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LETTER TO EDITOR

Revealing the effects of maternal di(2-ethylhexyl) phthalate
exposure on the progression of early meiosis in female foetal
germ cells at single-cell resolution

Dear Editor
To provide in-depth insight into how di(2-ethylhexyl)
phthalate (DEHP) influences early oogenesis, this study
outlined the effects of maternal DEHP exposure on the
meiotic progression of female germ cells in mice foetuses
in vivo. DEHP is widely distributed in our lives owing to
the daily use of polyvinyl chloride in plastic products.1,2
Multiple reports have demonstrated that DEHP intake is
particularly harmful to pregnant women as there is strong
evidence that DEHP can pass through the maternal–foetal
barrier.3,4 However, the exact effect of DEHP on meiotic
initiation of foetal germ cells, a critical biological event
for successful oogenesis during pregnancy, is not fully
understood.5 In this research, we performed single-cell
RNA sequencing (scRNA-seq) to analyse the foetal ovaries
at 12.5 days post coitum (dpc) and 14.5 dpc after maternal
DEHP exposure.
Normal saline or 40 μg/kg body weight DEHP were

orally administrated to pregnant mice daily from 6.5 dpc,
and 12.5 dpc or 14.5 dpc foetal ovaries were isolated for
scRNA-seq (Figure 1A). A total of 25 270 high-quality cells
were selected for further analysis (Figure S1A,B). After
dimensionality reduction using uniform manifold approx-
imation and projection (UMAP), these cells were divided
into 18 clusters and seven types of cells were identified
according to their canonical marker expression, including
germ cells, granulosa cells, mesothelial cells, interstitial
cells, endothelial cells, erythroid cells, and immune cells
(Figure 1B–D; Figure S1C).6
To provide a fine-scale analysis of how maternal DEHP

exposure affects the meiotic transcriptome, germ cell clus-
ters were extracted for further analysis (Figure 2A–D).
After UMAP analysis, germ cells were subdivided into
16 transcriptionally distinct clusters whose expression
patterns, from left to right in the UMAP plot, corre-
spond to pre-meiosis, pre-leptotene, leptotene, zygotene
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and pachytene stage cells (Figure 2E; Figure S2A).7 Note-
worthy, cluster 13 showed similar expression to leptotene
cells while they contained more than 80% of cells from
theDEHP-treated group (Figure 2D; Figure S2B–D). Taken
together with its aberrant distribution in the UMAP plot,
we, therefore, designated them as abnormal leptotene
cell clusters induced by maternal DEHP exposure, which
was supported by the higher proportion of abnormal lep-
totene cells to overall leptotene cells in the DEHP group
(Figure S2E). To verify the developmental trajectory,
we then performed RNA velocity analysis, an elaborate
method of inferring cell fate decision based on the ratio
of spliced and unspliced mRNA,8 the results also con-
firmed that both leptotene cells and abnormal leptotene
cells were differentiated from pre-meiotic cells (Figure 2F;
Figure S2F), therefore confirmed our hypothesis. Together,
our analysis here demonstrated that maternal DEHP expo-
sure induced abnormal differentiation of early meiotic
germ cells.
To determine how DEHP exposure affected the abnor-

mal developmental trajectory in female germ cells, we
then performed a differentially expressed gene (DEG)
analysis between leptotene and abnormal leptotene cells
(Figure 3A; Figure S3A). Gene ontology (GO) analysis indi-
cated that DNA damage-related genes were altered after
maternal DEHP exposure (Figure 3B). Further expression
comparison and dynamic velocity analysis of genes cor-
related with meiosis, DNA damage response and apopto-
sis indicated that abnormal leptotene cells suffered DNA
damage, failed to start normal meiosis and might undergo
apoptosis (Figure S3B–D). We further performed chromo-
some spread analysis to evaluate DNA damage marker
RAD51 and BRCA1 expression in meiotic germ cells. It
was found that the percentage of RAD51-positive leptotene
cells in the DEHP group was significantly higher com-
pared with the control group (Figure 3C). Meanwhile, the
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F IGURE 1 Experimental profile and gonadal ridge cell analysis. (A) Schematic diagram of DEHP treatment and the scRNA-seq process.
(B) UMAP plot of the identified gonadal cells (left) and cell numbers in each cluster (right). (C) Tracksplot of the expression of special marker
genes in each cell type. (D) Dendrogram of the clusters (left) and percentages of cells from different samples in each cluster (right)

percentage of BRCA1-positive leptotene cells was not sig-
nificantly affected (Figure 3D).
After demonstrating how DEHP affected early meiotic

