigenvalues. The activity of antioxidative

enzymes (POD, APX, ASC-A), photosynthetic pigments (Chl a), and growth traits signifi-

cantly increased under Cd stress (150 μM) The SFW, TAA, and A-Ac excelled in strong associ-

ation with a higher concentration of Ca (C5-C6). Under lower levels of Ca i.e. C1 and C2, the

Fig 1. Effect of calcium (Ca; T1-0 mM, T2-0.5 mM, T3-1 mM, T4-2.5 mM, T5-5 mM, T6-10 mM) and cadmium (Cd) treatments on the a)

relative membrane permeability (RMP), b) melanoaldehyde contents, c) H2O2, and d) anthocyanine contents (ACC) of maize seedlings.

Means ± SE provided with error bars; different letter indicates significance (P�0.05) between Ca and Cd treatments.

https://doi.org/10.1371/journal.pone.0269162.g001
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ROS and RMP increased under Cd stress. The major principal components to control plants

(0 μM Cd) were RFW, RDW, anthocyanin contents, Chl b, T. Chl, carotenoids, TSP, and

MDA with negative eigenvalues (Fig 3). Higher concentration of Ca (C6) closely related to

growth attributes as LA, SDW, RFW, while C5 contributed to T.Chl, C3 with TSP, C2 and C1

excelled concerning MDA. The variable Antho-C, LA, SDW, RFW, Chl a and T.Chl had

shown positive loading of eigenvalues toward the PCA1. and LPX with negative eigenvalues

(Fig 3). The Cd stress significantly increased the level of reactive oxygen species, while supple-

mented Ca significantly increased the antioxidative enzymes activity and growth parameters

(Fig 3).

Correlation matrix

In control plants, anthocyanin contents (Antho-C) was positively correlated with RFW, RDW,

SL, LA, Caro, Chl b and TSP. The RMP, H2O2, and RMP were negatively correlated with

RFW, RDW, Chl a, b, RL, LA, A-AC and APX (Fig 4A). Under Cd stress, a highly positive cor-

relation was assessed between POD, SFW, and ASC.A, APX, Chl a, SL, and RL. However, a

strong negative correlation was assessed between H2O2, RMP, and antioxidant enzymes under

Cd-150 μM stress (Fig 4B).

Fig 2. Effect of calcium (Ca; T1-0 mM, T2-0.5 mM, T3-1 m M, T4-2.5 m M, T5-5 m M, T6-10 mM) and cadmium

(Cd) treatments on the a) toatl soluble protiens, b) amino acids and c) ascorbic acid contents of maize seedlings.

Means ± SE provided with error bars; different letter indicates significance (P�0.05) between Ca and Cd treatments.

https://doi.org/10.1371/journal.pone.0269162.g002

Fig 3. PCA biplot for growth and physio-biochemical traits under Cd and calcium (C1-0 mM, C2-0.5 mM, C3-1 mM, C4-2.5

mM, C5-5 mM, C6-10 mM) treatments. Abbreviations are given at start of manuscript.

https://doi.org/10.1371/journal.pone.0269162.g003
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Fig 4. Correlation among morphological and physio-biochemical traits of maize seedlings under (a) under control

and (b) Cd stress condition. Abbreviations are given at start of manuscript.

https://doi.org/10.1371/journal.pone.0269162.g004
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Clustered heatmap

A clustered heatmap was constructed to evaluate the effect of Cd and Ca treatments on the dif-

ferent traits as shown in Fig 5. Under higher concentrations of Ca (10 mM), RMP, H2O2 and

MDA showed a significant reduction in response to 0 and 150 μM concentrations of Cd indi-

cating a parallel response in both treatments. A noteworthy influence of 10 mM level of Ca in

non-stressed seedlings (0 μM Cd) was recorded with a greater increase in growth traits (RFW,

