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Abstract

The Multiple Sequence Alignment (MSA) is a computational abstraction that represents a partial summary either of indel
history, or of structural similarity. Taking the former view (indel history), it is possible to use formal automata theory to
generalize the phylogenetic likelihood framework for finite substitution models (Dayhoff’s probability matrices and
Felsenstein’s pruning algorithm) to arbitrary-length sequences. In this paper, we report results of a simulation-based
benchmark of several methods for reconstruction of indel history. The methods tested include a relatively new algorithm for
statistical marginalization of MSAs that sums over a stochastically-sampled ensemble of the most probable evolutionary
histories. For mammalian evolutionary parameters on several different trees, the single most likely history sampled by our
algorithm appears less biased than histories reconstructed by other MSA methods. The algorithm can also be used for
alignment-free inference, where the MSA is explicitly summed out of the analysis. As an illustration of our method, we
discuss reconstruction of the evolutionary histories of human protein-coding genes.
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Introduction

The Multiple Sequence Alignment (MSA), indispensable to

computational sequence analysis, represents a hypothetical claim

about the homology beteen sequences. MSAs have many different

uses, but the underlying hypothesis can often be classified as a

claim either of structural homology (the 3D structures align in a

particular way) or of evolutionary homology (the sequences are

related by a particular history on a given phylogenetic tree). These

types of hypothesis are similar, but with subtle (and important)

distinctions: at the residue level, a claim of evolutionary homology

(direct shared descent) is far stronger than a claim of structural

homology (same approximate fold). Furthermore, both types of

MSA–evolutionary and structural–typically only represent summa-

ries of the respective homologies: some fine detail is often omitted.

For example, an evolutionary MSA may–or may not–include the

ancestral sequences at internal nodes of the underlying tree.

Structural and evolutionary MSAs are often conflated, but they

have quite different applications. For example, a common use for a

structural MSA is template-based structure prediction, where a query

sequence is aligned to a target of known structure; the success of

this prediction reflects the number of query-template residues

correctly aligned [1]. By way of contrast, a common application

for an evolutionary MSA is to identify regions or sites under

selection, the success of which depends on accurate reconstruction

of the evolutionary history [2,3].

Evaluation of alignment methods is typically done with implicit

regard for the structural interpretation. Many benchmarks have

used metrics based on the Sum of Pairs Score (SPS) [4]. In the

situation that a query-template pairwise alignment is randomly

picked out of the MSA, the SPS effectively estimates the

proportion of homologous residues that are correctly identified.

Several alignment methods attempt to maximize the posterior

expectation of SPS or similar metrics. This appears to improve

accuracy, particularly when measured with reference to structural

homology. However, it does not automatically confer evolutionary

accuracy – a correct reconstruction of the evolutionary history of

the sequences.

Several studies suggest that multiple alignment for evolutionary

purposes is still a highly uncertain procedure [5], and that errors

therein may significantly bias analyses of evolutionary effects [6–

11]. A useful component of these studies is simulation of genetic

sequence evolution [6], which appears to better indicate

evolutionary accuracy than benchmarks derived from protein

structure alignments. Simulations can be made quite realistic given

the abundance of comparative sequence data [12].

The current state-of-the-art in phylogenetic alignment software

is a choice between (on the one hand) programs that lack explicit

models of the underlying evolutionary process, and so are not

framed as statistical inference problems [6], and (on the other

hand) Bayesian Markov chain Monte Carlo (MCMC) methods,

which are statistically exact but prohibitively slow [13,14].

A telling observation is that while substitution rate is routinely

measured from MSAs and used as an indicator of natural

selection, there is relatively little analogous use of indel rate. As we

report here, it seems highly likely that even if indel rate is a useful

evolutionary signal (which is eminently plausible), the present
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alignment methods distort measurements of this rate so far as to

make it meaningless (Figure 1 and Figure 2).

In this paper, we frame phylogenetic sequence alignment as an

approximate maximum likelihood (ML) inference. Our inference

algorithm assumes that the tree is known, requiring a separate tree

estimation protocol. While this is a strong assumption, it is in

principle shared among all progressive aligners (e.g. PRANK [15],

Muscle [16], ClustalW [17], MAFFT [18]). The alignment-

Figure 1. ProtPal’s estimates of insertion and deletion rates are the most accurate of any program tested, as measured by the RMSE

of
l̂l�

ĤH

l�
values aggregated over all substitution/indel rate categories. Quantiles containing 90% of the data are shown as a bolded portion of

the x-axis, and RMSE is shown to the right of each distribution, the latter computed as described in 1 Equation 1. No aligner approaches the accuracy
of the rates estimated with the true alignment, though ProtPal, PRANK, and ProbCons are the top three, with ProtPal as the most accurate over all.
Many aligners, particularly MUSCLE, CLUSTALW, and MAFFT, significantly underestimate insertion rates and overestimate deletion rates. ProtPal and
PRANK perform their own ancestral reconstruction and other alignment programs were augmented with a most-recent-common-ancestor (MRCA)
parsimony as described in [55].
doi:10.1371/journal.pone.0034572.g001
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marginalized likelihoods reported by our algorithm allow for

statistical tests between alternative trees, and the functionality to

estimate an initial alignment and guide tree from unaligned

sequences exists elsewhere in the DART package. Our framing

uses automata-theoretic methods from computational linguistics to

unify several previously-disjoint areas of bioinformatics: Felsen-

stein’s pruning algorithm for the phylogenetic likelihood function

[19], progressive multiple sequence alignment [20], and alignment

ensemble representation using partial order graphs [21]. Our

algorithm may be viewed as a stochastic generalization of pruning

to infinite state spaces: it retains the linear time and memory

complexity of pruning (O(NL) for N sequences of length L), while

moderating the biasing effect of the MSA. The algorithmic details

of our method are outlined briefly in the Methods, and in more

complete, mathematically precise terms (with a tutorial introduc-

tion) in a separately submitted work.

