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ABSTRACT

Escherichia coli topoisomerase I has an essential
function in preventing hypernegative supercoiling of
DNA. A full length structure of E. coli topoisomerase
I reported here shows how the C-terminal domains
bind single-stranded DNA (ssDNA) to recognize the
accumulation of negative supercoils in duplex DNA.
These C-terminal domains of E. coli topoisomerase I
are known to interact with RNA polymerase, and two
flexible linkers within the C-terminal domains may
assist in the movement of the ssDNA for the rapid
removal of transcription driven negative supercoils.
The structure has also unveiled for the first time how
the 4-Cys zinc ribbon domain and zinc ribbon-like
domain bind ssDNA with primarily �-stacking inter-
actions. This novel structure, in combination with
new biochemical data, provides important insights
into the mechanism of genome regulation by type
IA topoisomerases that is essential for life, as well
as the structures of homologous type IA TOP3� and
TOP3� from higher eukaryotes that also have mul-
tiple 4-Cys zinc ribbon domains required for their
physiological functions.

INTRODUCTION

The level of DNA supercoiling can have highly significant
implications for vital cellular processes, and topoisomerases
are therefore required in every organism to prevent accumu-
lation of excessive supercoiling (1). Hypernegative super-
coiling has been shown to lead to RNA–DNA hybrid (R-
loop) stabilization (2,3). Accumulation of R-loops could in-
hibit transcription and replication, resulting in genomic in-
stability (4–6). Escherichia coli topoisomerase I (EcTOP1)

encoded by the topA gene is the prototype type IA topoiso-
merase required for preventing excess negative DNA super-
coiling. It has an important role in removing transcription-
induced negative supercoiling behind the RNA polymerase
complex (7,8). R-loop accumulation would be an expected
consequence of the loss of topoisomerase I function. The
effect of topA deletion is more severe when RNAse H ac-
tivity is depleted (9). There are also likely to be additional
consequences from the loss of topoisomerase I function
that would affect bacterial cell viability, as overexpression
of rnhA did not always reverse the lethal effect of topA dele-
tion (9).

Type IA topoisomerases act on a single-stranded re-
gion of DNA to initiate change in DNA topology by cre-
ating a break on the G-strand of DNA (10). A struc-
ture of the N-terminal domains of EcTOP1 (known col-
lectively as TOP67) that form the covalent intermediate
with the cleaved G-strand DNA has been previously de-
termined (11,12). However, the N-terminal domains alone
cannot catalyze the removal of negative supercoiling. The
C-terminal domains of EcTOP1 are essential for the enzyme
to have the capability of removing negative supercoils from
DNA rapidly in a processive mechanism (13). This rapid re-
laxation of negative DNA supercoiling by EcTOP1 behind
the RNA polymerase complex is critical for prevention of
hypernegative supercoiling at highly transcribed loci. These
highly transcribed loci include the rRNA genes (14) as well
as the heat shock and other global response genes that are
needed for survival following a stress challenge (15).

EcTOP1 as well as type IA topoisomerases in higher eu-
karyotes, including human type IA topoisomerases TOP3�
and TOP3�, have three or more tetracysteine zinc-binding
motifs in the C-terminal region that have been predicted
to be part of 4-Cys zinc ribbon domains (PF01396, zf-
C4 Topoisom). This protein fold found in type IA topoi-
somerases is related to other transcription regulators (16).
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Experiments have shown that there were three tightly bound
Zn(II) ions present in each EcTOP1 molecule correspond-
ing to the three 4-Cys zinc ribbon domains (17). Removal
of Zn(II) (18) or mutation of cysteine residues (19) resulted
in loss of the enzyme activity for removal of negative super-
coils. Nevertheless, the structure of these zinc-binding mo-
tifs and how they enable the rapid relaxation of negative su-
percoils by EcTOP1 have remained elusive. Moreover, these
type IA topoisomerase C-terminal domains also participate
in protein–protein interactions important for their physio-
logical functions, including the direct interaction between
EcTOP1 and RNA polymerase beta’ subunit during tran-
scription elongation to prevent hypernegative supercoiling
(20). The C-terminal domains of Drosophila topoisomerase
III� have been shown to be essential for double Holliday
junction resolution (21). Drosophila topoisomerase III�
preferentially cleaves R-loops or D-loops in plasmid (22).
Human topoisomerase III� has also been shown to interact
with the TDRD3 protein to prevent R-loop accumulation
in chromatin (23).

Here, we present for the first time the structure of com-
pletely active full-length EcTOP1 in complex with single-
stranded DNA (ssDNA). This provides significant new
structural information on the essential C-terminal domains
of type IA topoisomerases, including homologous TOP3�
and TOP3� in humans. The interactions between the type
IA topoisomerase C-terminal domains and ssDNA are crit-
ical for these enzymes to recognize hypernegatively super-
coiled DNA as the preferred catalytic substrate. Further-
more, the C-terminal domains’ interaction with the N-
terminal domains and the flexible linkers between the C-
terminal domains observed in this new structure could pro-
mote the movement of the bound DNA for passage through
the DNA break in order to rapidly catalyze the relaxation
of negatively supercoiled DNA. Two models of how bacte-
rial topoisomerase I could interact with ssDNA regions in
partially unwound duplex DNA for removal of negative su-
percoils are considered here based on the new structural in-
formation. Additional biochemical data support the model
in which the enzyme interacts with both the G-strand and
T-strand of underwound ssDNA.

