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Carbohydrates are important components of foods and essential biomolecules performing
various biological functions in living systems. A variety of biological activities besides
providing fuel have been explored and reported for carbohydrates. Some carbohydrates
have been approved for the treatment of various diseases; however, carbohydrate-
containing drugs represent only a small portion of all of the drugs on the market. This
review summarizes several potential development directions of carbohydrate-containing
therapeutics, with the hope of promoting the application of carbohydrates in drug
development.
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INTRODUCTION

Carbohydrates are ubiquitously present in a wide range of plants, animals, and microorganisms.
Their irreplaceable biological roles have been well established. To date, a large number of
carbohydrate-containing drugs have been approved worldwide (Jiang et al., 2021). However, the
development of carbohydrate-containing drugs seems to have slowed down in recent years. Of more
than 200 drugs that have been approved during 2015–2020, only nine are small-molecule
carbohydrate-containing drugs (Bhutani et al., 2021). This mini-review provides a summary and
our opinion on the future of carbohydrate-containing drugs. Carbohydrates have three typical
characteristics: high density of functional groups (e.g., hydroxyl), diversity of structures based on
different configuration, and ideal biocompatibility as they are ubiquitous in the body. It is crucial to
harness the intrinsic properties of carbohydrates in order to develop carbohydrate-containing
therapeutics. Overall, five potential directions need to be focused on, namely, pure carbohydrate
drugs, carbohydrate conjugates, carbohydrate scaffolds, carbohydrates vaccines, and
glyconanomaterials (Figure 1).

Pure Carbohydrate Drugs
Carbohydrates present many advantages in drug screening, such as low cost, abundance, high density
of functional groups, and diversity of molecular structures. However, in clinical practice, it is rare to
directly use carbohydrates as drugs or carbohydrates as the main body of drugs. Monosaccharides are
ubiquitous in our body, and thus, they are difficult to directly use as drugs. However, some decorated
monosaccharides have been approved for the treatment of specific diseases by mimicking functions
of monosaccharides. 18F-fluorodeoxyglucose (18F-FDG) injection is a typical example (Figure 2).
18F-FDG is a radioactive 2-deoxy-2-[18F] fluoro-D-glucose that has been used for the diagnosis of
cancer in conjunction with positron emission tomography (Ben-Haim and Ell, 2009). Based on the
fact that cancerous tissues take up glucose at a higher rate than most normal tissues, 18F-FDG is
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preferentially uptaken by tumor cells, thus allowing clinicians to
identify sites of tumors and metastases, as well as to stage cancer
and monitor response to treatment.

Oligosaccharides and polysaccharides show low lipophilicity
due to the presence of multiple hydroxyl groups. Typically, the
less lipophilic a drug, the worse is its absorption following oral
administration (Witczak, 2006). Therefore, they are usually
designed for the treatment of the gastrointestinal tract
diseases, where less absorption is acceptable or necessary.
Lactulose (Figure 3), a disaccharide, is a typical example,
which undergoes minimal gastrointestinal tract absorption and
being broken into organic acids by saccharolytic bacteria and thus

enhances intraluminal gas formation and facilitates bowel
movements. Therefore, it has been used for the treatment of
chronic constipation (Bae and Kim, 2020). In addition,
intravenous administration is also an option for this type of
therapeutic agent with high polarity. Heparin (Figure 3) is a
sulfated polysaccharide isolated from animal organs, and it has
been used clinically as an intravenously injected antithrombotic
agent for decades (Qiu et al., 2021). However, it is a highly
heterogeneous mixture of polysaccharides and is associated with
severe side effects. After the structure–function relationship of
heparin was established using synthetic oligosaccharides, some
antithrombotic agents with definite single structures were

FIGURE 1 | Potential directions in the development of carbohydrate-containing drugs. Representative marketed drugs (or bioactive molecules reported) are
displayed.