Figure 2. Rate estimation accuracy is highly dependent on the simulated indel rate. For instance, PRANK is more accurate at lower indel
rates, ProbCons is more accurate at higher rates. ProtPal is more accurate than PRANK in all but one rate (0.005) and equal or more accurate than

ProbCons in all but one rate (0.08). The drift towards
inferred

true
~0 exhibited by most programs indicates that most programs infer proportionally

fewer indels as rates are increased, likely due to various forms of gap attraction. Color-coded 90% quantiles and RMSEs are shown underneath and to
the right of each group of distributions, respectively. RMSE is computed as described in 1 Equation 1.
doi:10.1371/journal.pone.0034572.g002
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Our software implementation of this algorithm is called ProtPal.

We measured the accuracy of ProtPal relative to leading non-

MCMC alignment/reconstruction protocols by simulating indels

and substitutions on a known phylogeny, withholding the true

history and attempting to reconstruct it from the sequences at the

tips of the tree. The results show that all previous approaches to

the reconstruction of ancestral sequences introduce significant

biases, including systematic underestimation of insertions and

overestimation of deletions. This contradicts previous claims that

advances in the statistical foundations of alignment tools,

supported by improvements in protein-structure benchmarks,

necessarily improve the accuracy of evolutionary parameter

estimates like the indel rate [6,22,23].

ProtPal introduces less bias than any other methods we tested,

including PRANK, the state-of-the-art phylogenetic progressive

aligner [6]. Both PRANK and ProtPal treat insertions and

deletions as phylogenetic events (Figure 3). Based on our tests,

ProtPal appears to be the best choice for small to moderately-sized

analyses, such as a reconstruction of the history of proteins at the

inter-species level in human evolutionary history. Using ProtPal to

estimate indel rates for *7,500 human protein-coding gene

families, we find that per-gene indel rates are approximately

gamma-distributed, with 95% of genes experiencing a mean rate

of less than 0.1 indel events per synonymous substitution event.

We find that lengths of inserted and deleted sequences are

comparably distributed, having medians 5 and 7, respectively. The

human lineage appears to have experienced unusually many

insertions since the human-mouse split. By mapping genes to Gene

Ontology (GO) terms, we find that the 200 fastest-indel genes are

enriched for regulatory and metabolic functions. Possible applica-

tions and extensions of our algorithm include phylogenetic

placement, homology detection, and reconstruction of structured

RNA.

Results

Computational reconstruction of simulated histories
We undertook to determine the ability of leading bioinformatics

programs, including ProtPal, to characterize mutation event

histories. We simulated indel histories on a tree, then attempted

to reconstruct the MAP history, ĤH , using only knowledge of the

sequences S and the phylogeny T (but not the sequence

alignment). The history ĤH is the aligned set of observed extant

and predicted ancestral sequences, such that insertion, deletion,

and substitution events can be pinpointed to specific tree branches

(though not to specific time points on those branches).

We then characterized the reconstruction quality both directly,

by comparison of ĤH to the true H , and indirectly, by using ĤH to

estimate h, the evolutionary parameters:

ĥhĤH~arg maxh’P(h’DĤH,S,T)~arg maxh’P(ĤH,SDT ,h’) ð1Þ

where the latter step assumes a flat prior, P(h’)~const: We then

compared the history-conditioned parameter estimate ĥhĤH to the

true h.

This statistic is not without its problems. For one thing, we use

an initial guess of h to estimate ĤH. Furthermore, for an unbiased

estimate, we should sum over all histories, rather than conditioning

on the MAP reconstructed history. This summing over histories

would, however, require multiple expensive calculations of

P(SDT ,h), where conditioning on ĤH requires only one such

calculation. Furthermore, parameter estimation conditioned on a

MAP-reconstructed history is the de facto method employed by

large-scale genomics studies focusing on indels [24–27].

Simulation model parameters. The model parameters are

h~(li,ld ,pi,pd ,R): the insertion and deletion rates (li,ld ), indel

length distributions (pi,pd ) and substitution rate matrix (R). Here

we focus on the rates (li,ld ).

As described in Text S1, we generated data using an external

simulation tool, indel-seq-gen, varying insertion (li), deletion (ld )

and substitution rates (r) over a range representative of per-gene

rates in Amniota evolution (Figure 4). We varied indel rates (with

li~ld ) between 0.005 and 0.08 expected indels per unit time,

estimating that this range accounts for 95% of human gene

families. We left the substitution model (R) and indel length

distributions (pi,pd ) fixed, employing indel-seq-gen’s empirically-

estimated values.

We performed simulations on mammalian, amniote and fruitfly

phylogenies, using the taxa in those clades for which genomic

sequence is actually available. We found generally consistent

results, with common trends that were most pronounced on the

largest of the three trees that we used (the twelve sequenced

Drosophila species [28]). In discussing the trends, we will refer

specifically to the results on this largest of the trees.