MATERIALS AND METHODS

Protein cloning, expression and purification

EcTOP1 was expressed from a recombinant plasmid pLIC–
EcTOP in the E. coli BL21 STAR (DE3) strain (Invitro-
gen). The pLIC–EcTOP plasmid was produced by plac-
ing the EcTOP1 coding sequence into the pLIC–HK vec-
tor that allows T7 RNA polymerase-dependent expression
of EcTOP1 along with a tobacco etch virus (TEV) protease-
cleavable N-terminal His6 affinity tag (24). Cells were grown
at 37◦C and recombinant protein expression was induced by
the addition of 1 mM IPTG to exponential phase cells in LB
culture. After 3 h of induction, the cells were collected and
subjected to freeze-thaw lysis in buffer (20 mM NaH2PO4,
0.5 M NaCl, 20 mM imidazole, 1 mg/ml lysozyme, 2.5 mM
TCEP, pH 7.4). The recombinant protein molecules in the
soluble lysate were allowed to bind to Ni Sepharose 6 Fast
Flow (GE Healthcare) before being packed into a column.
After extensive washing with buffer (20 mM NaH2PO4,

0.5 M NaCl, 20 mM imidazole, 2.5 mM TCEP, pH 7.4),
the topoisomerase protein was eluted with buffer (20 mM
NaH2PO4, 0.5 M NaCl, 500 mM imidazole, 2.5 mM TCEP,
pH 7.4), cleaved with TEV protease, and passed through
the Ni Sepharose again to remove the His6 tag. Additional
purification was achieved using a ssDNA cellulose column
(Sigma). The topoisomerase was eluted with an increasing
concentration gradient of KCl. Final purification was car-
ried out with an S300 size exclusion chromatography col-
umn as described previously (11).

Oligonucleotides used in site-directed mutagenesis of
EcTOP1 are listed in Supplementary Table S1. The Q5
site-directed mutagenesis kit (New England BioLabs) was
used to create the F616L and I701term mutants. The
Quikchange site-directed mutagenesis procedures were used
for the F616E and R189A mutants.

Oligonucleotide substrate for crystallization

A partial duplex oligonucleotide substrate was produced
by hybridization of a 29 base oligonucleotide (O29) 5′-
GCTAAACCTGAAAGATTATGCGATTTGGG-3′ to a
20 base oligonucleotide (O20) 5′-CATAATCTTTCAGG
TTTAGC-3′. The hybrid DNA O29-O20 was used for co-
crystallization with EcTOP1. Since only the ssDNA corre-
sponding to the last 11 bases of oligonucleotide O29 is visi-
ble in the crystal structure, a dozen of EcTOP1/DNA com-
plex crystals were recovered from crystallization drops to
verify the nature of bound DNA. The crystals were washed
in crystallization buffer (0.125 M ammonium sulfate, 0.1
M MES pH 6.0, 1 mM zinc sulfate, and 19% polyethylene
glycol monomethyl ether 5000) and dissolved in TE buffer
(10 mM Tris pH 8, 1 mM EDTA). The oligonucleotide(s)
present were labeled on the 5′-end with 32P using � 32P-
ATP and T4 polynucleotide kinase, and analyzed by elec-
trophoresis in 15% sequencing gel against 32P-labeled O20
and O29.

Protein crystallization

For crystallization, EcTOP1 was concentrated to 38 mg/ml
(∼0.39 mM). The protein was then mixed with oligonu-
cleotide O29-O20 in a 1:1 molar ratio and the mixture was
incubated on ice for 2 h. Hanging drop vapor diffusion
setup was used for the crystallization with each drop con-
taining 1 �l of the protein/DNA mixture and 1 �l crys-
tallization solution. Diffraction quality crystals appeared
under condition: 0.125 M ammonium sulfate, 0.1 M MES
pH 6.0, 1 mM zinc sulfate, and 19% polyethylene glycol
monomethyl ether 5000 at 24◦C. Prior to data collection,
the crystals were treated with cryoprotectant (25% glycerol)
and cryocooled directly in liquid nitrogen.

X-ray diffraction and structure determination

X-ray diffraction data were collected at 100 K from
EcTOP1/DNA crystals at the Structural Biology Center 19-
ID beamline at the Advanced Photon Source at Argonne
National Laboratory using the program SBCcollect (25).
The intensities of each data set were integrated, scaled and
merged with the HKL3000 program suite (26). Diffraction
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extends to 2.90 Å resolution (Table 1) in the best data set.
For structure determination using the molecular replace-
ment (MR) method (27), two models were used as search
templates: the Apo form of N-terminal domains of EcTOP1
mutant D111N (PDB entry: 3PWT) and its complex with
ssDNA (PDB entry: 3PX7) (11). Rotation and translation
function searches, rigid body refinement and restrained re-
finements suggested that the Apo form of EcTOP1 was a
much better starting model than the mutant complex with
ssDNA. Some results from MR with wild-type EcTOP1 as a
searching template are shown in Table 1. The programs used
for the MR and subsequent refinements are incorporated in
the HKL3000 suite (26). After restrained refinement, differ-
ence maps clearly showed a rotation of N-terminal domain
2 (D2) in relation to its starting model. Additional densi-
ties for a number of �-sheets near N-terminal domain 4
(D4) were observed, suggesting that they were from the C-
terminal domains. One cycle of auto-model rebuilding and
refinement was performed with programs in HKL3000 (26),
resulting in an improved model with R/Rfree = 32.4/41.1%
and FOM = 66.4.

Model re-building of the N-terminal domains and the
building of the C-terminal domains were subsequently per-
formed manually by using the program Coot (28). The C-
terminal domains’ region starts from three 4-Cys zinc rib-
bon domains. The difference electron density maps were
informative enough to trace most of the main chain and
register the amino acid sequence for the three 4-Cys zinc
ribbon domains. After several alternative cycles of model
building and refinement, the densities for one ssDNA, start-
ing from a 3′-OH end became apparent. One DNA strand
based on the sequence of oligo O29 was therefore built into
model. The electron densities for the approximately last one
hundred residues of the C-terminal domains were relatively
poor, with only two partial �-sheets visible at low contour
levels (<1�). Since the solution structure of this region has
been reported (PDB entry: 1YUA) (29), the first model of
the NMR structure was used for the interpretation of elec-
tron density and model building in this region. Remarkably,
the NMR model, namely the two �-sheets and two connect-
ing �-helices could be moved into densities without major
adjustment. However, the densities for some side chains and
two connecting loops were missing or disordered and these
side chains and loops were not included in the final model.