FIGURE 2 | (A) Since 18F-FDG is preferentially uptaken by tumors, it is used to identify tumor sites and metastases (red). (B) 18F-FDG positron emission
tomography (PET) imaging of a patient with metastatic Hodgkin lymphoma. (C) 18F-FDG PET imaging of a patient with metastatic breast cancer. Reprinted with
permission from Calvaresi and Hergenrother (2013). Copyright 2013 Royal Society of Chemistry.
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developed, such as fondaparinux and idraparinux (Figure 3)
(Dey et al., 2019; Bugg et al., 2011). Idraparinux is a fully
synthetic analog of the pentasaccharidic domain of heparin,
which contains O-sulfation and O-methyl functionalities
instead of N-sulfation and free hydroxyl groups. It has a
chemically defined structure, and it is also an analog of
fondaparinux. Compared with fondaparinux, idraparinux
shows a higher anti-Xa activity and longer half-life, and it has
been in a phase III clinical trial for the treatment of patients with
atrial fibrillation and venous thromboembolic events. Recently, a
seaweed-derived oligosaccharide, GV-971, has been approved in
China for the treatment of Alzheimer disease (Wang et al., 2019).
GV-971 is a heterogeneous mixture of acidic linear
oligosaccharides ranging from dimers to decamers. A study
recently published by Geng et al. showed that GV-971 could

decrease Aβ-related pathologies by reconditioning the gut
microbiota. With the establishment of the structure–function
relationship of GV971, oligosaccharides with definite single
structures may open new possibilities in the therapeutic field
of Alzheimer disease.

Carbohydrate Conjugates
Carbohydrate conjugates refer to carbohydrates that are used in
the attachment of drugs. In this case, the carbohydrate molecule
itself is not the main body of drugs; rather, it is a functional group
utilized to increase their bioactivity, improve physical and
chemical properties, or achieve targeting. The vast majority of
the drugs containing carbohydrates that are already on the
market fall into this category. This is not surprising, given that
the high polarity and multifunctional properties of carbohydrates

FIGURE 3 | Structures of partly pure carbohydrate drugs. Antithrombin pentasaccharide units of heparin are marked in red.

FIGURE 4 | Structures of carbohydrate conjugates: (A) Vancomycin used as an anti-infection agent; (B) nucleoside analog, cytarabine; (C) fluorescence probe of
human senescence-associated β-galactosidase with potential diagnostic application; (D) carbohydrate, as a target group, is used to design anticancer agents.
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make them ideal additions to improve drug properties. However,
it is noteworthy that either these approved drugs have originated
from natural products containing carbohydrate molecules (e.g.,
antibiotics and vancomycin; Figure 4A), or they have been
designed based on the key components containing
carbohydrates in the body (e.g., nucleoside analogs and
cytarabine; Figure 4B) (Jordheim et al., 2013; Yilmaz and
Ozcengiz, 2017). Apart from these two aspects, carbohydrates
have much more potential for exploitation in drug design. For
example, a number of carbohydrate-containing probes with
potential diagnostic applications have been reported (e.g.,
KSL11; Figure 4C); they could be used to detect ions, small
molecules, and enzymes (Yang et al., 2010; Li et al., 2011; Longxia
Li, 2015; Li et al., 2020). Furthermore, carbohydrates (glucose or
other glucose transporter substrates) have been conjugated to
cytotoxins or anticancer therapeutics for the specific targeting
and treatment of cancer (Calvaresi and Hergenrother, 2013). The
rationale behind this strategy is that glucose transporters and
glycolytic enzymes are widely overexpressed in cancer tissues,
which highly correlates with poor cancer prognosis, thus making
them attractive therapeutic targets for achieving anticancer drug
targeting (Treekoon et al., 2021). The wide application of
18F-FDG injection in diagnosis and staging of many types of
cancer provides the strongest support to this theory. Cancers
clinically staged using 18F-FDG imaging may be good candidates
for glycoconjugate targeting. According to Bensinger et al., they
include lung, breast, colorectal, and endometrial carcinomas, as
well as bone and soft tissue sarcomas and Hodgkin and non-
Hodgkin lymphomas (Bensinger and Christofk, 2012). Actually,
carbohydrate-conjugated anticancer active molecules for
targeting therapy have attracted great interest and grown
markedly in recent years. Several clinical trials in several
countries over the past decades have been conducted on
glufosfamide, a trailblazer for glycoconjugated anticancer
agents (Briasoulis et al., 2003; Ciuleanu et al., 2009). In
addition, some glycoconjugates have shown improved activity
and selectivity compared with aglycone in vitro and in vivo (e.g.,
glucose–platinum conjugate; Figure 4D) (Mikuni et al., 2008;
Miot-Noirault et al., 2011; Patra et al., 2016; Wang et al., 2016;
Zhang et al., 2017). However, this drug design strategy has not yet
been proven in clinical practice, which somewhat undermines the
confidence of researchers in the field. The questions remain as to
how to choose the proper coupling position of carbohydrate, what
is the exact mechanism of glycoconjugates entry into cells, and
how glycoconjugates work in vivo.