Indel rate estimates
Overall most accurate. We first set out to determine which

program, when used to analyze a set of unaligned sequences,

returns the indel rate estimate closest to the true rate.

We report the ratio of inferred rate to true rate for insertions
l̂li

ĤH

li

and deletions
l̂ld

ĤH

ld
in Figure 1, with each l̂l�

ĤH
[fl̂li

ĤH
,l̂ld

ĤH
g defined as

ĥhĤH in Equation 1. No parameter estimate derived from a

computationally reconstructed history approaches the level of

accuracy achieved using the true history (labeled ‘‘True simulated

history’’ in Figure 1).

The results do not always concord with previous benchmarks

that have measured accuracy using 3D structural alignments: for

example, the FSA program, one of the most accurate aligners on

structural benchmarks [23], performs poorly here. This discor-

dance may be due to the fundamental differences between

evolutionary and structural homology, and the metrics used to

assess each. For instance, consider a region with many nearby and

overlapping insertions and deletions. The spatial and temporal

location of these insertion and deletion events (in particular, the

pinpointing of events to branches on the tree) defines what the

‘‘perfect’’ evolutionary reconstruction is. In contrast, even given

perfect knowledge of the insertion/deletion history, a ‘‘perfect’’

structural alignment depends only on the proteins at the tips of the

tree, and this alignment could differ from the true evolutionary

reconstruction.

Fundamentally, the difference between FSA and ProtPal is the

underlying metric that is being optimized by each program: FSA

attempts to maximize a metric (AMA = Alignment Metric

Accuracy) which is essentially ‘‘structural’’ (in the sense that it

predicts how many residues would be correctly aligned in a

pairwise alignment of two leaf-node sequences, as might be used in

structure prediction by target-template alignment), while ProtPal

attempts to maximize a ‘‘phylogenetic’’ metric (the probability of a

given evolutionary history). The metric we have used in our

benchmark (which counts correct reconstruction of the number of

indel events on branches of the tree) is also ‘‘phylogenetic’’. When

ranking the programs using the AMA metric, FSA perfoms well,

with accuracy exceeding that of ProtPal in the highest indel rate

category (Text S1). This suggests that the differences between our

evolutionary benchmark and previous benchmarks are not due to

Insertion-Deletion Phylogenetics
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the data, but rather the types of metrics that are used to measure

alignment accuracy; similarly, the differences between the leading

programs are primarily due to what types of benchmark they are

explicitly trying to perform well at.

All programs other than ProtPal display insertion- versus-deletion

biases that are, to a varying degree, asymmetric. Typically, the

asymmetry is that insertions are underrepresented and deletions

overrepresented. ProtPal’s bias, which is generally less than the

other programs, is also the most symmetric: reconstructed

insertions and deletions are roughly equally reliable, with both

slightly underestimated. Over the distribution of human gene rates

used by this benchmark, our phylogenetic likelihood approach,

ProtPal, provides the most accurate reconstructions of both

insertion and deletion counts. PRANK, which also uses a tree

(but no likelihood), avoids insertion-deletion biases to a certain

extent, although insertion rates are slightly underestimated relative

to deletion rates. Since ProtPal’s MAP history estimation appears

similar to the optimization algorithm of PRANK, we suspect that

ProtPal’s marginally better performance is due primarily to its

main difference in implementation: ProtPal tracks an ensemble of

possible reconstructions during progressive tree traversal (Section),

whereas PRANK uses a single ‘‘current best guess.’’

Effect of indel rate variation. To investigate the effect of

indel rate variation on estimation accuracy, we separate each

program’s error distributions by indel rate (Figure 2). We find that

all programs’ accuracy is strongly affected by the indel rate used in

Figure 3. Gap attraction, the canceling of nearby complementary indels, can affect insertion and deletion rates in various ways
depending on the phylogenetic relationship of the sequences involved. All programs are, to some extent, sensitive to situations A and B
whereas phylogenetic aligners can avoid situation C. An insertion at a leaf requires gaps at all other leaves - an understandably costly alignment
move when gaps are added without regard to the phylogeny, resulting in multiple penalization for each insertion. Such a penalization would
cause most non-phylogenetic aligners to prefer the ‘‘Inferred alignment’’ in case C where there are fewer total gaps. Aligners treating indels as
phylogenetic events would penalize each of the implied multiple deletions and only penalize each insertion once, thus preferring the ‘‘True
alignment’’ in case C.
doi:10.1371/journal.pone.0034572.g003
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simulation. As the true indel rate increases, most programs’

estimates drift towards
l̂l�

ĤH

l�
?0. This is consistent with the so-called

‘‘gap attraction’’ effect, where indels that are nearby in sequence

can be misinterpreted as substitution events [29]. Depending on

the phylogenetic orientation of the events, estimated rates can be

elevated or lowered, with different biases for insertion and deletion

rates (Figure 3).

Gap attraction and other biases operate simultaneously, and are

sometimes opposed. MUSCLE over-estimates the deletion rate

under most conditions, but (consistent with a trend where

programs have lower
l̂l�

ĤH

l�
at higher indel rates) gets the deletion

rate roughly correct in the highest-indel-rate category of our

benchmark. However, the alignments produced by MUSCLE at

high indel rates are no more ‘‘accurate’’ by pairwise metrics (Text

S1). We conjecture that multiple, contradictory types of gap

attraction are at work, e.g. Figures 3B and 3C.

