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Coccidiosis, Salmonella, and Newcastle are the common poultry diseases that

curtail poultry production if they are not detected early. In Tanzania, these

diseases are not detected early due to limited access to agricultural support

services by poultry farmers. Deep learning techniques have the potential for

early diagnosis of these poultry diseases. In this study, a deep Convolutional

Neural Network (CNN) model was developed to diagnose poultry diseases by

classifying healthy and unhealthy fecal images. Unhealthy fecal images may be

symptomatic of Coccidiosis, Salmonella, andNewcastle diseases.We collected

1,255 laboratory-labeled fecal images and fecal samples used in Polymerase

Chain Reaction diagnostics to annotate the laboratory-labeled fecal images.

We took 6,812 poultry fecal photos using anOpenData Kit. Agricultural support

experts annotated the farm-labeled fecal images. Then we used a baseline

CNN model, VGG16, InceptionV3, MobileNetV2, and Xception models. We

trained models using farm and laboratory-labeled fecal images and then

fine-tuned them. The test set used farm-labeled images. The test accuracies

results without fine-tuning were 83.06% for the baseline CNN, 85.85% for

VGG16, 94.79% for InceptionV3, 87.46% for MobileNetV2, and 88.27% for

Xception. Finetuning while freezing the batch normalization layer improved

model accuracies, resulting in 95.01% for VGG16, 95.45% for InceptionV3,

98.02% for MobileNetV2, and 98.24% for Xception, with F1 scores for all

classifiers above 75% in all four classes. Given the lighter weight of the trained

MobileNetV2 and its better ability to generalize, we recommend deploying this

model for the early detection of poultry diseases at the farm level.

KEYWORDS

deep learning, agriculture, poultry disease diagnostics, dataset, image classification

1. Introduction

The continent of Africa contributes 10% to the global poultry population of 23

billion live chickens (FAO, 2013; FAOSTAT, 2016). The GDP contribution from the

poultry sector in Tanzania was valued at 76 million USD in 2017 (Michael et al., 2018).

Tanzania has the third largest livestock population in Africa with 36 million chickens

in 4.6 million households (27 million people) (URT, 2015). However, there are many

challenges that farmers in Tanzania face that have led to low productivity (URT, 2015).

In particular, the poultry sector is challenged by low productivity due to diseases such as
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Salmonella, Newcastle and Coccidiosis. The economic effects of

such widespread poultry diseases include high mortality rates

and failure to compete on the export market with other high

producing countries (FAO, 2013). In addition, there are other,

more broad, downstream effects of farm and crop diseases

that include food insecurity in specific regions and economic

instability for small scale farmers (Michael et al., 2018). This

makes the impact of poultry diseases in Tanzania all the more

threatening since poultry farms in the country operate on a

small to medium scale (URT, 2015). They are also typically

managed by young people and women in peri-urban and rural

areas. The farms are either located in the backyard grounds of

many farmers’ homes or they are semi-intensive in deep litter.

Deep litter refers to a poultry farming system where poultry are

maintained indoors on floors made of concrete covered with

litters of sawdust or wood shavings (FAO, 2013). This farming

system is mainly used in peri-urban areas. The impact of poultry

diseases in these kinds of farms could lead to a total loss of

poultry due to the lack of rapid diagnosis and treatment (URT,

2015).

The common poultry diseases that affect all farming

systems include Salmonella, Infectious Coryza, Gumboro

Pullorum, Newcastle, and Coccidiosis (Shirley et al., 2004;

Desin et al., 2013; Mulisa et al., 2014; OIE, 2018). In addition,

Salmonella disease is zoonotic. Globally, the costs associated

with vaccination, mortality and control for coccidiosis poultry

disease are estimated at Âč2 billion annually (Shirley et al.,

2004). Early detection methods of the diseases have the potential

to control them and improve poultry health. Salmonella,

Coccidiosis and Newcastle diseases are diagnosed by laboratory

procedures using fecal samples and it takes 3–4 days to get

results. Access to these lab services by farmers is expensive and

limited. Field extension officers and experienced farmers use

clinical signs to diagnose the diseases in the field. The extension

officers are the main source of information to farmers on poultry

disease transmission, diagnosis, treatment and control (Msoffe

et al., 2018). However, the extension officers are limited in

number; one extension officer serves 10,000 to 20,000 farmers

(Msoffe et al., 2018). There is a need to develop a cheap

and practical diagnostics tool for poultry diseases for use by

poultry farmers and extension officers. Such diagnostic tools

can be developed using methods such as machine learning and

deep learning.