Carbohydrate as Scaffolds
Carbohydrates have high functional group density and diversity
of functional group orientations, which makes them excellent
scaffolds for designing bioactive compounds by appending
desired substituents at selected positions around the sugar
ring. This strategy has promising prospects in drug
development, and it has widely been used in the design of
peptidomimetics. It is known that the instability of the amide
backbone is an important limiting factor in the development of
peptide drugs. In addition, the amide backbone makes the
peptides less permeable to membranes, which leads to their

lower bioavailability. Accordingly, using carbohydrates to
mimic the backbone of peptides is a promising strategy for
increasing the drug ability of peptides. Since Hirschmann et al.
first reported that the peptidomimetic based on β-D-glucoside
scaffold (Figure 5A) could target somatostatin receptor, several
research groups have reported the various applications of
peptidomimetics based on carbohydrate scaffolds in different
biological fields (Hirschmann et al., 1992; Hirschmann et al.,
2009). Relevant studies of peptidomimetics have been reviewed
extensively elsewhere (Cipolla et al., 2005; Meutermans et al.,
2006; Velter et al., 2006; Cipolla et al., 2010; Tian et al., 2015;
Lenci and Trabocchi, 2020). However, the existing examples have
also demonstrated the difficulty of designing single carbohydrate
scaffold mimetics that maintain the level of bioactivity (and/or
selectivity) of the counterparts. This is because it is difficult to
ensure that the positions and orientations of the functional
groups of the mimetics are exactly the same as those of the
counterparts (original ligands). A possible solution is to use
carbohydrates as scaffolds to build a diverse library of
compounds and to use the library to screen the ideal
molecules (Hollingsworth and Wang, 2000; Le et al., 2003;
Lenci et al., 2016). The novel strategy has been used to screen
inhibitors of protein tyrosine phosphatase 1B (PTP1B) in our
group, where ribose and xylose were used as scaffold (Figure 5B)
(Zhang et al., 2017). The successful obtainment of a potent and
selective PTP1B inhibitor preliminarily proved the feasibility of
this strategy. However, in the current research, carbohydrate
scaffolds were modified with the same pharmacophore in one
molecule, which did reduce the difficulty of the reaction, but also
dramatically reduced the diversity of compounds. Presenting
different pharmacophores at different substitution sites of the
carbohydrate scaffold can greatly increase the diversity of
compounds. Thus, based on this research idea, efficient
organic synthesis methods that involve the individual
sequential protection and deprotection of single hydroxyl
group on sugar rings are essential. Advances in organic
synthesis in the field of carbohydrate chemistry have
accelerated and extended the application of this strategy
(Busto, 2016; Ghosh and Kulkarni, 2020). It is expected that
as the power of organic synthesis increases, it will be an
alternative for drug development to utilize carbohydrates as
scaffolds to generate compound libraries that are highly
functional and structurally diverse and to further screen
bioactive molecules.