After ProtPal, the two most accurate reconstruction methods are

PRANK and ProbCons (the latter combined with a parsimonious

indel reconstruction). ProbCons produces more reliable insertion

estimates than PRANK in a broad range of benchmark categories,

is tied with PRANK for deletion estimates, and appears robust to

indel rate variation. PRANK performs slightly better than

ProbCons in the slowest indel rate category we considered.

ProtPal produces the most reliable estimates overall, outperform-

ing ProbCons in all but the fastest indel rate category, and

PRANK in all but the slowest.

Sensitivity to substitution rate. As compared to variation

of simulated indel rate, variation of simulated substitution rate

appears to have little effect on the accuracy of indel reconstruction

(Text S1). One notable exception is FSA, which appears to be

affected by the substitution rate more than the other programs.

For example, when the simulated indel and substitution rates are

both low, FSA is comparable to the most accurate of the other

programs (ProtPal); but when the substitution rate is increased,

FSA’s error is greater than the least accurate program

(CLUSTALW). Errors in estimating the substitution rate are

comparable among the programs tested, and are similarly

correlated with the simulation indel rate (Text S1).

Reconstructed indel histories of human genes
We present here a comprehensive set of reconstructions

accounting for the evolutionary history of individual codons in

human genes. We used genes in the Orthologous and Paralogous

Transcripts in Clades (OPTIC) database’s Amniota set, comprised

of the 5 mammals H. sapiens, M. musculus, C. familiaris, M. domestica,

O. anatinus and G. gallus as an outgroup [30]. Considering only

those families with one unique ortholog per species (approximately

7,500 families), we combined tree branch statistics across genes,

using the species tree in Text S1. Our reconstructions are available

at http://biowiki.org/oscar/optic_reconstruction.tar, and we pro-

vide here various graphical summaries of Amniota evolutionary

history. Several negative results stand in contrast to earlier-

reported trends.

Indel rates. Insertion and deletion rates are approximately

gamma-distributed (Figure 4). Roughly 95% of genes have indel

rates v0:1 indels per synonymous substitution.

Phylogenetic origins. In our simulations, ProtPal pinpoints

residues’ ‘‘branch of origin’’ more reliably than other tools, with a

93% accuracy rate (Text S1). Many codons appeared to have been

inserted following the human-mouse split (Text S1)

Branch-specific indel rates. Using our reconstructions to

estimate the rates of indel mutations along specific tree branches,

we find evidence of an elevated insertion rate in the human (black)

branch, as well as on the the Amniota - Australophenids (pink) branch

(Text S1).

Figure 4. Insertion and deletion rates in Amniota show similar distributions, with 95% of genes having rates less than
approximately 0.1 indels per synonymous substitution. Insertion and deletion rates were estimated using reconstructions done with ProtPal
from a set of approximately 7,500 protein-coding genes from the OPTIC amniote database [30]. Indel rates were normalized by the synonymous
substitution rate of each gene as computed with PAML [53] so that the plotted rate represents the number of expected indels per synonymous
substitution. Since these rates are conditioned on the MAP reconstructed history, there are many alignments whose inferred indel rates are zero (197,
174, and 54 for insertions, deletions, and both, respectively).
doi:10.1371/journal.pone.0034572.g004
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Amino acid distributions. Distributions over amino acids

differ significantly between inserted, deleted and non-indel

sequences (Text S1). In general, small residues are over-

represented in insertions, in agreement with previous studies [31].

Indel lengths. We find, contrary to a previous study in

Nematode [32], that length distributions in the Amniotes are nearly

identical between insertions and deletions (Text S1). The

previously-reported result may be attributable to the deletion-

biased nature of the methods used, particularly CLUSTALW and

MUSCLE [32].

Indel position. The position of indels within genes is highly

biased towards the ends of genes, presumably in large part

reflecting annotation error (Text S1). The bias is strongest for

deletions at the N-terminus of the gene, but both insertions and

deletions are enriched in both C- and N- termini.

Evolutionary context of indel SNPs. We find no general

correlation between the indel rate for a gene and the number of

indel polymorphisms recorded for that gene in dbSNP [33] (Text

S1).

Gene ontology indel rates. No Gene Ontology (GO)

categories stand out as having significantly lowered or

heightened indel rates in any of the three ontologies, contrasting

with the reported results of a 2007 study using a smaller number of

genes [31]. An enrichment analysis conducted with GOstat [34]

showed that the 200 fastest evolving genes in our data are

significantly enriched for regulatory and metabolic functions.

Discussion

We developed and analyzed a simulation benchmark that

compares programs based on their reconstructions of evolutionary

history, using instantaneous mutation rates representative of

Amniote evolution. We tested several different tree topologies;

results were similar on all trees, but most pronounced on the tree

with the longest branch lengths. We find that most programs

distort indel rate measurements, despite claims to the contrary.

Moreover, the systematic bias varies significantly when the rates of

substitutions and indels are varied within a biologically reasonable

range. Many of the programs we rated have been ranked in the

past, but using benchmarks that use protein structural alignments

as a gold standard, rather than evolutionary simulations.