Deep learningmethods have been demonstrated to automate

the disease diagnostics procedures for both human and livestock

(Quinn et al., 2016; Zhuang et al., 2018; Okinda et al.,

2019; Wang et al., 2019; Yadav and Jadhav, 2019). They have

outperformed traditional imaging techniques in diagnostics

of malaria, tuberculosis and intestinal parasite (Quinn et al.,

2016). Deep learning has also been used in the diagnosis of

crop diseases that attack cassava and bananas in East Africa

(Owomugisha et al., 2014; Owomugisha and Mwebaze, 2016).

With the help of deep learning, farmers have the potential to

better diagnose poultry diseases and improve livestock health

which would increase the production. Support Vector Machine

(SVM) is one of the machine learning methods deployed to

detect avian pox disease in poultry and diagnosis of hock

burn prevalence in broiler chickens (Zhuang et al., 2018).

The SVM approach has also been applied in monitoring egg

production curves for commercial poultry farms and detection

of broilers health status (Morales et al., 2016). The application

of deep learning methods in disease diagnosis requires a

dataset annotated by laboratory techniques such as Polymerase

Chain Reaction (PCR).

The PCR is a molecular biology technique for rapid

diagnostics. PCRmethod is used for detection and identification

of pathogens through amplification of DNA sequences unique

to the pathogen (Oliveira et al., 2003; Henderson et al., 2006).

It saves time by reducing the testing process to several hours,

compared to conventional methods of producing culture that

takes over a week for diagnosis. However, the PCR tests are

too expensive for poultry farmers to afford. In this study, we

applied deep learning methods and PCR diagnostics to develop

(i) a poultry diseases dataset and (ii) an end-to-end pipeline

to diagnose poultry diseases of Coccidiosis, Salmonella, and

Newcastle disease. Then, we proposed a suitable deep learning

model for deployment of methods such as mobile application

for early detection of poultry diseases at farm level.

2. Related work

2.1. Poultry diseases overview

Coccidiosis is caused by parasites of the genus Eimeria

that affects the intestinal tracts of poultry. It is ranked as one

of the leading sources of protozoan-caused deaths in poultry

with Eimeria tenella (E.tenella) among the most pathogenic

parasites (Lim et al., 2012). The typical diagnostic procedure

involves counting the number of occysts (expressed as occysts

per gram opg) in the feces and/or examining the intestinal tract

to determine the lesion scores (Johnson and Reid, 1970; Grilli

et al., 2018).

Salmonella spp are bacterial pathogens of the genus

Salmonella that cause diseases in chickens, other domestic

animals, and humans (Desin et al., 2013). Salmonella pullorum

(SP) and Salmonella gallinarum (SG) pathogens cause pullorum

disease and fowl typhoid in poultry respectively (Desin et al.,

2013). Salmonella enteritidis (SE) and Salmonella typhimurium

(ST) strains are associated with human infections transmitted

through the food-chain of poultry and poultry products (Desin

et al., 2013). Polymerase Chain Reaction (PCR) procedure is

used for detection and identification of the various Salmonella

strains (Oliveira et al., 2003).

Newcastle disease is an acute viral infection in poultry and

other bird species caused by avian paramyxovirus serotype 1

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2022.733345
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Machuve et al. 10.3389/frai.2022.733345

(APMV-1) viruses (Malik et al., 2021). Newcastle disease virus

(NDV), APMV-1 is diagnosed by serology or virus isolation tests

or real-time reverse-transcription PCR procedure (Wise et al.,

2004). These diseases can be diagnosed early using machine

learning and deep learning methods.

2.2. Machine learning methods in poultry

Recently, several studies have proposed machine learning

methods as effective methods for detecting poultry diseases

(Zhuang et al., 2018; Okinda et al., 2019; Wang et al.,

2019). Wang et al. (2019) proposed an automated broiler

digestive disease detector based on deep Convolutional Neural

Network models, Faster R-CNN and YOLO-V3, to classify

fine-grained abnormal broiler droppings images as normal and

abnormal. Faster R-CNN achieved 99.1% recall and 93.3% mean

average precision, while YOLO-V3 achieved 88.7% recall and

84.3% mean average precision on the testing data set. Wang

et al. (2019)’s study contributes to the development of an

automatic and non-contact model for identifying and classifying

abnormal droppings in broilers suffering from digestive disease;

however, an effective solution is required for early detection of

poultry diseases.