X-ray fluorescence spectra were measured from crystals
and showed the presence of zinc in the protein crystals (data
not shown). Since 1 mM zinc sulfate was present in the
crystallization buffer and the resolution limit of the X-ray
diffraction data was 2.9 Å, one more X-ray diffraction data
set was collected at zinc absorption peak (9.6688 KeV) to
pinpoint anomalous scatter zinc sites inside crystal struc-
ture. The EcTOP1 structure was then refined with the low-
energy data set and anomalous difference maps were subse-
quently calculated (Table 1). The maps confirmed the pres-
ence of three zinc atoms at the metal-binding sites of the
three 4-Cys Zn ribbon domains. An additional, fourth mi-
nor zinc site was found associated with an exposed H566
residue.

Final refinements (against 2.90 Å date set) were carried
out with the program Phenix.refine and included TLS re-
finement (Table 1) (30). Restrains for Zn-S bond distance

(2.34 ± 0.05 Å) and S-Zn-S bond angles (109.5 ± 10◦) were
applied and X-ray/stereochemistry weight was optimized
(Table 1). Structural validation was performed using the
program MolProbity (31) (Table 1).

Biochemical analysis of EcTOP1 site-directed mutants

Relaxation activity of wild-type and mutant EcTOP1
was compared after serial dilutions using supercoiled
pBAD/Thio plasmid DNA as a substrate in a buffer con-
taining 20 mM Tris-HCl pH 8, 50 mM NaCl, 0.1 mg/ml
gelatin and either 6 mM or 11 mM MgCl2 as indicated.
After incubation at 37◦C for 30 min, relaxation reaction
products were analyzed by agarose gel electrophoresis (32).
DNA cleavage and religation activities were assayed us-
ing a 39-base oligonucleotide substrate labeled with 32P
on the 5′ end (5′-GATTATGCAATGCGCTTTGGGCAA
CCAAGAGAGCATAAC-3′) as described previously (32).
Oligonucleotide substrate and cleavage products were sep-
arated by electrophoresis in a 15% sequencing gel and visu-
alized by Phosphorimager.

In vivo complementation of temperature sensitive topA muta-
tion

Complementation of the temperature sensitive topA func-
tion in E. coli AS17 (F− topA17(am) pLL1(Tet supD43,74))
(33) for growth at the non-permissive temperature of 42◦C
by wild-type or mutant pLIC–EcTOP was assayed by first
growing the transformants overnight at 30◦C in LB broth
containing tetracycline (15 �g/ml) and kanamycin (50
�g/ml). Serial dilutions of the overnight cultures were spot-
ted on LB plates with kanamycin and incubated at 30◦C or
42◦C.

Nuclease footprinting of topoisomerase I binding

The production of G116S mutant of EcTOP1 was reported
earlier (34). This mutant enzyme that forms a stabilized ir-
reversible covalent complex after DNA cleavage was used
to monitor topoisomerase I binding. A bubble-substrate
mimicking underwound DNA was designed to have a sin-
gle topoisomerase cleavage site in the single-stranded region
of the top strand (Figure 9). The bottom strand has no cy-
tosine base in the single-stranded region that can provide
specific interaction for cleavage in the single-stranded re-
gion (24), so it can only act as the T-strand. The top or
bottom strand was labeled at the 5′-end with T4 polynu-
cleotide kinase and � -32P-ATP before hybridization with
the other strand to form the bubble substrate. Incubation
with EcTOP1–G116S was carried out in 40mM Tris-HCl,
0.1 mg/ml BSA, 5 mM MgCl2 for 1 h at 37◦C before diges-
tion with 5 ng of DNase I or 7.5 pg of Micrococal nuclease
(both from New England BioLabs) for 2 min and 1 min,
respectively, at 37◦C. Nuclease digestion was terminated by
addition of 50 mM EDTA. The reaction products were an-
alyzed by electrophoresis in a 15% sequencing gel, followed
by Phosphorimager analysis.
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Table 1. Data collection and refinement statistics

Data collection EcTOP1/ssDNA (1) EcTOP1/ssDNA (2)

Space group P21 P21
Unit Cell dimensions

a, b, c (Å) 85.61, 80.30, 97.48 85.56, 80.35, 97.96
�, �, � (◦) 90, 91.26, 90 90, 91.95, 90

Resolution (Å)* 37.80–2.90 41.90–3.62
(2.95–2.90) (3.68–3.62)

Rmerge 0.064 (0.676) 0.167 (0.623)
I/�(I) 23.5 (2.0) 21.8 (3.4)
Completeness (%) 99.6 (100.0) 99.3 (98.0)
Redundancy 3.5 (3.6) 6.6 (6.3)

Refinement
Resolution (Å) 2.90
No. reflections 29 508
Rwork/Rfree 0.211/0.261
No.of atoms
Protein 6159
DNA 252
Water/Others 38/31
B-factors (Å2)
Protein 93.29
DNA 139.3
Water/Others 66.48/105.3
R.m.s deviation
Bond length (Å) 0.002
Bond angle (◦) 0.526
PDB code 4RUL

EcTOP1, Escherichia coli topoisomerase I; ssDNA, single-stranded DNA; PDB, Protein Data Bank; RMS, root-mean-square.
Note: EcTOP1/ssDNA crystal 1 was used for data collection at 12.66 KeV for structure determination. EcTOP1/ssDNA crystal 2 was used for data
collection at 9.67 KeV (Zn absorption edge) to verify Zn sites.
*Highest-resolution shell is shown in parenthesis.

RESULTS

Full-length EcTOP1 structure

The structure of full length EcTOP1 with bound DNA was
determined at 2.90 Å resolution using MR with a TOP67
structure (PDB entry: 3PWT) as the search template. The
full-length structure was completed with alternative cy-
cles of manual model building and refinement (Table 1).
There is one full-length EcTOP1 molecule in the asymmet-
ric unit (Figure 1). No stable quaternary assembly is pre-
dicted based on PISA (Protein, Interface, Structures and
Assemblies) analysis (35). This result is consistent with the
observation that EcTOP1 is a monomer in solution.