Furthermore, these previous benchmarks have not directly

assessed the reconstruction of evolutionary history (or summary

statistics such as the indel rate), but have used other alignment

accuracy metrics such as the Sum of Pairs Score. Alignment

programs that perform weakly on our benchmark have apparently

performed well on these previous benchmarks. We hypothesize

that these benchmarks, compared to ours, are less directly

predictive of a program’s accuracy at historical reconstruction,

although they may better reflect the program’s suitability to assist

in tasks relating more closely to folded structure, like prediction of

a protein’s 3D structure from a homologous template.

We have introduced a new notation that describes a general,

hidden Markov model-structured likelihood function for indel

histories on a tree, as well as the structure of the corresponding

inference algorithm. We have implemented the new method in a

freely-available program, ProtPal, that allows, for the first time,

phylogenetic reconstruction with accuracy over a broad range of

indel rates. ProtPal is written in C++ as a part of the DART

package: www.biowiki.org/ProtPal. The evolutionary reconstruc-

tions ProtPal produces are, according to our simulated tests, the

most accurate of any available tool, for a range of parameters

typical of human genes.

We applied ProtPal to the reconstruction of human gene indel

history, using families of human gene orthologs from the OPTIC

database. We find some patterns that agree with previous studies,

such as the non-uniform distributions over amino acids seen in

[31]. Other results stand in contrast - a previous study found

significantly different length distributions for insertions and

deletions [32], whereas in our data they appear very similar.

Another prediction of our reconstruction is an elevated rate of

insertions on the human branch since the human-mouse split. This

contrasts with a previous analysis [35], though the data therein

was whole genomes, rather than individual protein-coding genes.

In contrast to [31], we find no obvious predictive power of the

Gene Ontology (GO) for indel rates; that is, the indel rate does not

appear strongly correlated with the presence or absence of any

particular GO term-gene association. However, enrichment

analysis for GO terms using GOstat [34] showed that the 200

fastest-evolving genes are significantly enriched for regulatory and

metabolic function. This apparent discrepancy might be explained

by a group of regulatory and metabolic genes which have very

high indel rates, but whose small number prevent them from

skewing the average within their GO categories.

Many applications which use a fixed-alignment phylogenetic

likelihood could potentially benefit from ProtPal’s reconstruction

profiles. For example, phylogenetic placement algorithms estimate

taxonomic distributions by evaluating the relative likelihoods of

placing sequence reads on tree branches [36]. By using sequence

profiles exported from ProtPal, these reads could be placed with

greater attention to indels and a more realistic accounting for

alignment uncertainty. Homology detection could be done in a

similar way, thereby making use of the phylogenetic relationship of

the sequences within the reference family. It has been observed

that the detection of positive selection is highly sensitive to the

alignment used [7]. ProtPal could be modified to detect selection

using entire profiles rather than single alignments, potentially

eliminating the bias brought on by an inaccurate alignment.

In summary, multiple alignments are frequently constructed for

use in downstream evolutionary analyses. However, except for our

method and slow-performing MCMC methods, there are no

software tools for reconstructing molecular evolutionary history

that explicitly maximize a phylogenetic likelihood for indels. Our

results strongly indicate that algorithms such as ProtPal (which use

such a phylogenetic model) produce significantly more reliable

estimates of evolutionary parameters, which we believe to be

highly indicative of evolutionary accuracy. These results falsify

previous assertions that existing, non-phylogenetic tools are well-

suited to this purpose. Furthermore, we have demonstrated that it

is possible to achieve such accuracy without sacrificing asymptotic

guarantees on time/memory complexity, or resorting to expensive

MCMC methods. ProtPal can reconstruct phylogenetic histories of

entire databases on commodity hardware, enabling the large-scale

study of evolutionary history in a consistent phylogenetic

framework.

Methods

The details concerning generation and analysis of simulated

data are contained in Text S1. A mathematically complete

description of the alignment algorithm has been submitted as a

separate work, and an early version has been made available

online here: http://arxiv.org/abs/1103.4347.

Felsenstein’s algorithm for indel models
Our algorithm may be viewed as a generalization of

Felsenstein’s pruning recursion [19], a widely-used algorithm in

Insertion-Deletion Phylogenetics

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e34572



bioinformatics and molecular evolution. A few common applica-

tions of this algorithm include estimation of substitution rates [37];

reconstruction of phylogenetic trees [38]; identification of

conserved (slow-evolving) or recently-adapted (fast-evolving) ele-

ments in proteins and DNA [39]; detection of different substitution

matrix ‘‘signatures’’ (e.g. purifying vs diversifying selection at

synonymous codon positions [40], hydrophobic vs hydrophilic

amino acid signatures [41], CpG methylation in genomes [42], or

basepair covariation in RNA structures [43]); annotation of

structures in genomes [44,45]; and placement of metagenomic

reads on phylogenetic trees [36].

Felsenstein’s algorithm computes P(SDT ,h) for a substitution

model by tabulating intermediate probability functions of the form

Gn(x)~P(SnDxn~x,h), where xn represents the individual residue

state of ancestral node n, and Sn represents all the sequence data

that is causally descended from node n in the tree (i.e. the observed

residues at the set of leaf nodes whose most recent common

ancestor is node n).

The pruning recursion visits all nodes in postorder. Each Gn

function is computed in terms of the functions Gl and Gr of its

immediate left and right children (assuming a binary tree):

Gn xð Þ~P SnDxn~x,hð Þ

~

P
xl

M (l)
x, xl

Gl(xl)
� � P

xr
M(r)

x, xr
Gr(xr)

� �
if n is not a leaf

d(x~Sn) if n is a leaf

8<
:

where M
(n)
ab ~P(xn~bDxm~a) is the probability that node n has

state b, given that its parent node m has state a; and d(x~Sn) is a

Kronecker delta function terminating the recursion at the leaf

nodes of the tree. These Gn functions are often referred to as

‘‘messages’’ in the machine-learning literature [46].