Carbohydrates Used for Vaccines
Carbohydrates have also been used for the development of
vaccines, such as carbohydrate-based antimicrobial vaccines
and anticancer vaccines (Mettu et al., 2020). The star drug
Prevnar 13 is a typical polysaccharide–protein conjugate
vaccine; it was approved by the US Food and Drug
Administration in 2010 (Gruber et al., 2012). The rationale
behind carbohydrate-based vaccines is based on the theory
that carbohydrates could be recognized as antigenic
determinants, and they could be specifically recognized by the
immune system (Temme et al., 2021). Capsular polysaccharides
and lipopolysaccharides are the major constituents of the
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microbial cell surfaces and can be specifically recognized by the
host immune system; thus, they could be exploited as the basis for
the design of antibacterial vaccines. Expression of carbohydrates
on the cancer cell surface is different from that on the normal cell
surface. Abnormal glycosylation in primary tumors closely
correlates with the survival rate of cancer patients. These
abnormal oligosaccharides or polysaccharides, usually referred
to as tumor-associated carbohydrate antigens, are strictly related
to the metastasis of tumor cells. Based on the immunogenicity of
carbohydrates, the development of carbohydrate-based vaccines
provides an attractive option for the treatment of infections and
cancers. The main difficulty in carbohydrate vaccine
development is the poor immunogenicity due to their inherent
T-cell–independent nature. In the response to this class of
carbohydrate antigens, no immunological memory is
established, and no T-cell responses are induced, which is
markedly different from responses to proteins and peptides.
One method of overcoming this problem is to conjugate the
corresponding carbohydrates to a carrier protein (Galili, 2020).
However, we need to solve first how to obtain carbohydrate
antigens with sufficient quantity, high purity, and structural
integrity. In addition, natural polysaccharides obtained by
separation are usually characterized by significant
heterogeneity and easy contamination. Several studies have
demonstrated that synthetic conjugates show comparable
activity to the native polysaccharides linked to the same
carrier protein, indicating that the chemically well-defined
synthetic oligosaccharide is safer than the natural
polysaccharide counterpart. Moreover, fully synthetic
oligosaccharide conjugate vaccines have more advantages

because they could be designed to incorporate only elements
required for a desired immune response, and they could produce
chemically well-defined compounds in a reproducible fashion.
Therefore, efficient synthetic methods are critical for the
development of carbohydrate-based vaccines. Although the
construction of oligosaccharides remains a challenging task
due to the combined demands of elaborate procedures for
glycosyl donor and acceptor preparation and the requirements
of regio- and stereo-selectivity in glycoside bond formation,
considerable improvements have been made in this field (Zhu
and Schmidt, 2009; Ghosh and Kulkarni, 2020; He et al., 2020). It
is expected that new and efficient synthetic methods will be
developed in the near future, which will give access to a wide
range of oligosaccharides and glycoconjugates for vaccine
development.

Glyconanomaterials
Carbohydrates have been conjugated to nanomaterials for
biomedical imaging, diagnostics, and therapeutics (Wang et al.,
2010; Crucho and Barros, 2019). In addition, some carbohydrate-
containing drugs have been used in nanodelivery systems as
cargos for enhancing drug efficacy, reducing nonspecific
toxicity or improving targeting (Senanayake et al., 2011;
Delorme et al., 2020). The combination of glycochemobiology
and nanotechnology has provided promising new tools that could
be used in imaging of cancer cells, photodynamic therapy,
biosensors, and drug targeting (Reichardt et al., 2016). In this
section, the application of carbohydrates in the modification of
nanomaterials is highlighted. Considering their ubiquitous
distribution in tissues and important functions at the cellular

FIGURE 5 | Carbohydrates used as scaffolds in drug discovery: (A) glucose was used to mimic the backbone of peptides; and (B) carbohydrates were used in the
screening of PTP1B inhibitors.
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level, carbohydrates have been widely used in the
functionalization of nanomaterials and have shown unique
advantages in the development of nanomedicines. Strategies
for the design, preparation, and application of
glyconanomaterials have been summarized in many recent
reviews (Gorityala et al., 2010; Marradi et al., 2013; Hao et al.,
2016; Zhang et al., 2018; Khan et al., 2019). Generally,
carbohydrates have three typical advantages in the
development of nanomedicine. In addition to increasing water
solubility, the main advantages are improving the
biocompatibility of nanomaterial and facilitating the
improvement of affinity for receptors. In terms of
biocompatibility, carbohydrates are an ideal choice to
overcome nanomaterial immunogenicity that has limited the
use of nanomaterials in vivo to a large extent. The rationale
behind this advantage is that host-like glycan structures in a form
of molecular mimicry could assist some pathogens to evade
recognition from the host immune system (Severi et al., 2007).
Thus, it is not surprising that carbohydrate-decorated
nanoparticles have lower immunogenicity compared with
unmodified nanomaterials. As a major nonimmunogenic
carbohydrate component, glucose has been used in the design
of glyconanoparticles in the study by Frigell et al. (2013). In terms
of increasing affinity, the synergy between nanomaterials and
carbohydrates showed huge potential advantages. Nanomaterials,
a kind of formidable platform, could make the presentation of
multiple carbohydrate ligands possible via the large surface-to-
volume ratio, thereby greatly increasing the affinity of
carbohydrates as biofunctional ligands for specific glycan-
binding proteins. The study by Reynolds et al. showed that the
gold nanoparticle platform displayed a significant cluster
glycoside effect for presenting carbohydrate ligands with