EcTOP1 has been previously described as a protein con-
sisting of three domains, a 67 kDa N-terminal domain
(TOP67), a zinc-binding domain and a 14 kDa C-terminal
DNA-binding domain (20,29,36–38). For the convenience
of the following presentation and discussion of the full-
length EcTOP1/DNA complex structure, the C-terminal
portion zinc-binding domain and 14 kDa C-terminal DNA-
binding domain together will be referred to as TOP30C.
TOP67 consists of a total of four domains (D1–D4) (Fig-
ure 1). As revealed in this study, TOP30C actually contains
three 4-Cys zinc ribbon domains (D5–D7) and two zinc
ribbon-like domains (D8–D9). The solution structures of
D8 and D9 connected through a helical hairpin (Figure 1)
have been reported previously (29).

In the structure of full-length EcTOP1 in complex with
DNA, the ssDNA segment is bound to TOP30C with its
3′-OH end primarily interacting with D5. The extended

ssDNA also interacts with D7, D8 and D9 but not D6.
Arginine 189 from TOP67 D4 contributes additional in-
teractions with two phosphate groups of the backbone of
the ssDNA chain. From the 3′-OH end a total of 11 nu-
cleotides can be recognized and assigned a sequence (3′-
GGGTTTAGCGT). The electron density for the ssDNA
strand gradually becomes weak and smeared, particularly
after its interaction with the last C-terminal domain D9.
Two more sugar–phosphate repeats of the backbone of the
strand are also visible and included in the model. The DNA
present in the crystals was analyzed by gel electrophore-
sis with 5′-32P end labeling and compared with the original
O29 and O20 oligonucleotides used for co-crystallization.
We confirmed that both intact strands were present in the
crystals (Supplementary Figure S1). A percentage (21%) of
O29 was converted into its cleavage product (cleavage site
five bases from the 3′-end of O29) by the EcTOP1 enzyme,
likely after the crystals were dissolved in TE buffer for anal-
ysis.

TOP67: new features in the full length structure

The overall arrangement of TOP67 in the full-length Ec-
TOP1 is similar to what was observed previously in other
TOP67 structures (e.g. PDB code: 1ECL) (38) (Figure 1).
Pairwise alignments of D1s, D2s, D3s and D4s from two
structures using secondary-structure match (SSM) (39) re-
sult in root-mean-square-deviation (RMSD) values of 0.59,
0.83, 0.44 and 0.67 Å, respectively, suggesting that the con-
formation of each individual N-terminal domain is con-
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Figure 1. Structure of full-length E. coli topoisomerase I (EcTOP1) in
complex with single-stranded DNA (ssDNA). (A) Domain arrangement
of E. coli topoisomerase I. Between D8 and D9, there is a helical hair-
pin. (B) A ribbon diagram of full-length EcTOP1 in complex with ssDNA.
Full-length EcTOP1 includes four N-terminal domains: D1 (deep salmon),
D2 (orange), D3 (cyan) and D4 (green); and five C-terminal domains: D5
(pink), D6 (yellow), D7 (red), D8 (lime) and D9 (grey). The helical hairpin
between D8 and D9 is colored in wheat. A ssDNA that binds to the C-
terminal domains is colored in blue. Each Zn(II) is represented as a gray
sphere. The secondary structures of D2 and part of D4 and D6 are la-
beled for discussion purposes. A part of the loop (colored in green) be-
tween �2 and �6 of D2 includes a charged and conserved sequence of
R442KGDEDR, which is highly flexible and was not observed in earlier
TOP67 structures. Figures 1B, 2, 4 and 7A are prepared with the program
PyMOL (http://www.PyMOL.org).

served. The conformation of the active site of the enzyme,
which includes residues D111, D113, Y319 and R321 from
D1 and D3 are essentially the same (Supplementary Fig-
ure S2). However, if all four N-terminal domains were used
for an alignment, the RMSD value is as high as 1.84 Å,
which indicates domain-domain movements between the
two structures. Therefore the presence of the C-terminal do-
mains with bound ssDNA may have an effect on the con-
formation of the toroid formed by the N-terminal domains.
The largest change involves D2 that rotates (∼14◦) away
from the N-terminal domains’ toroidal plane (Supplemen-
tary Figure S3).

A loop between the �2 helix and the �6 strand of D2,
which was mostly disordered in previous TOP67 structures,
can now be observed in this structure (Figure 1). The flex-

ible portion of the loop comprising of a charged sequence,
R442KGDEDR, extends into the center of the toroid hole
and might have an important role in the proposed route of
the passing strand in the DNA relaxation catalyzed by the
enzyme. The corresponding region in other bacterial topoi-
somerase I sequences are also rich in charged residues (Sup-
plementary Figure S4). In the structure of E. coli topoi-
somerase III, a similarly charged loop, R454RDEEND, is
also present (40). It is possible that the structural ordering
of the charged loop as well as the rotation of D2 as described
above in the full-length EcTOP1 may be related to the pres-
ence of C-terminal domains and/or DNA binding to the
C-terminal domains as elaborated below.