RDW, SFW, SDW, SL, RL, LA), chlorophyll (Chl a & b, T. Chl), organic osmolytes (TSP),

anthocyanin contents (Antho. C) and ascorbic acid (ASC.A). All these traits were tightly

grouped together and indicated high performance of 10 mM level of Ca under non-stressed

conditions. In Cd stressed (150 μM) seedlings, 10 mM level of Ca contributed to a significant

increase in amino acids (A.AC), peroxidase (POD), ascorbic acid (ASC.A) and shoot fresh

weight (SFW). Shoot length (SL), root length (RL), leaf area (LA), the activity of ascorbate per-

oxidase (APX) and chlorophyll showed a strong and clear similarity and strongly clustered

together. Antioxidants (APX and POD), ascorbic acid (ASC.A), anthocyanin contents (Antho.

C) reduce the RMP, H2O2 and MDA and are clustered together in the same group. At the

highest level of Ca (10 mM), clustering and similarity indicated a high performance and a pos-

sible relationship between different traits under stress treatments.

Response of different traits under stressed and non-stressed conditions

In non-stressed conditions (0 μM), a conspicuous positive response was observed for the

growth traits (RL, SL, SFW, SDW, and LA) and chlorophyll (Chl a, Chl b and T. Chl) as Ca lev-

els increased (Fig 6A). Organic osmolytes (TAA, TSP), anthocyanin contents (AC) and ascor-

bic acid (ASc-A) showed a sharp positive response with increasing Ca regimes (Fig 6B). H2O2,

MDA and RMP exhibit a strong negative response with an increase in Ca levels, however, APX

and POD exhibit an increasing pattern in curve with elevated Ca gradients (Fig 6C). In Cd

Fig 5. Clustered heatmap representing the effect of Cd and Ca (C1- 0 mM, C2- 0.5 mM, C3- 1 mM, C4- 2.5 mM, C5- 5 mM, C6- 10

mM) treatments on different studied traits. Abbreviations are given at start of manuscript.

https://doi.org/10.1371/journal.pone.0269162.g005
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Fig 6. Generalized linear model showing response curve of traits under Cd and Ca treatments. Cd- 0 μM stress: (a) growth

and chlorophyll (b) organic osmolytes, ascorbic acid and anthocyanin contents (c) hydrogen peroxide, relative membrane

permeability, lipid peroxidation and antioxidants. Cd- 150 μM stress; (d) growth and chlorophyll (e) organic osmolytes, ascorbic

acid and anthocyanin contents (f) hydrogen peroxide, relative membrane permeability, lipid peroxidation and antioxidants.

Abbreviations are given at start of manuscript.

https://doi.org/10.1371/journal.pone.0269162.g006
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stressed conditions (150 μM), growth traits (RL, SL, SFW, and SDW, LA) and chlorophyll (Chl

a, Chl b and T.Chl) displayed a strong positive response and in response to Ca levels (Fig 6D).

The concentration of TAA, TSP, AC and TAA was the maximum with a positive response (Fig

6E). A strong positive response was noted in the activity of APX and POD along with increas-

ing Ca levels. In contrast, a strong negative response was assessed for H2O2, MDA and RMP

with an increase in Ca regimes (Fig 6F).

Discussion

Calcium plays an essential role in the mitigation of abiotic stresses and protection from drastic

impacts [24, 48–50]. It interacts with proteins like calmodulin to up-regulate gene expression

and regulate the movement of metal ions across membranes [51]. The present work demon-

strated that Ca significantly alleviated the toxic effect of Cd in maize by improving all growth

traits. Furthermore, the alleviation of Cd toxicity was more obvious at higher treatment levels

of Ca in stressed and non-stress plants. Previous studies revealed that Ca applications regulate

the uptake of heavy metal ions as it competes for transporter sites on plasma membrane [24].