In another study, Okinda et al. (2019) proposed a machine

vision-based monitoring system for broiler chicken. Feature

variables were extracted based on 2D posture shape descriptors

andmobility features. Two sets of classifiers were then developed

based on only the posture shape descriptors, and on all the

feature variables. The Support Vector Machine (SVM) using

a radial basis kernel function outperformed all the other

models with an accuracy of 0.975. Despite the fact that the

proposed system provides an early warning and prediction of

an occurrence of disease continuously and non-intrusively, the

system needs to be validated with different types of chicken

breeds and infection types.

Support Vector Machine (SVM) were also used in another

study that proposed an early warning algorithm for detecting

sick broilers (Zhuang et al., 2018). The posture features of

healthy and sick chickens were extracted, the eigenvectors

were established, the postures of the broilers were analyzed by

machine learning algorithms, and the diseased broilers were

predicted. Accuracy rates of 84.2, 60.5, and 91.5% were obtained,

but using all the features can yield an accuracy rate of 99.5%.

Despite the fact that the study proposed a suitable method for

small-sample learning and disease diagnosis, the focus was only

based on a posture-based algorithm.

Therefore, fecal samples and images have potential in

providing early mechanisms of diagnosing poultry diseases.

Image data is unique in developing countries including

Tanzania. Generally, in developing countries, there are low levels

of literacy and multiple languages. The high penetration rates of

mobile phones in developing countries means we can directly

use the phones as a sensor (TCRA, 2021). There is a limitation

of publicly available datasets with images of poultry fecal samples

which hinders progress of research on early detection of poultry

diseases. This study has developed a dataset that is available

publicly for poultry diseases diagnostics.

3. Methods

3.1. The dataset

In this study, we developed a dataset of poultry fecal

images for Coccidiosis, Newcastle, and Salmonella poultry

diseases and healthy poultry. We gathered the fecal images from

layers, cross, and indigenous breeds of chicken. These breeds

are more vulnerable to diseases because they have a longer

lifetime at the farms upto 18 months, compared to 5 weeks for

broiler breeds. We collected the fecal images and fecal samples

periodically between February 2020 and February 2021 from

farms in Arusha and Kilimanjaro regions in Tanzania. We used

the Open Data Kit (ODK) application installed on ordinary

smartphones (Tecno, Infinix, Huawei, Samsung) to take photos

of poultry fecal. ODK is a standard application for mobile data

collection with support for geo-locations, images, audio clips,

video clips, barcodes, numerical and textual answers (Hartung

et al., 2010). Figure 1 shows the user interface of the ODK

application and the enumerator collecting data in the field and

Supplementary Figure 1 indicates the typical fecal images.

The data was stored on Google Drive. We organized the

dataset in two groups. The first dataset consisted of 1255 poultry

fecal images. In establishing this dataset, we collected fecal

images and fecal samples from poultry farms. We stored the

fecal samples in the freezer at −80 degrees Celsius in zip bags,

labeled using barcodes. The barcodes captured using the ODK

application link the samples and corresponding images. The

PCR diagnostics procedure is expensive and thus we conducted

it on only 16% of the total fecal samples at the molecular

laboratory of Nelson Mandela African Institution of Science

and Technology (NM-AIST). We used this to accurately detect

and identify the diseases and establish labels on the images

for the four (4) classes of Coccidiosis, Newcastle, Salmonella,

and healthy poultry. The second dataset of the remaining

6,812 fecal images was established by only taking poultry

fecal images and labeling them with the assistance from the

animal health professionals i.e., veterinarian and field officer.

The distribution of the dataset in the four classes is presented

in Table 1.

Once all of the images were collected, we annotated

the images for various computer vision tasks such as image

segmentation, image object detection, and image classification.

We began by first renaming the images in each class to

be the class name and a number (i.e., “cocci.1.png” or

“healthy.56.png”). We then stored the mapping of the original
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FIGURE 1

Veterinarians and researchers administering poultry data collection using ODK.