TOP30C 4-Cys zinc ribbon domains and zinc ribbon-like do-
mains

The first three TOP30C domains (D5–D7) are 4-Cys zinc
ribbon domains (Figure 2A). Each domain comprises a 4-
stranded antiparallel �-sheet with a Zn(II)-binding site on
the top of the domain. The Zn(II) ion is coordinated by four
conserved cysteines from the �1-�2 and �3-�4 loops (Fig-
ures 2B and 3). This is consistent with earlier predictions
based on sequence homology and biochemical data (16,17).
The presence of zinc at the metal-binding site of each do-
main is confirmed by anomalous difference maps calculated
from diffraction data collected at the zinc absorption peak
(Figure 2A–B, Table 1). The presence of the Zn(II) ions in
three 4-Cys zinc ribbon domains of EcTOP1 is in contrast
to the absence of Zn(II) in the 4-Cys zinc ribbon domain in
the structure of Thermotoga maritima topoisomerase I (41).
The four cysteines in the latter structure unexpectedly form
two disulfide bonds instead. Beneath the Zn(II)-binding site
of each domain there are a conserved methionine from the
�2 strand and a hydrophobic residue from the �3 strand
(Figure 3). These two residues seemingly form the core of
the small 4-Cys Zn ribbon domain (Figure 2B). D5 has a
one-residue �−bulge in the middle of its �1 strand (not
shown in figures) while D6 has an unusual 21-amino acids
insert in the middle of the first strand. A part of the insert
forms a unique �-helix (�1) (Figures 1, 2A and 3), which
interacts with TOP67 and is elaborated below. One unique
feature of D7 is that it has an extra short �5 strand (Fig-
ure 2B).

D5 makes few contacts with D4. There are only one hy-
drogen bond contributed by the first residue of D5 (Q591)
to D4 and a few van der Waals contacts between D5 and
TOP67. However, it is D6 that forms extensive interactions
with TOP67, mostly through its unique helix (�1 of D6)
(Figure 1). The interactions involve TOP67’s D2 and D4
and the hinge between them. A movement of the �1 helix
or D6 itself against the hinge (e.g. a push or a pull) will
cause the rotation of D2 in respect to D4. The change in
relative orientation of two N-terminal domains could play
a role in the control of the opening-closing state of the
toroid hole, suggesting a possible EcTOP1 activity regu-
lation by a TOP30C movement. Additionally, D5 and D6
adopt an unusual conformation with their �-sheets being
packed against each other (Figure 2C). The interface of the
two domains is rich in hydrophobic residues (Figure 2C);
the movement of D5 and D6 may therefore be highly coor-

http://www.PyMOL.org
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Figure 2. Structures of C-terminal domains. (A) A ribbon drawing of the first three C-terminal 4-Cys zinc ribbon domains, D5 (in pink), D6 (in yellow) and
D7 (in red). All secondary structures are labeled. D6 has a unique helix (�1) between strands �1 and �2. The Zn(II) ions are drawn as gray spheres. The
anomalous difference electron density map (drawn in orange mesh) around each Zn(II) is contoured at 4� level and calculated at 4.0 Å using diffraction
data collected at the Zn absorption peak. (B) Details of D7. The four cysteines that bind Zn(II), the conserved methionine (M718) below the Zn(II)-binding
site and the hydrophobic residue (M729 in case of D7) below M718 are drawn in stick format. (C) The �-sheet to �-sheet packing between D5 and D6.
The hydrophobic residues across their interface are drawn in stick format. (D) Comparison of the crystal structure and solution structure (PDB: 1YUA,
in thin salmon C� trace format) of D8 and D9 and the linker between them.

Figure 3. A structure-based sequence alignment of E. coli EcTOP1 C-terminal domains and the sole T. maritima TmTOP1 C-terminal domain. EcTOP1 D5
was used for pairwise structural alignments from all other individual domains using SSM. The secondary structures, � strands, are represented by arrows
above appropriate sequences of each domain. The bugles on some of the lines for the �1 strands indicate the presence of one- or two-residue �-bulges
on the strands. All cysteines are highlighted in red. The residues that contribute to the cores of 4-Cys zinc ribbon domains or zinc ribbon-like domains
(EcTOP1 D8 and D9) are highlighted in blue. The aromatic residues from the �3 strands, which can form �–stacking interactions with nucleotides in the
C-terminal domains are highlighted in magenta.
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dinated. D7 is flexibly connected to both D6 and D8. Within
the linker (∼10 residues) between D6 and D7 there are two
consecutive � turns, which seemingly maintain some space
between the two domains. The three proline residues in the
linker (P750PKEDP) between D7 and D8 may well play a
similar role.

D8 and D9 domains (Figure 2D) have similar 4-Cys zinc
ribbon domain folds as D5, D6 and D7, but without a Zn-
binding site and the conserved methionine that is present
in the �2 strand of D5, D6 and D7. This methionine is re-
placed by a phenylalanine (in D8) or a tyrosine (in D9) (Fig-
ure 3). The helix–hairpin linker between D8 and D9 likely
helps maintain not only the fold of these two domains indi-
vidually but also a stable D8–D9 conformation.

Interaction of C-terminal domains with ssDNA

The DNA used for co-crystallization (O29–O20) was an-
nealed using two oligonucleotides, O29 and O20 (Figure 4A
and Supplementary Figure S5). The annealing should cre-
ate a 20-base pair DNA duplex with a nine nucleotide over-
hang at the 3′-end of O29. In the EcTOP1 structure, nine
nucleotides of the overhang, two nucleotides from the pre-
dicted duplex portion and two additional phosphor-sugar
moieties are visible.

The 3′-end of the ssDNA interacts with the first C-
terminal domain, D5 (Figure 4B and Supplementary Figure
S6). Binding primarily involves parallel �-stacking interac-
tions between the guanine ring moieties of G29 and G28 to
the aromatic side chains of the residues Y622 and F616, re-
spectively. Residue F616 is from the �3 strand and the pres-
ence of an aromatic residue at the position is critical for ss-
DNA binding by TOP30C as elaborated later. Additionally,
the N635 residue from the end of the �4-strand contributes
two hydrogen bonds to the guanine ring of G28. Residue
R189 is the only residue from TOP67 that contributes to ss-
DNA binding with two salt-bridges to the backbone phos-
phate groups of G29 and G28 and a hydrogen bond to the
phosphate group of G29. This basic residue is conserved
in only a subset of the bacterial topoisomerase I enzymes
(Supplementary Figure S4). Substitution with alanine re-
sulted in a small reduction (2- to 5-fold) of EcTOP1 relax-
ation activity (Supplementary Figure S7).