Supplemented Ca2+ reduced Cd toxicity by enhancing growth traits as reported in other crops

like in mustard [24] and rice [52]. Additionally, Ca reduced the toxic effect of nickel in rice

seedlings [53] Calcium is essential for plants and is involved in the various physiological pro-

cesses, cell division, and photosynthesis and interacts with intracellular signal transduction.

Due to chemical similarity with Cd, Ca mediate various Cd-mediated physiological and meta-

bolic processes [24]. Recent works elaborated that Ca use as an exogenous supplement to pre-

vent the noxious impacts of the Cd [28].

Reduction in growth traits under Cd toxicity is directly linked to the reduction of photosyn-

thetic contents. As anticipated, the photosynthetic pigments significantly declined under

150 μM Cd treatment level. However, higher levels of Ca significantly improved carotenoids,

total Chlorophyll (Chl), Chl a, b pigments in maize seedlings under Cd stress (Table 2). Previ-

ously, the interactive effect between Ca and heavy metal was reported in some studies where

exogenously applied Ca significantly prevented the damaging effects of Cd on photosynthetic

pigments [53, 54]. Calcium is also obligatory required to activate the oxidation of H2O oxida-

tion, maintain photochemical efficiency of PSII, and restore photosynthesis by aggravating the

concentrations of the photosynthetic pigments [55, 56]. Calcium is a divalent cation and shares

many parallel physical properties (like pH) with divalent heavy metals like Cd, Ni, and Co

[57]. Therefore, exogenously applied Ca ions through the rooting medium can successfully

restrict the uptake of Cd metal ions through competition for uptake and transport in plants

[57]. In current work, the enhanced amount of photosynthetic pigments in Cd treated maize

seedlings seemed to be a direct effect of enhanced activities of anti-oxidative enzymes, and

other protective molecules that reduced membrane damage [58].

The improvement in the antioxidant defense system enables plants to alleviate heavy metals

toxicity [53]. In the current study, APX and POD activities significantly improved in Ca

treated plants under Cd toxicity. These results suggest that applied Ca effectively alleviate Cd-

induced oxidative stress [59]. Under heavy metal stress, Ca activates diverse protein kinases

and strengthens the antioxidant defense system [20, 60]. Tolerant plants had evolved an effi-

cient antioxidant system to balance the concentration of reactive oxygen species [28, 61].

Enzymes like APX and POD also take part in the detoxification of free radicles and lead to

sequestering of H2O2 [62]. APX is mainly localized in chloroplast, apoplast, cytosol, mitochon-

dria, and peroxisome and POD in cell walls, cytosol, and vacuoles, Both APX and POD are

mainly implicated to scavenging the H2O2 [61]. Their efficiency is enhanced during Cd

stresses and that greatly imparts stress tolerance and modulates the physiological process in

PLOS ONE Calcium induced growth modulation in maize under cadmium stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0269162 June 22, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0269162


maize seedlings in this study [63, 64]. Exogenous application of Ca remarkably decreases the

intracellular level of Cd by activation of antioxidant defense mechanism to a level capable of

suppressing the generation of ROS. This suppression is corroborated by the enhancement of

APX, SOD, POD and CAT to efficiently scavenge the toxic ROS [33]. Activation of these anti-

oxidants attributed to photosynthetic efficiency and perception of stress signals by elevation of

cytosolic Ca as an early signal event, known as Ca signature. This Ca signature is detected by

Ca sensors and then a downstream signal is transduced that subsequently enhances the defense

mechanisms [65].

Plants exposed to metal stress showed alterations in cell membrane permeability (RMP)

and consequently, the cell loses membranes integrity [66]. Cell membrane integrity is consid-

ered as a tool to regulate ionic movements and use as a selection criterion to quantify damage

magnitude. In current results, the relative RMP markedly increased under Cd stress. However,

the RMP significantly was markedly reduced by the Ca treatments that alleviated the damaging

consequences of Cd. In plants exposed to Cd stress, relative membrane permeability (RMP)

substantially increased and caused membrane impairments [67]. Under Cd stress, supple-

mented Ca decrease the electrolyte leakage that showing the defensive role of Ca to increase

the membrane stability [68]. Calcium mainly stabilizes the membrane integrity and also con-

trols the movement of divalent cations and prevent solute leakage by reducing peroxidation of

lipids [52, 69]. In addition, Ca is known to maintain the membrane integrity that is concomi-

tant with Ca-chelators to target the ROS and reduce the lipid peroxidation [70].