TABLE 1 Dataset distribution of poultry fecal images for three

diseased classes and one healthy class.

Class - fecal images Laboratory labeled - Farm labeled -

fecal images fecal images

Healthy 347 2,057

Salmonella 349 2,276

Coccidiosis 373 2,103

Newcastle 186 376

Total 1,255 6,812

file name and new file name in a data frame along with other

metadata about the image such as GPS coordinates. We stored

the images in the original size in folders labeled by each class

name. We annotated the images for the computer vision tasks

of object detection and image segmentation using the LabelImg

and LabelMe tools respectively (Russell et al., 2008; Tzutalin,

2015). In the labeling process of the farm-labeled fecal images,

the color and shape of the images were the distinguishing feature

between the different diseases. The fecal images for coccidiosis

disease were predominantly dark brown with a flat shape; green

color for Newcastle disease with a solid shape; white and loosely

shaped for salmonella; gray, white, and solid shape were for

the healthy label. It is likely to make labeling errors mainly for

salmonella and healthy fecal images. The white color can be

misinterpreted, the main difference is the texture: slimy and

solid for salmonella and healthy respectively.

3.2. PCR diagnostics procedure

In order to label the fecal samples, we used existing primers

from literature to amplify the target DNA/RNA on the poultry

fecal samples for PCR. A primer is a short, single-stranded

DNA used in PCR to define the region of the DNA that will

be amplified. If the amplification of the target DNA or RNA

is detected, it means the pathogen (virus or bacteria) was

present in the sample (Menon et al., 1999). After identifying the

primers, they were used for PCR diagnostics at the molecular

laboratory of the Nelson Mandela African Institution of Science

and Technology (NM-AIST). The fecal samples were stored at

−80 degrees celsius and a sorting process was conducted to

select the samples for PCR. The PCR diagnostics were conducted

using reagents and kits from Zymo Research. The protocol is

summarized as follows:

1. DNA sample loading:fecal samples were placed on Lysis tubes

that contain bashing beads. Each sample was labeled with lab

numbers.

2. DNA extraction: the samples were mechanically ruptured

using Centrifuge 5430 R Eppendof machine and bead ruptor

24 repeatedly. A genomic buffer was added to each sample

for binding the DNA. The filtered DNA was then suitable for

PCR and other downstream applications.

3. Amplification: The samples were loaded on the PCR machine

to amplify the targeted DNA using the identified primers.

The machine was set to the corresponding annealing

temperatures for primers of the corresponding disease.
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4. Quantification: The DNA concentration was measured for

every sample using a Spectrophotometer. The standard

ratio for DNA concentration is in the range 1.8–2.0.

Samples within this range of concentration were retained

and considered passed on PCR. Samples out of this range

were discarded.

5. Detection: We then confirmed the identified samples using

the gel electrophoresis technique. We viewed the amplified

DNA fragments on a visual dye on the gel.

3.3. Experimental design and setup

The goal of our experimentation was to obtain a deep

learning model for detecting three poultry diseases and to test

its deployment on smartphones. The workflow indicated in

Figure 2 guided the study through four steps: data generation,

data annotation, modeling, and deployment. We generated a

dataset of poultry fecal images for poultry diseases detection.

The dataset was appropriate because the clinical signs of the

poultry diseases are similar causing a challenge for farmers to

differentiate the diseases. The fecal images display differences

between the diseases that are clearer and easier to understand

for farmers than the clinical signs. The clinical signs often are

identified and validated by an agricultural support officer or a

veterinarian. The clinical signs were not collected in this study.

The color and shape of poultry fecal supplement clinical signs

in detecting the diseases. The features of the data collected from

farms included the color and shape of droppings and the number

of chickens. The limitation of the dataset was missing clinical

history data of the chickens. Farmers rarely keep these records.

The annotation process of the dataset is detailed in the previous

section. The next stage after annotation was modeling of images

that were stored in the cloud. The modeling task was multi-class

image classification for early detection of healthy, Newcastle,

Coccidiosis and Salmonella poultry diseases.