D7 binds three nucleotides, T26, T25 and T24 (Fig-
ure 4C). T25 binds to the center of D7, including parallel
�-stacking with residue Y728 that is from the �3-strand
and an equivalent to residue F616 of D5. The thymine ring
of T25 also forms two hydrogen bonds to the main chain
atoms. Additionally, residues R724 and F725 from the �2-
�3 turn form a cation-� interaction with T26 and a parallel
�-stacking interaction with T24, respectively.

D8 binds three nucleotides (T24, A23 and G22) as well
(Figure 4D). The aromatic residue on the �3-strand, F780,
contributes parallel and T-shaped �–� stackings with G22
and A23, respectively. Additional �–� stackings and one
hydrogen bond are also observed between the protein and
ssDNA (Figure 4D). After D8, the ssDNA appears to move
away from D9. Although a part of the domain is disor-
dered or partially disordered, the interactions involving
two arginines, R830 and R833, are prominent (Figure 4D).

These residues make cation-� interactions to nucleotide
rings and salt bridges to backbone phosphate groups.

As mentioned earlier, D6 is not involved in ssDNA bind-
ing. Interestingly, this domain does not have an aromatic
residue equivalent to F616 of D5, Y728 of D7 or F780 of
D8 on the �3 strand (Figure 3), which can form �–� in-
teractions with nucleotide bases of ssDNA. Instead, there
is a leucine residue at this position of D6, which will not
contribute any �-stacking interactions with ssDNA. There-
fore, we propose that the primary function of D6 does not
involve binding ssDNA. Since D6 rides on D5 and inter-
acts with the hinge between D2 and D4 of TOP67 with its
unique helix, it can potentially play a role in transferring
the conformational change (including domain movement)
of D5 to the N-terminal hinge upon D5 binding to ssDNA,
subsequently regulating the opening-closing of the TOP67
toroid hole.

Significance of the TOP30C–ssDNA interactions

Previous studies have shown that the 85 kDa form of E. coli
topoisomerase I missing D8 and D9 (TOP85) retained par-
tial relaxation activity while a truncation further removing a
C-terminal portion (corresponding to D6 and D7 based on
the full-length structure) abolished relaxation activity com-
pletely (45). D7 is one of the four modular TOP30C do-
mains that bind ssDNA (together with D5, D8 and D9).
A truncation mutant terminating at I701 (I701term) was
created to test if EcTOP1 has relaxation activity in the ab-
sence of D7. The lack of relaxation activity observed for
the I701term mutant enzyme (Figure 5) showed that the in-
teraction of D7 with ssDNA is required for the relaxation
activity.

As presented above, each ssDNA-binding C-terminal do-
main has an aromatic residue on its �3-strand such as F616
of D5, which primarily participates in �-stacking(s) with
nucleotides. To validate the importance of these stacking
interactions at a distance from the active site, F616 was
mutated to either a leucine (F616L) to retain hydropho-
bic interaction but eliminate �-stacking, or to a glutamate
(F616E) to introduce a negative charge into the key ssDNA-
binding site of the domain. Analysis of the relaxation ac-
tivity of the F616L and F616E mutant enzymes (Figure 5)
showed that when the reaction buffer contained 6 mM
MgCl2, wild-type topoisomerase I removed negative super-
coils from DNA in a processive mechanism, with full range
of intermediate linking numbers observed for the reaction
products from 1.5 ng of enzyme. In contrast, the F616L and
F616E mutant enzymes removed negative supercoils in a
distributive mechanism, with the enzyme dissociating from
the DNA substrate before multiple rounds of negative su-
percoiling removal are accomplished. Both mutant enzymes
did not fully remove the negative supercoils even with 200
ng enzyme present. When the MgCl2 concentration is in-
creased to 11 mM, wild-type topoisomerase I also removed
negative supercoils from DNA distributively and 4- to 8-
fold lower activity was observed for the F616L mutant from
the loss of the aromatic stacking interaction. The effect of
the F616E mutation is more severe, with an approximately
16-fold reduction in relaxation activity from the loss of all
non-polar interactions.
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Figure 4. ssDNA binding to EcTOP1 C-terminal domains. (A) The oligo O29-O20 partial duplex used for co-crystallization with EcTOP1. The overhang
of the 3′-end of O29 oligo represents a ssDNA segment that is bound to the C-terminal domains of EcTOP1. The nucleotides that were observed in the
structure are highlighted in dark blue. The two nucleotides that are highlighted in light blue have disordered bases. Other parts of the oligo O29-O20 are
completely disordered. The electron density drawn in gray mesh for the ssDNA segment of the DNA bound to the C-terminal domains is calculated from a
weighted 2Fo-Fc map and contoured at 1� level. (B) The interactions between the 3′-end of ssDNA with the first C-terminal domain D5 as well as the last
N-terminal domain D4. Only one coordinating cysteine of the Zn(II), C619, is shown for the purpose of discussion. D6 colored in yellow is not involved
in ssDNA binding. (C) The interactions between ssDNA and D7. (D) The interactions between ssDNA and D8 and D9.



Nucleic Acids Research, 2015, Vol. 43, No. 22 11039

Figure 5. Loss of relaxation activity from C-terminal domain mutations in EcTOP1. The indicated amount of wild-type or mutant enzyme was incubated
with the supercoiled plasmid DNA (S) for 30 min in reaction buffer containing either 6 mM or 11 mM MgCl2.

Further analysis showed that the deficiency in relaxation
activity observed for these EcTOP1 mutants is not due to
the effect of the mutations on cleavage and religation of the
G-strand of DNA. Figure 6A showed that the cleavage of
the oligonucleotide substrate by the F616L and F616E mu-
tants was nearly identical to that of the wild-type with prod-
uct P1 being the major cleavage product. A higher level of
the alternative cleavage products P2 and P3 could be ob-
served for the I701term mutant. Following oligonucleotide
cleavage, religation driven by the addition of Mg(II) could
be observed as the disappearance of the cleavage product if
the enzyme is then dissociated from the religated oligonu-
cleotide by high salt concentration. The results of such a
religation assay (Figure 6B) showed that these C-terminal
mutations did not inhibit religation of the G-strand.