The scavenging of excessive ROS is a vital process by regulates the regular operation of a

cellular system. Excessive ROS can be rid of by inbuilt antioxidants defense system attributed

to enzymes viz, MDHAR, DHAR, GR, APX, POX, CAT, SOD and non-enzymes DHA, AsA,

GSSG and GSH [33].

The excessive accumulation of both MDA and H2O2 under metal stresses damages biomol-

ecules by excessive lipid peroxidation, degrades membranes, decreases photosynthesis and

hampered the activity of other essential enzymes [61]. Plants enhance the antioxidant system

to deplete the ROS which ultimately reduces oxidative stress generated by high metal concen-

trations [71]. The Ca applications as observed in this study, improved the activities of various

antioxidants (enzymatic or non-enzymatic) and reduced the level of H2O2 and lipid peroxida-

tion [20, 72]. Previous studies authenticate the pivotal role of Ca to prevent the accumulation

of cellular Cd and improve ROS-scavenging capacities that led to the reduction of ROS in

plants [33]. Calcium also up-regulates genes that are responsible to encode the antioxidant

under oxidative stress [73]. In the present work, the level of ROS increased under Cd stress,

however, the addition of Ca considerably reduced the production of ROS in maize seedlings

(Fig 1).

Anthocyanin belongs to flavonoids and naturally occurs in water-soluble plant pigments

[74]. In plants, anthocyanin plays a pivotal physiological role as scavenges free radicles,

increases the organic osmolytes and photosynthetic efficiency [75, 76]. The biosynthesis of

anthocyanin is regulated by environmental and developmental signals [77, 78]. The excessive

accumulation of anthocyanin is regarded as defense mechanism [79]. The anthocyanin con-

tents remarkably increased in the present study which was more pronounced in the highest

levels of Ca (Fig 1) that is are parallel to many previous findings [60, 80]. A high level of antho-

cyanin regulates heavy metal transport toward the vacuole and sequestration [81]. Exoge-

nously applied calcium is reported to reduce Cd toxicity by stimulating the synthesis of

glutathione-S-transferase (GST) enzyme to increase anthocyanin contents that in turn amelio-

rates the oxidative stress by scavenging the free radicals [81].

Heavy metal stress causes determinal changes in cellular structures and causes osmotic

stress [82]. Plants mitigate osmotic stress by accumulating the lower or higher weight

PLOS ONE Calcium induced growth modulation in maize under cadmium stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0269162 June 22, 2022 16 / 23

https://doi.org/10.1371/journal.pone.0269162


osmolytes that do not hinder the functioning of important metabolites [83]. During Cd stress,

plants employed several protective strategies to reduce the noxious impacts of Cd stress [17].

Osmolytes primarily reduce water potential and ensure the water balance [84], protects subcel-

lular structures, and reduce oxidative damage [85]. Plants accumulate the organic osmotica to

maintain the tissue water contents and upregulate the working capabilities of antioxidants dur-

ing stressful conditions [86, 87]. Amino acids act as organic osmolytes and participate in

osmotic adjustments, stabilize proteins in membranes [88], ion homeostasis [47], scavenges

the ROS and neutralize the redox potential during oxidative stress caused by noxious heavy

metals [88]. Calcium is an indispensable element for plant osmotic adjustments and increase

the levels of free amino acids under heavy metal stresses [89]. In the present studies, the seed-

lings showed more accumulation of osmolytes under the application of Ca (Fig 2). Ascorbic

acids (ASc) are non-enzymatic antioxidant enzymes, which act as a cofactor for many impor-

tant enzymes and accumulate in leaves [63]. Ascorbic acid plays a crucial role in protecting the

cellular metabolism from oxidative damage by acting as a reductant [90]. It serves a defensive

role during oxidative stress and reduces the H2O2 and detoxifies the free radicals [91]. In the

present study, ascorbic acid in maize seedlings was significantly enhanced by the addition of