In this study, we used Convolutional Neural Network

(CNN) to train the images to classify three poultry diseases

(Yadav and Jadhav, 2019). The CNN uses multiple feature

extraction stages that learn representations automatically from

the data (Goodfellow et al., 2016). We trained a CNN baseline

model for multi-class image classification using Keras (Chollet,

2018; McDermott, 2020). Later, we used the transfer learning

approach based on different CNN architectures since the

images are limited in number for training from scratch for

other CNN architectures (Chollet, 2018). We conducted the

experiments using Google Colab Pro environment with a Tesla

P100 GPU and 27.3 GB high-RAM runtime on TensorFlow

library. We pre-processed the images using a combination

of data augmentation techniques with good performance that

included flipping and shifting (Howard, 2013; Pawara et al.,

2017), with additional and varying augmentation techniques

applied to specific model architectures (see Sections 3.5.1 to

3.5.4). In the following experiments, the dataset was split at

80 and 20% for training and testing respectively. Furthermore,

15% of the training data was used for validation. The dataset

split used for baseline, pre-training, fine-tuning and testing is

summarized in Supplementary Table 5 and hyper-parameters in

Supplementary Table 4.

3.4. Baseline model

We pre-processed the image data using Keras

ImageDataGenerator class (TensorFlow, 2022). It involved

normalization and augmentation of the image data. We

normalized the image pixel values in the range between 0

and 1 by the rescale argument of ImageDataGenerator class.

The augmentation included: rotation at 90 degrees, varying

the brightness in the range 0.1 to 0.7, shifting the width by

50%, and horizontally/vertically flipping images. The input

images were resized to a target size of 128 × 128 pixels when

loaded to memory using the flow_from_directory method of the

ImageDataGenerator class.

After completing pre-processing of the images, we used a

Keras model with the Sequential API to establish the building

blocks of the CNN model. The input layer consisted of one

convolutional block with 32 filters of window size 3 × 3 for

input images of size 128 × 128. This was followed by four

convolutional “blocks” each with (i) Convolutional layers, (ii)

Max Pooling layer, and (iii) Dropout regularization of 0.2.

All convolutional layers used the rectified linear unit (ReLU)

activation function. The Fully-connected layer was constructed

using Dense layers with a Softmax activation function since it is

a multi-class problem. The model was trained at 100 epochs.

3.5. Experiments on transfer learning

The baseline experiment was a proof of concept that the real-

world dataset of fecal images was feasible for classifying the three

poultry diseases. However, the baseline model is not suitable

for deployment on a mobile device. The baseline model learned

from scratch had a limited number of features compared to

transfer learning approaches, which providemanymore features

to improve the model performance and generalization (Hewitt

and Gunes, 2018; Mehra et al., 2018). We then used the transfer

learning approach for image classification to develop an end-

to-end pipeline to diagnose the three poultry diseases. This

involved four deep learning models with pre-trained weights:

VGG16, InceptionV3, MobileNetV2, and Xception (Simonyan

and Zisserman, 2014; Szegedy et al., 2016; Chollet, 2017; Sandler

et al., 2018). We pre-trained and fine-tuned the deep learning

models with a dataset of farm-labeled fecal images mixed with

the laboratory-labeled fecal images. The goal of mixing the
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FIGURE 2

Automated poultry disease diagnostics research workflow.

dataset for training was to increase the size and to obtain a

more generalized performance. The test dataset consisted of

only farm-labeled fecal images to reflect the types of datasets

encountered in the field. The goal of fine-tuning was to improve

the performance of the pre-trained models. We conducted

another set of experiments with frozen batch normalization

layers to further improve the accuracy of fine-tuned models and

reduce overfitting (Ioffe and Szegedy, 2015).

The transfer learning workflow on pre-trained experiments

using the four architectures mentioned above involved the

following steps: (i) Instantiating a base model and loading

pre-trained Imagenet weights into it; (ii) Freezing all layers

in the base model by setting trainable = False. This

will preserve the information they contain during training; (iii)

Creating a new classification model (for 4 poultry classes) on top

of the output of several layers from the frozen base model, by

rebuilding the dense and softmax layers. This will turn the old

features into predictions on new poultry fecal images dataset;

(iv) Training the new model on the poultry fecal images dataset

(Chollet, 2020). We used a similar workflow on fine-tuned

experiments except step (ii) changed to setting trainable =

True to unfreeze the layers at certain stages of the architecture,

with the number of layers that were unfrozen varying across

the different models. The aim of fine-tuning the models was

re-training on the poultry fecal images dataset with a very

low learning rate (reduces overfitting) to achieve improvements

on model performance. Then on the last set of experiments

to further improve the accuracy of fine-tuned models, we

froze the batch normalization layers (contained in the base

model) by setting trainable = False on these layers. This

prevents the batch normalization layers from updating their

batch statistics (mean and variance) during training and will not

destroy the representations learned by the model up to that step

(Chollet, 2020).