Our new algorithm is algebraically equivalent to Felsenstein’s

algorithm, if the concept of a ‘‘substitution matrix’’ over a

particular alphabet is extended to the countably-infinite set of all

sequences over that alphabet. Our chosen class of ‘‘infinite

substitution matrix’’ is one that has a finite representation: namely,

the finite-state transducer, a probabilistic automaton that transforms

an input sequence to an output sequence, and a familiar tool of

statistical linguistics [47].

By generalizing the idea of matrix multiplication (AB) to two

transducers (A and B), and introducing a notation for feeding the

same input sequence to two transducers in parallel (AB), we are

able to write Felsenstein’s algorithm in a new form (see Section):

Gn~
M (l)Gl

� �
M (r)Gr

� �
if n is not a leaf

+(Sn) if n is a leaf

(

where +(Sn) is the transducer equivalent of the Kronecker delta

d(x~Sn). The function Gn is now encapsulated by a transducer

‘‘profile’’ of node n.

This representation has complexity O(LN ) for N sequences of

length L, which we reduce to O(LN) by stochastic approximation

of the Gn. This approximation relies on the alignment envelope [48], a

data structure introduced by prior work on efficient alignment

methods. The alignment envelope is a subset of all the possible

histories in which most of the probability mass is concentrated. A

related data structure is the partial order graph [21]. Both these data

structures can be viewed as ensembles of possible histories, in

contrast to a single ‘‘best-guess’’ reconstruction of the history.

Figure 5 sampledGraph shows a state graph, with paths through it

corresponding to histories relating the two sequences GL and

Figure 5. Each path through this state graph represents a possible evolutionary history relating sequences GL and GIV. By using
stochastic traceback algorithms (sampling paths proportional to their posterior probability, blue highlighted states and transitions), it is possible to
select a high-probability subset of the full state graph. By constructing such a subset at each internal node, it is possible to maintain a bound on the
state space size during progressive tree traversal while still retaining an ensemble of possible histories.
doi:10.1371/journal.pone.0034572.g005
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GIV. The paths highlighted in blue form a partial order graph,

corresponding to a subset of these histories generated by a

stochastic traceback. At each progressive traversal step, we sample

a high-probability subset of alignments of two sibling profiles in

order to maintain a bound on the state space size. Note that if we

sample only the most likely path at every internal node, we

essentially recover the progressive algorithm of PRANK, and if we

sample and store all solutions, we recover the machine Gn with

state space of size O(LN ).

Transducer definitions and lemmas
The definitions and lemmas are presented in a condensed form

here, and expanded upon in [49].

A transducer is a tuple (V,Y,W,wS,wE ,t,W) where V is an input

alphabet, Y is an output alphabet, W is a set of states, wS[W is

the start state, wE[W is the end state, t(W| V| Ef gð Þ|
Y| Ef gð Þ|W is the transition relation, and W : t?½0,?) is the

transition weight function.

Suppose that T~(V,Y,W,wS,wE ,t,W) and U~(V’,Y’,W’,w’S,
w’E ,t’,W’) are transducers.

Let W(p) be the product of all transition weights along a state

path p and let W x : T½ � : yð Þ be the sum of such weights for all

paths whose input labels, concatenated, yield the string x[V� and

whose output labels yield y[Y�.
Equivalence: If T and U have the same input and output

alphabets (V~V’ and Y~Y’) and the same sequence weights

W x : T½ � : yð Þ~W’ x : U½ � : yð Þ Vx,y, then we say the transducers

are equivalent, T:U . Less formally, we will write T%U if

W x : T½ � : yð Þ^W’ x : U½ � : yð Þ.
Moore transducers: The Moore normal form for transducers, named

for Moore machines [50], associates input/output with three

distinct types of state: Match, Insert and Delete. Paths through Moore

transducers can be associated with (gapped) pairwise alignments of

input and output sequences. For any transducer T , there exists an

equivalent Moore-normal form transducer U with DW’D~O DtDð Þ
and Dt’D~O DtDð Þ.

Composition: If T ’s output alphabet is the same as U ’s input

alphabet (Y~V’), there exists a transducer, TU~(V,Y’,
W’’ . . .W’’), that unifies the output of T with the input of U ,

such that Vx[V�,z[(Y’)�:

W’’ x : TU½ � : zð Þ~
X
y[Y�
W x : T½ � : yð ÞW’ y : U½ � : zð Þ ð2Þ

If T and U are in Moore form, then DW’’DƒDWD|DW’D and

Dt’’DƒDtD|Dt’D.
Intersection: If T and U have the same input alphabets (V~V’),

there exists a transducer, T0U~(V,Y’’,W’’ . . .W’’), that unifies

the input of T with the input of U . The output alphabet is

Y’’~ Y| Ef gð Þ| Y’| Ef gð Þ, i.e. a T-output symbol (or a gap)

aligned with a U -output symbol (or a gap).