Ca (Fig 2). Foliar applications of AsA potentially alleviate the Cd toxicity in maize by modulat-

ing the physio-chemical attributes, boosting the activities of antioxidant enzymes, and improv-

ing the photosynthetic process, and concentrations of organic osmolytes [92].

Calcium, a ubiquitous messenger, is well known to regulate metabolic processes, act as a

transducer, regulate photosynthesis and balanced the level of essential nutrients [93]. A slight

change in an intracellular Ca concentration can modulate a large array of fundamental biologi-

cal processes such as growth, physiology and biochemical process under heavy metal stress

[94]. In the present work, Ca modulated various fundamental processes such as growth, physi-

ological and biochemical processes in maize seedlings which ultimately enhanced Cd toler-

ance. Supplementation of Ca to plants actively participates in heavy metals tolerance

mechanisms [95]. Exogenously applied Ca2+ enhanced activities of cellular antioxidants such

as APX, POD which were helpful to restrict the production of ROS to prevent oxidative dam-

age [24]. Several studies confirm the importance of the Ca2+ by induction of Cd tolerance

since physio-biochemical characters of Ca2+ are quite similar to that of Cd2+, these similarities

result in the replacement of Cd2+ with Ca2+ metal. Thus, Ca2+ uptake by receptors/ channels

can be enhanced which increases Ca2+ storage viability in plants under Cd stress because of

the similarity in ionic radii of both metals [19, 96]. Calcium (Ca) also works as a second mes-

senger in plants, which underpins the abiotic stress-induced damage. However, the sequence

of action of these signalling molecules against cadmium (Cd)-induced cellular oxidative dam-

age remains unrevealed [33]. In this prospect, more work can be done to understand the exact

mechanism of the Ca induced mitigation of Cd stress by enhancing the growth, physiochem-

ical and genetic approaches.

Conclusions

In conclusion, Cd-induced oxidative stress caused negative influences on the growth and phy-

sio-biochemical traits of plants. In response to Cd stress, plants got triggered their defense

mechanisms, nonetheless at the same time, Cd stress increased the level of stress markers

(MDA, H2O2) and plants are unable to handle Cd-induced cellular impairment as witnessed

by elevation in RMP and reduction in anthocyanin contents (ACC). Plants showed a low level

of organic osmolytes (TSP, Amino acids) under Cd stress. Exposure to Cd caused a reduction

in growth traits (SL, RL, SFW, SDW, RFW, RDW), a reduction in activities of antioxidants

(APX, POD), and markedly declined the photosynthetic pigments (Chl a, Chl b and T.Chl).
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However, supplementation of Ca markedly reduced the oxidative stress by elevating the level

of antioxidants (APX, POD), and non-antioxidants (ascorbic acid) to scavenge the ROS. Exog-

enously applied Ca ameliorated the oxidative stress by increasing the level of organic osmolytes

as total soluble proteins, and free amino acids to maintain the integrity of cellular membranes

and cell osmotica. Maintenance of organic osmotica causes an increase in antioxidant enzymes

that ultimately suppressed ROS and enhanced the accumulation of organic osmolytes. Collec-

tive responses are reflected in the form of improved growth and more photosynthetic pig-

ments. Therefore, Ca supplementation under Cd stress, enabled the maize to counter

determinal effects of Cd-induced damages. In future prospect, the biosynthetic pathways

involved in the up-regulation of antioxidants and organic osmolytes should be further

investigated.
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