almost a 3,000-fold increase in binding compared with a
monovalent reference probe in free solution (Reynolds et al.,
2012). The targeting aggregation capacity of carbohydrates has
further been demonstrated in the study of nanocarrier-mediated
drug delivery into the brain (Anraku et al., 2017). According to
Anraku et al., the nanocarrier with a surface featuring many
glucose molecules has the potential for delivering various drugs
directly into the brain by crossing the blood–brain barrier (BBB)
through taking advantage of a multivalent interaction between
multiple glucose molecules and glucose transporters (Figure 6)
(Anraku et al., 2017). Further, carbohydrate-decorated
nanoparticles could be used as the active therapeutic entities
to inhibit pathogen adhesion—the first step to initiate infection. A
study showed that 120 monosaccharides that functionalized
tridecafullerene exhibited a potent inhibitory effect against cell
infection caused by an artificial Ebola virus with half-maximum
inhibitory concentrations in the subnanomolar range (Muñoz
et al., 2016). More recently, Bhatia et al. reported adaptive flexible
sialylated nanogels that could deform and adapt onto the
influenza A virus surface via multivalent binding of sialic acid
residues with hemagglutinin spike proteins on the virus surface.
Based on the multivalent binding strategy, sialylated nanogels
could efficiently block the virus adhesion on cells and inhibit the
infection at low pM concentrations (Bhatia et al., 2020).

As for carbohydrate-decorated nanomaterials, the key aspects of
their performance include the proper display of carbohydrate
ligands, the type and length of the spacer linkage, and the ligand
density. Receptors have the best affinity for specific carbohydrate
molecules; for example, glucose transporter-1 shows higher affinity
to glucose compared with other monosaccharides; therefore, the
selection of carbohydrate molecules is crucial in the
functionalization of nanomaterials. In addition, the effect of

FIGURE 6 | A glucosylated nanocarrier used to deliver drugs able to cross the BBB and reach the brain tissue. Reprinted with permission from Anraku et al. (2017).
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linkers on the binding affinity of glyconanoparticles has also been
investigated in recent studies (Wang et al., 2010; Richards et al.,
2012; Simpson et al., 2016; Malakootikhah et al., 2017). The results
showed that the binding affinity increased with the spacer linker
length. The longer and more flexible spacer may provide additional
spatial freedom and less steric hindrance to the attached ligands for
a more efficient association with their binding partners. Regarding
the effect of carbohydrate ligand density, it is reasonable that
carbohydrate molecules recognize receptors principally through
weak interactions such as hydrogen bonding; thus, increasing
the carbohydrate ligand density may introduce cluster or
multivalency effects, which could significantly enhance the
binding affinity. The most representative example is that
oligosaccharides usually exhibit higher binding affinity than
monosaccharides toward the same lectin receptor. Although the
binding affinity could be roughly quantified by technical means
already available, such as surface plasmon resonance or isothermal
titration calorimetry, in general, it is difficult to control the number
of carbohydrate ligands conjugated to relative nanomaterials. Such
imprecise preparation methods may result in ambiguities in
composition and structure and batch-wise variations of prepared
glyconanomaterials, which is one of the important factors limiting
carbohydrates’ clinical development.

CONCLUSION

Overall, the present review summarized the possible directions of
carbohydrate-containing drugs based on the internal
characteristics of carbohydrates. As the biological functions of
carbohydrates continue to be explored and more novel
carbohydrate-containing molecules are artificially designed or
obtained from natural products, it is expected that carbohydrates
as the treasure house of medicine will bring more surprises to us
in the near future.
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