The requirement of the interactions between the C-
terminal domains and ssDNA is also relevant for the es-
sential in vivo function of EcTOP1. Escherichia coli strain
AS17 has a temperature sensitive topA-chromosomal mu-
tation (42). The topA function at the non-permissive tem-
perature can be complemented by the non-induced back-
ground topoisomerase I expression from pLIC-ETOP plas-
mid (33). Results in Figure 7 showed that the I701term

mutant derivative of pLIC–ETOP showed the greatest de-
ficiency in complementation of the temperature sensitive
chromosomal topA in AS17 for growth at 42◦C while the
partial activity from the F616L mutant was more effective
in complementation than the F616E mutant. These results
are consistent with the relative severity in loss of relaxation
activity from the C-terminal mutations examined.

Testing of models by nuclease footprinting

To gain insights into the catalytic mechanism of EcTOP1
for relaxation of supercoiled DNA, a model of EcTOP1
with two ssDNA segments bound separately to the N- and
C-terminal domains was built as shown in Figure 8A. To
build the model, the N-terminal domains/ssDNA complex
structure previously reported (PDB code: 3PX7) and the
C-terminal domains/ssDNA of this new full-length struc-
ture are combined. For a smooth transition from the D4
of 3PX7 to the D5 of the full-length structure, only D4 of
the two structures were used for a SSM alignment. The N-
terminal domains of full-length EcTOP1 were then replaced
by 3PX7. Based on the orientations of the two ssDNAs in
the comprehensive model (Figure 8A), there are two possi-
ble binding modes for the ssDNA chain(s) in the relaxation
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Figure 6. C-terminal domain mutations do not inhibit oligonucleotide cleavage and religation. The oligonucleotide substrate (O) was labeled at the 5′-end
with 32P. (A) Cleavage products accumulated by the indicated amount of wild-type and mutant EcTOP1 in the absence of Mg(II). The labeled cleavage
products are P1: 5′-GATTATGCAATGCGCT; P2: 5′-GATTATGCAAT; P3: 5′-GATTATGCAATGCGCTTT. (B) Rapid religation of cleavage products
from the addition of Mg(II). Following the addition of 2 mM MgCl2 and 1 M NaCl to the cleavage reactions containing 100 ng of enzyme, the reactions
were left on ice for the indicated time before quenching with loading buffer for sequencing gel analysis.

of negatively supercoiled duplex DNA, a single chain model
and a double chain model. In the single chain model, the
enzyme interacts only with the G-strand (Figure 8B). In the
double chain model (Figure 8C), the N-terminal domains of
the enzyme interacts with the G-strand while the C-terminal
domains interact with the T-strand. The oligonucleotides
seen in the crystal structures would correspond to a portion
of the ssDNA segments in the models.

Nuclease footprint experiments were carried out to test
these two models. The DNA bubble substrate used (Fig-
ure 9A) had a 12-nucleotide unpaired region. This length
of ssDNA region was shown in previous studies to be suf-
ficient for E. coli topoisomerase I to bind and relax pos-
itively supercoiled DNA that had a 12-nucleotide bubble
(43). The G-strand is designed to provide a single EcTOP1

cleavage site eight nucleotides downstream of the ssDNA–
dsDNA junction shown by arrow in Figure 9A, while the
single-stranded region of the T-strand is not cleaved by
the enzyme because the sequence does not have a cyto-
sine in the single-stranded region that is required for a
preferred EcTOP1 cleavage recognition site (Figure 9A).
The G116S mutant of EcTOP1 was used for the footprint-
ing experiment because this mutant is known to form a
stabilized irreversible cleavage complex (34). Protection of
the G-strand and T-strand in the hybridized bubble sub-
strate from DNase I or micrococcal nuclease (MNase) di-
gestion was monitored by 5′ 32P-end labeling of the indi-
vidual strand. The DNase I cleavage took place primarily
in the double-stranded region of the bubble substrate, while
MNase cleaved the single-stranded region preferentially. In-
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Figure 7. Assay of complementation of topA temperature sensitive function in E. coli AS17 by wild-type (WT) pLIC-ETOP and its mutant derivatives.
Serial dilutions of overnight cultures of AS17 transformants grown at 30◦C were spotted on LB plates with kanamycin, followed by incubation at either
30◦C or 42◦C.

teraction of EcTOP1–G116S resulted in partial protection
from DNase I digestion for the double-stranded region of
both the G-strand and T-strand (Figure 9B) while complete
protection of the ssDNA region from MNase digestion by
EcTOP1–G116S can be seen for both the G-strand and T-
strand (Figure 9C). These results provide further support of
the double-chain model shown in Figure 8C.

DISCUSSION

Escherichia coli topoisomerase I is highly efficient in remov-
ing negative supercoils because the catalytic mechanism is
based on the enzyme interacting with an underwound ss-
DNA region present in duplex DNA. The multiple interac-
tions between the C-terminal domains and ssDNA is a key
element of the mechanism for bacterial topoisomerase I to
utilize unwound duplex DNA as substrate and prevent hy-
pernegative supercoiling in vivo. Without the efficient relax-
ation activity of topoisomerase I, hypernegative supercoil-
ing behind the elongating RNA polymerase complex would
leave the template and non-template strands of DNA in un-
wound single-stranded form. This hypernegative supercoil-
ing would favor the reannealing of the RNA transcript to
the template strand to form a stabilized R-loop.