Let alignments(t,u)5(Y’’)� denote the set of all gapped

pairwise alignments of sequences t[Y� and u[(Y’)�. Transducer

T0U has the property that Vx[V�,t[Y�,u[(Y’)�:

X
v[alignments(t,u)

W’’ x : T0U½ � : vð Þ~W x : T½ � : tð ÞW’ x : U½ � : uð Þ ð3Þ

If T and U are in Moore form, then DW’’DƒDWD|DW’D and

Dt’’DƒDtD|Dt’D. Paths through T0U are associated with three-way

alignments of the input sequence to the two output sequences.

Identity: Let I be a transducer that copies input to output

unmodified, so IT:TI:T .

Exact match: For any sequence S[V�, there exists a Moore-form

transducer +(S)~(V,1,W,t . . . ) with DWD~O length Sð Þð Þ and

DtD~O length Sð Þð Þ, that rejects all input except S, such that

W x : + Sð Þ½ � : Eð Þ~1 if x~S, and 0 if x=S. Note that +(S)
outputs nothing (the empty string).

Chapman-Kolmogorov transducers: A transducer T is probabilistic if

W x : T½ � : yð Þ represents a probability P(yDx,T): that is, for any

given input string, x, it defines a probability measure on output

strings, y.

Suppose T(t) is a function returning a probabilistic transducer

of the form (V,V,W,wS,wE ,t,W(t)), i.e. a transducer whose

transition weight W depends on an additional time parameter, t,
and which satisfies the transducer equivalence

T(t)T(t’):T(tzt’) Vt,t’.
Then T(t) gives the finite-time transition probabilities of a

homogeneous continuous-time Markov process on the strings V�,
as the above transducer equivalence is a form of the Chapman-

Kolmogorov equation.

If the state space of T is finite, then this equation describes a

renormalization of the composed state space W|W back down to

the original state space W. So far, only one nontrivial time-

dependent transducer is known that solves this equation exactly

using a finite number of states: the TKF91 model [51].

The phylogenetic likelihood
We rewrite the evidence, P(SDT ,h) for sequences S, tree T , and

parameters h, in the form P(fSn : n[LgDR,fBng) where

fSn : n[Lg denotes the set of sequences observed at leaf nodes,

fBng denotes the stochastic evolutionary processes occuring on the

branches, and R denotes the probabilistic model for the sequence

at the root node of the tree.

The root and branch transducers (R,fBng) represent an

alternative view of the tree and parameters (T ,h). The root

transducer R outputs from the equilibrium or other initial

distribution of the process. If (p,c)[T is a parent-child pair, then

Bc~B(Tpc) is a time-dependent transducer parameterized by the

branch length. In practise, the branch transducers need not satisfy

the Chapman-Kolmogorov equation for the following constructs

to be of use; for example, the fBng might be approximations to

true Chapman-Kolmogorov transducers [52].

Let R~(1,V, . . . ) be a transducer outputting sequences

sampled from the prior at the phylogenetic root.

Let n be a tree node. If n is a leaf, define Fn~I . Otherwise, let

(l,r) denote the left and right child nodes, and define

Fn~ BlFlð Þ0 BrFrð Þ where Bn~(V,V, . . . ) is a transducer model-

ing the evolution on the branch leading to n.

Diagramatically we can write Fn as (.. (.Bl . (.Fl .)) (.Br. (.Fr.)))

The phylogenetic likelihood is then fully described by

F~RFroot.

Like R, transducer F models a probability distribution over

output sequences, but accepts only the empty string as an input

sequence. This empty input sequence is just a technical formality

(transducers must have inputs); if we ignore it, we can think of F
and R as hidden Markov models (HMMs), rather than

transducers. R is an HMM that generates a single sequence, F a

multi-sequence HMM that generates the whole set of leaf

sequences.

Inference with HMMs often uses a dynamic programming

matrix (e.g. the Forward matrix) to track the ways that a given

evidential sequence can be produced by a given grammar.

For our purposes it is useful to introduce the evidence in a

different way, by transforming the model to incorporate the

evidence directly. We augment the state space so that the model is

no longer capable of generating any sequences except the observed
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fSng, by composing F root ’s forked outputs with exact-match

transducers that will only accept the observed sequences at the

leaves of the tree. This yields a model, G, whose state space is of

size O(LN ) and, in fact, is directly analogous to the Forward

matrix.

If n is a leaf node, then let Gn~+(Sn) where Sn is the sequence

at n. Otherwise, Gn~ BlGlð Þ0 BrGrð Þ.
Diagramatically we can write Gn as (.. (.Bl ..Gl .) (.Br. .Gr.))

Let G~RGroot. The evidence is P(fSngDR,fBng)~
W E : G½ � : Eð Þ.

The net output of G is always the empty string. The sequences

fSng are recognized as inputs by the +(Sn) transducers at the tips

of the tree, but are not passed on as outputs themselves.

Likewise, the input of G is the empty string, because R accepts

only the empty string on its input.

We can think of G as a Markov model, rather than an HMM. It

has no input or output; rather, the sequences are encoded into its

structure.

Transducer G has LN states, which is impractically many, so

ProtPal uses a progressive hierarchy Hn of approximations to the

corresponding Gn, with state spaces that are bounded in size.

If n is a leaf node, let Hn~+(Sn)~Gn. Otherwise, let

Hn~ BlElð Þ0 BrErð Þ where WEn
(WHn

is a subset defined by

sampling complete paths through the Markov model Mn~RHn

and adding the Hn-states used by those paths to WEn
, until the pre-

specified bound on DWEn
D is reached. Then G%Mroot.