3.5.1. VGG16

We used the VGG16 model, which is a convolutional neural

network trained on a subset of the ImageNet dataset (Simonyan

and Zisserman, 2014). We first pre-processed the fecal images

dataset by performing normalization and augmentation using

the ImageDataGenerator. All the numerical values in our input

images were normalized to a value in the range [−1, 1]. In

addition to flipping the images vertically and horizontally, we

augmented them by shifting the width and height by 50%,

rotation range of 90 degrees and varied the brightness in the

range 0.1 to 0.7 (McDermott, 2021). Augmentation increases

variance across images (Shorten and Khoshgoftaar, 2019). We

specified the validation split of the training data to be used

for validation at the end of each epoch. We provided the

target_size of 224 × 224 pixels, the required size for the

VGG16 model input and a batch size of 64. We performed

transfer learning without fine-tuning by freezing all the pre-

trained layers of the base model. We created the new Fully-

Connected layer using the fecal images inputs by flattening

the outputs of the base model, followed by a Dense layer with

4,096 neurons then another Dense layer of 1,072 neurons.

Both dense layers used ReLU activation function. Then we

applied a dropout of 0.2 and a Dense layer to obtain the

final prediction of 4 classes and Softmax activation. We then

fine-tuned the VGG16 model by unfreezing the last two pre-

trained layers and lowering the learning rate to help the

Fully-Connected layer learn robust patterns previously learned.

In the third experiment, we froze the BatchNormalization
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layers of the fine-tuned model to improve the accuracy

(Ioffe and Szegedy, 2015; Chollet, 2020).

3.5.2. InceptionV3

We conducted another experiment using the InceptionV3

model (Szegedy et al., 2016). The pre-processing of the fecal

images involved normalization of all the pixel values in input

images to a value in the range [0, 1]. The augmentations

techniques applied to the training fecal images included shifting

the height and width by 20%; rotation range of 40 degrees;

shear and zoom range of 20%. We loaded the data for training

with a batch size of 64 and a target size of 299 × 299 pixels.

In the base pre-training, all convolutional InceptionV3 layers

were frozen (non-trainable). Then, we added a global spatial

average pooling layer followed by a Dense layer (1,024 neurons)

with ReLU activation function. The output Dense layer had

a size of four, equivalent to the number of classes of fecal

images on Softmax activation function. We then trained only

the top layers. In the fine-tuning experiment, we froze the

entire network except the mixed8 layer for feature extraction

in InceptionV3. The mixed8 is a 8 × 8 × 1280 convolution,

the top layer of InceptionV3 model. We re-compiled the

model and trained at a lower learning rate using the hyper-

parameters indicated on Supplementary Table 4. In the third

experiment, we froze the BatchNormalization layer of the

fine-tuned model.

3.5.3. MobileNetV2

TheMobileNetV2 architecture is one of the TensorFlow pre-

trained models for image classification (Sandler et al., 2018).

We used the Keras ImageDataGenerator class to load the

images from sub-directories with a batch size of 64 and target

shape of 224 × 224 in all three experiments. The image data

augmentation was vertical flip, brightness range of [0:2; 1],

and random rotation of 45 degrees. We normalized the pixel

values in the range [0; 1] by setting the rescale = 1.0/255.

attribute in the ImageDataGenerator class. We shuffled

the training data (Shuffle=True) and the validation and

test data was not shuffled (Shuffle=False). In the first

experiment, we pre-trained the base model by freezing all

the layers and added a new classifier. The classifier consisted

of a global average pooling layer, followed by a dropout of

0.2 for regularization and the Dense layer for prediction of

size 4 and Softmax activation function. In the fine-tuning

experiment, we unfroze the base model and retrained with the

same classifier. In further improving the accuracy, we froze the

BatchNormalization layers of the fine-tuned model in the third

experiment. The classifier remained the same as in the previous

experiments above.