progression, we then focused on zygotene and pachytene
cells. Noteworthy, the DEGs in the two stages were sim-
ilar (Figure S4A,B) and GO enrichment analysis showed
that DEGs in these two stages were related to DNA dam-
age, chromosome organisation and mitochondrial func-
tion, indicating thatmaternalDEHPexposure caused simi-
lar effects on these two stages (Figure S4C,D). Comparison
of the representative gene expression also confirmed our
GO analysis (Figure S4E). Besides, chromosome spread
analysis showed that the percentages of RAD51-positive
cells after DEHP treatment were significantly higher in
both zygotene and pachytene cells (Figure 3E,G). More-
over, the percentages of BRCA1-positive cells were not

significantly perturbed in zygotene cells, but significantly
different in pachytene cells (Figure 3F,H).
Furthermore, as multiple reports demonstrated that

mitochondrial damage correlates with DNA damage9 and
maternal DEHP exposure perturbed substantialmitochon-
dria functional genes in the current study, levels of mito-
chondria were also detected. The fluorescence intensity
of the mitochondrial marker TOMM20 in germ cell cyto-
plasm was significantly decreased after DEHP treatment
(Figure 4A,B), which was also consistent with the func-
tional gene network interaction analysis (Figure S4F,G).
Furthermore, we found that AMP-activated protein kinase
(AMPK), which might be activated due to DEHP (Figure
S5A,B), was phosphorylated in more germ cells compared
with the control group (Figure 4C). We further detected
both the upstream and downstream proteins of AMPK and
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F IGURE 2 Detailed analysis and identification of germ cells. (A–C) UMAP plot of germ cells coloured by clusters (A), time points (B)
and different treatments (C). (D) Percentages of germ cells from different samples in each cluster. (E) Heatmap of the expression of special
marker genes in the different germ cell developmental stages. (F) RNA velocity streamlines embedded on the UMAP plot coloured by cell
stage. Pie plots indicate the percentage of cells from different samples in each stage

discovered that the intensity of both phosphorylated ATM
(upstream) and phosphorylated ULK1 (downstream) was
significantly increased after DEHP exposure, which was
also consistent with our scRNA-seq analysis (Figure 4D,E;
Figure S5C,D). Taken together, we concluded that mater-
nal DEHP exposure impaired both the DNA integrity and
mitochondria function of some female germ cells. It is
therefore plausible that the impaired DNA recruited ATM
in response to DEHP, and the activated ATM phosphory-
lated AMPK. Then AMPK, as a regulator of mitochondrial
homeostasis,10 began to phosphorylate ULK1 and clear
damaged mitochondria (Figure S6).
In conclusion,weutilised scRNA-seq to demonstrate the

two developmental trajectories of germ cells after DEHP
exposure and identified the AMPK pathway as a route by

which DEHP impaired germ cells. This pathway should
now be targeted for further research into the clinical pre-
vention and treatment of DEHP exposure. The results of
this paper suggest that DEHP could impair germ cell devel-
opment in foetuses through maternal exposure, which
therefore warrants careful use of plastic products during
pregnancy.
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F IGURE 3 Leptotene, zygotene and pachytene germ cells were impaired by DEHP. (A) Diagram of the identified developmental stages
of the control and DEHP-treated groups. The dark grey cells with the distinct branch indicate the identified abnormal leptotene cells. (B) GO
term enrichment analysis of downregulated (top) and upregulated (bottom) DEGs in leptotene stage cells compared with abnormal leptotene
cells. (C–H) Chromosome spread results of leptotene (C,D), zygotene (E,F), pachytene (G,H) cells labelled by RAD51 (C,E,G) or BRCA1
(D,F,H), and the percentages of cells with normal and defective expressions of RAD51 or BRCA1 in the control and DEHP-treated groups.
Scale bar = 5 μm. The data are presented as mean ± SD. * and ** represent p < .05 and p < .01, respectively, and ns represents not significant.
No less than three replicates were conducted in each experiment
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F IGURE 4 AMPK might regulate mitochondria after DNA impairment induced by DEHP. (A) Immunofluorescence plot of germ cells
between the control and DEHP-treated group. The gonadal ridges were labelled by DDX4 (purple) and TOMM20 (green). (B) The average
intensity of TOMM20 between the control and DEHP-treated group. (C–E) Immunofluorescence plot of germ cells labelled by p-AMPK (C),
p-ATM (D), and p-ULK1 (E), respectively, and average intensity of p-AMPK, p-ATM, and p-ULK1 between the control and DEHP-treated
group. Scale bar = 10 μm. The data are presented as mean ± SD. * and ** represent p < .05 and p < .01, respectively. No less than three
replicates were conducted in each experiment
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