The likelihood of a given history may be calculated by summing

over paths through G consistent with that history. In the simplest

cases (e.g. minimal Moore-form branch transducers), each indel

history corresponds to exactly one path, so the MAP indel history

corresponds to the maximum-weight state path through G.

Alignment envelopes
Let +(S) be defined such that it has only one nonzero-weighted

path

X0?W0 ?
S1

M1?W1 ?
S2

M2? . . .?WL{1 ?
SL

ML?WL?XL

so a +(S)-state is either the start state (X0), the end state (XL), a

wait state (Wi) or a match state (Mi). All these states have the form

wi where i represents the number of symbols of S that have to be

read in order to reach that state, i.e. a ‘‘co-ordinate’’ into S. All

+(S)-states are labeled with such co-ordinates, as are the states of

any transducer that is a composition involving +(S), such as Gn or

Hn.

For example, in a simple case involving a root node (1) with two

children (2,3) whose sequences are constrained to be S2,S3, the

evidence transducer is G~RGroot~R(G20G3)~R B2+(S2)ð Þ0ð
(B3+(S3))Þ= (.R. (.B2..½S2�.) (.B3..½S3�.))

All states of G have the form g~(r,b2,w2i2,b3,w3i3) where

w2,w3[fX ,W ,Mg, so w2i2[fXi2 ,Wi2 ,Mi2g and similarly for w3i3.

Thus, each state in G is associated with a co-ordinate pair (i2,i3)
into (S2,S3), as well as a state-type pair (w2,w3).

Let n be a node in the tree, let Ln be the set of indices of leaf

nodes descended from n, and let Gn be the phylogenetic

transducer for the subtree rooted at n, defined in Section. Let

Wn be the state space of Gn.

If m[Ln is a leaf node descended from n, then Gn includes, as a

component, the transducer +(Sm). Any Gn-state, g[Wn, is a tuple,

one element of which is a +(Sm)-state, wi, where i is a co-ordinate

(into sequence Sm) and w is a state-type. Define im(g) to be the co-

ordinate and wm(g) to be the corresponding state-type.

Let An : Wn?2Ln be the function returning the set of absorbing

leaf indices for a state, such that the existence of a finite-weight

transition g’?g implies that im(g)~im(g’)z1 for all m[An(g).

Let (l,r) be two sibling nodes. The alignment envelope is the set of

sibling state-pairs from Gl and Gr that can be aligned. The

function E : Wl|Wr?f0,1g indicates membership of the enve-

lope. For example, this basic envelope allows only sibling co-

ordinates separated by a distance s or less

Ebasic(f ,g)~ max
m[Al (f ),n[Ar(g)

Dim(f ){in(g)Dƒs ð4Þ

An alignment envelope can be based on a guide alignment. For leaf

nodes x,y and 1ƒiƒSx, let G(x,i,y) be the number of residues of

sequence Sy in the section of the guide alignment from the first

column, up to and including the column containing residue i of

sequence Sx.

This envelope excludes a pair of sibling states if they include a

homology between residues which is more than s from the

homology of those characters contained in the guide alignment:

Eguide(f ,g)~ max
m[Al (f ),n[Ar(g)

max(jG(m,im(f ),n){in(g)j,jG(n,in(g),m){im(f )j)ƒs

ð5Þ

Let K(x,i,y,j) be the number of match columns (those columns

of the guide alignment in which both Sx and Sy have a non-gap

character) between the column containing residue i of sequence Sx

and the column containing residue j of sequence Sy. This envelope

excludes a pair of sibling states if they include a homology between

residues which is more than s matches from the homology of those

characters contained in the guide alignment:

Eguide(f ,g)~ max
m[Al (f ),n[Ar(g)

max(jG(m,im(f ),n){K(m,im(f ),n,in(g))j,

jG(n,in(g),m){K(n,in(g),m,im(f ))j )ƒs

OPTIC data analysis
Data. Amniote gene families were downloaded from http://

genserv.anat.ox.ac.uk/downloads/clades/. We restricted our anal-

ysis to the *7,500 families having simple 1:1 orthologies. The

same species tree topology (downloaded from http://genserv.anat.

ox.ac.uk/clades/amniota/displayPhylogeny was used for all

reconstructions, though branch lengths were estimated separately

for each family as part of OPTIC. When computing branch-

specific indel rates, the branch lengths of the species tree were

used.

Reconstruction and rate estimation. Gene families were

aligned and reconstructed using ProtPal with a 3-rate class Markov

chain over amino acids, insertion and deletion rates set to 0.01,

and 250 traceback samples. Averaged and per-branch indel rates

were computed with ProtPal using the -pi and -pb options. The

indel rates were then normalized by the synonymous substitution

rate for each corresponding nucleotide alignment (taken directly

from OPTIC), computed with PAML [53]. Residues’ origins were

determined by finding the tree node closest to the root containing

a non-gap reconstructed character.
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External data. Genes were mapped to Gene Ontology terms

via the mapping downloaded from http://www.ebi.ac.uk/GOA/

human_release.html during 10/2010. Indel SNPs per gene were

taken from a table downloaded from Supplemental Table 5 of

[54].

Supporting Information

Text S1 Contains techinical details concerning genera-
tion of simulation data, analysis of OPTIC data, as well
as figures pertaining to both simulated and OPTIC data.
(PDF)
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