3.5.4. Xception

In this experiment, we used a different pre-trained

model on the TensorFlow framework, the Xception model

(Chollet, 2017). The image pre-processing step using the

ImageDataGenerator class involved normalization in the

range [0, 1], brightness in the range [0.1, 0.7] and image data

augmentation of horizontal and vertical flip. We provided the

target size of 299 × 299 pixels, for the Xception model input

and a batch size of 64. The training and validation data were

shuffled and the test set was not shuffled. We used a similar

approach to the MobileNetV2 model in compiling the model

with the hyper-parameters indicated in Supplementary Table 4

in the pre-training and two fine-tuning experiments. In the

fine-tuning experiments, we unfroze 132 layers of the base

model for training.

4. Results and discussion

We developed a poultry fecal images dataset to classify

three poultry diseases. The fecal images dataset in Table 1

has four classes of Coccidiosis, Salmonella, Newcastle disease

and healthy. We used the dataset to train the Convolutional

Neural Network (CNN) architectures presented in the previous

sections. The model performance for transfer learning

experiments and the baseline model are indicated in Table 2.

We used accuracy as one of the performance metrics on

the experiments of the five models: baseline CNN, VGG16,

InceptionV3, MobileNetV2 and Xception. In training the

models without fine-tuning, the baseline model had the lowest

accuracy of 83.06% on test data. The InceptionV3 had the

highest accuracy of 94.79%. In fine-tuning the transfer learning

models, the accuracy improved on test data for the four models.

The accuracy on fine-tuned models for VGG16 model was

94.65%, InceptionV3 at 94.94%, MobileNetV2 at 97.14% and

Xception model 97.36%. The accuracy of fine-tuned models

with frozen BatchNormalization layers improved the accuracy

of fine-tuned models. The accuracy were: VGG16 model was

95.01%, InceptionV3 at 95.45%, MobileNetV2 at 98.02% and

Xception model 98.24%. When referring to the loss curves

in Supplementary Figures 4, 5, the accuracy for MobileNetV2

and Xception on the Batchnorm frozen experiment both seem

to be around 0.75–0.85 after 10 epochs, and loss seems to be

around 0.65–0.75. MobileNetV2 seems to stabilize validation

loss at 0.6 around 20–30 epochs with no sign of over-fitting. The

validation loss of Xception model (Supplementary Figure 5)

is unstable above 15 epochs suggesting some overfitting.

In addition, model size of MobileNetV2 batchnorm frozen

model is almost 10 times smaller (26 MB) than the Xception

model (238 MB). The trainable parameters for MobileNetV2

were 2.19 m and Xception had 20.76 m parameters. All

Convolution and Separable Convolution layers in Xception

are followed by batch normalization (Chollet, 2017). The
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TABLE 2 Model performance results—accuracy and F1 scores (from frozen batchnorm).

Models Accuracy (without

fine-tuning)

%

Accuracy

(fine-tuning)

%

Accuracy

(fine-tuning),

frozen batchnorm

%

F1 score, frozen

batchnorm

{cocci, healthy, ncd,

salmo}

Baseline CNN 83.06 {0.92, 0.86, 0.14, 0.81}

VGG16 85.85 94.65 95.01 {0.98, 0.95, 0.77, 0.95}

InceptionV3 94.79 94.94 95.45 {0.98, 0.94, 0.77, 0.95}

MobileNetV2 87.46 97.14 98.02 {0.99, 0.97, 0.94, 0.99}

Xception 88.27 97.36 98.24 {0.97, 0.98, 0.98, 0.99}

model is batch normalization heavy (Ioffe and Szegedy, 2015).

In the fine-tuning experiments, we unfroze the layers of the

base model by setting trainable=True and disabled

weight updates by setting training=False. The batch

normalization weights were not updated in the learning

phase and this highly increased the accuracy compared to

the without fine-tuning results. When we froze the batch

normalization layers, the layers were in inference mode

(during training). When the batchnorm layers are in inference

mode in training (base_model.trainable=True and

base_model(inputs, training=False)), their

internal state will not change during training, the trainable

weights will not be updated. The accuracy slightly increased by

0.88% for both MobileNetV2 and Xception models in frozen

batchnorm experiments.

We determined other performance metrics of the classifiers;

the baseline CNN and the fine-tuned transfer learning models

with frozen batch normalization layers. These classifiers have

higher accuracy than the ones trained without fine-tuning.

Supplementary Table 6 reports the precision, recall, and F1

score of the classifiers from the final experiment with frozen

Batchnorm. Our classifiers achieved F1 score greater than

75% for all four classes in four models. The highest F1

score indicates the highest number of correct predictions.

The F1 score of the cocci class was highest in the

classifiers: 91.61% (baseline CNN), 97.85% (VGG16), 97.79%

(InceptionV3), 99.17% (MobileNetV2), and 98.71% (Xception).

The precision of Xception is the highest for two classes

(Salmonella and healthy), MobileNetV2 for the Coccidiosis

class and InceptionV3 was highest for the Newcastle disease

class. The Xception model has the ability to correctly predict

Salmonella at 99.33% and healthy at 97.84%. MobileNetV2

model can correctly predict Coccidiosis disease at 98.82%. The

InceptionV3 model can predict Newcastle disease at 100%

from the poultry fecal images. The model recall is 100% on

InceptionV3 and Xceptionmodels for the cocci class meaning all

relevant Coccidiosis images are correctly classified by the model.

The recall on theMobileNetV2 and Xceptionmodels were above

85% for all four classes. The lowest recall score on Inception V3

model for Newcastle disease was 62.7%.

We also explored the visualizations of the feature maps

extracted from first convolutional layer close to the input image

and on layers close to the output. These are indicated in

Supplementary Figure 6. It was observed that the feature maps

extracted close to the input detect fine-grained detail of the fecal

images, whereas feature maps close to the output have more

general features of the images.

Given the lighter weight of the trained MobileNetV2

and its superior ability to generalize, as evident by the lack

of over-fitting in its validation loss (Supplementary Figure 4),

we recommend deploying this model for early detection of

poultry diseases at the farm level. The workflow will involve

converting the MobileNetV2 model to TensorFlow Lite format

before running it on smartphones (Android or iOS devices)

(Moroney, 2020). The conversion to TensorFlow Lite format

has minimum impact on the model accuracy and reduces

the model size (Moroney, 2020). The accuracy of the test set

for MobileNetV2 and Xception models on the BatchNorm

frozen experiment indicates a very small difference, with

Xception having higher accuracy by 0.22%. The other metrics

of precision, recall, and F1 score on MobileNetV2 are all

above 87%. Supplementary Figure 7 indicates the inference of

MobileNetV2 and Xception models. The inference for the three

poultry diseases, Coccidiosis, Salmonella, Newcastle disease, and

healthy poultry will be conducted on the field using a mobile

device. The application will run offline which guarantees usage

without the internet.

5. Conclusion

This paper presented a deep learning model for detecting

poultry diseases. A deep Convolutional Neural Network (CNN)

model was developed to diagnose healthy and unhealthy poultry

fecal images. We trained on different deep convolutional neural

network architectures that included a baseline CNN, VGG16,

InceptionV3, MobileNetV2, and Xception. We trained the

models with farm labeled and laboratory labeled fecal images

and later tested on farm labeled fecal images. After comparison

with other models, the MobileNetV2 model showed the highest
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potential for deployment on smartphones, to be used as a

diagnostic tool that farmers can use to distinguish diseased

from healthy poultry based on fecal images. The field testing

of the deployed model will be conducted in collaboration

with a network of farmers’ groups in Tanzania. This proposed

solution will be less expensive for farmers than PCR diagnostics

tests in the laboratory. Even though this model was trained

using data from several farms in northern Tanzania, we expect

it will be able to perform effectively elsewhere in Tanzania,

where the poultry disease distribution is the same. We do

not expect the model to be impacted by environment and

distribution shift.

In providing technical approaches associated with poultry

health, this study contributed a new dataset on poultry fecal

samples which can be used by other researchers in the field

(Machuve et al., 2021a,b). The study was limited to the

classification approach which has been used to classify healthy

and unhealthy images. As part of future work, object detection

for real time monitoring and segmentation may be applied

in order to carry out real time prediction and quantification.

Further, we recommend training and field testing of the solution

with farmers.
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