Positively supercoiled DNA can also be a substrate
of bacterial topoisomerase I in vitro, provided a single-
stranded loop region is present for the enzyme to bind (43).
EcTOP1 has been previously shown to cleave partial du-
plex DNA with structural preference of the cleavage site
near the junction of ssDNA and dsDNA (44). Structures
of N-terminal domains D1–D4 (TOP67) of EcTOP1 with
ssDNA bound non-covalently or in covalent complex are
available from previous studies (11,45). However, the N-
terminal domains D1–D4 can cleave and rejoin ssDNA but
cannot promote DNA strand passage through the DNA
break to remove negative supercoils (37,46). Truncated Ec-
TOP1, D1–D7 (TOP85) is capable of relaxing negatively
supercoiled DNA (37), but with lower affinity for binding
to ssDNA and reduced processivity for relaxation of neg-

atively supercoiled DNA (36). The contribution of the C-
terminal domains is essential for EcTOP1 to relax super-
coiled DNA. It has not been known how the 4-Cys zinc rib-
bon domains that follow D4 might interact with the DNA
substrate. The oligonucleotide O29–O20 hybrid duplex used
for the co-crystallization in this study was designed origi-
nally to maintain the ssDNA binding to TOP67 and pos-
sibly extend the duplex DNA binding into the zinc ribbon
domains or D5–D7 with its dsDNA segment. The 14 kDa
C-terminal fragment or D8–D9 was isolated previously as a
fragment with higher affinity to ssDNA than TOP67 follow-
ing ssDNA affinity chromatography of partial tryptic digest
of EcTOP1 (35). Therefore, another potential binding mode
was a reverse of the duplex DNA orientation, in which D8–
D9 binds the ssDNA portion of DNA.

The full-length EcTOP1/DNA complex structure re-
vealed in this study has shown that four of five TOP30C
domains including the two 4-Cys zinc ribbon domains (D5
and D7) and the two 4-Cys zinc ribbon-like domains of the
14 kDa C-terminal fragment (D8–D9) bind the ssDNA por-
tion of the predicted duplex DNA, while the dsDNA part
of the oligonucleotide is completely disordered without any
recognizable association with EcTOP1. In the single chain
model (Figure 8B), the two binding ssDNA segments shown
in Figure 8A presumably represent two binding segments
from a single ssDNA chain that would function as the G-
strand for DNA cleavage by the enzyme to create the break
through which strand passage will take place (Figure 8B).
However, the length of the ssDNA spanned between the
cleavage site and the 5′ upstream junction of the ssDNA–
dsDNA near C-terminal D9 can be estimated to be at least
18 bases long in this single chain model. This is significantly
longer than the 3–9 base distance observed previously for
EcTOP1 cleavage of various DNA substrates with both ss-
DNA and dsDNA regions (24,44). In the alternative dou-
ble chain model (Figure 8C), the two binding ssDNA seg-
ments in Figure 8A are presumed to be from two differ-
ent ssDNA chains with one of the ssDNA/dsDNA junc-
tions at or near the zinc ribbon domains D5 and D6. The
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Figure 8. Models of EcTOP1 in interaction with ssDNAs and its implications for positioning of unwound duplex DNA. (A) Stereo view of a ribbon
diagram of full-length EcTOP1 with two ssDNA segments bound at N- and C-terminal domains. The model was created by combining the N-terminal
domains/ssDNA structure (PDB code: 3PX7) and the structure reported in this study as described in the text. (B) A single chain and (C) a double chain
model of ssDNA chain(s) binding to EcTOP1 for DNA relaxation. In the single chain model, the N- and C-terminal domains interact primarily with the
G-strand only. In the double chain model, the N-terminal domains interact primarily with the G-strand while the C-terminal domains interact primarily
with the T-strand. D1, drawn in red with a radial gradient does not bind ssDNA. The �1 (alpha1) helix on D6 is modeled as a handle, which presumably
can pull or push the hinge between D2 and D4 domains for the regulation of the opening-closing state of N-terminal toroid hole.

distance between the cleavage site and the junction of the
ssDNA/dsDNA is about 8–9 bases, which is a much bet-
ter fit for the known biochemical data for cleavage by Ec-
TOP1. The double chain model with the C-terminal do-
mains interacting with the T-strand but not the G-strand
is also consistent with the results here that show that the
I701term mutant has robust cleavage and religation activ-
ity for the G-strand of DNA. The F616 mutations also did
not affect cleavage and religation of the G-strand of DNA
significantly. Therefore, the ssDNA bound between D5 and
D9 should be a part of the passing strand of DNA in the
mechanism for DNA relaxation (Figure 8C). The nuclease

footprinting experiments using the bubble substrate that has
a 12 base long unpaired single-stranded region provided
further support of the double-chain model over the single-
chain model. The cleavage site on the G-strand of this sub-
strate is eight bases downstream from the ssDNA–dsDNA
junction. Interaction of the DNA with the EcTOP1–G116S
enzyme to form the stabilized covalent complex protected
both strands of the unpaired region of the DNA substrate
from MNase digestion as predicted by the double chain
model in Figure 8C. It might be possible for the melted
single-strands of DNA from the RNA polymerase tran-
scription bubble to be bound directly by topoisomerase I
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Figure 9. Nuclease footprinting with DNA bubble substrate. (A) Sequence of top (G-strand) and bottom (T-strand) of DNA bubble substrate. The topoi-
somerase I cleavage site is shown by arrow on the G-strand. Nuclease footprint of EcTOP1-G116S on the bubble substrate is followed by 5′ 32P end-labeling
of either the G-strand or T-strand. (B) DNase I footprinting. Lane 1: Control (C), DNA only; Lane 2: Nuclease only; Lanes 3–7: 10, 20, 40, 60, 100 ng
ETOP-G116S followed by nuclease; Lane 8: 100 ng of EcTOP1-G116S only. (C) MNase footprinting. Lane 1: Control (C), DNA only; Lane 2: Nuclease
only; Lanes 3–6: 10, 20, 40, 60 ng ETOP-G116S followed by nuclease. Nuclease cleavage products are denoted by * symbol.

N-terminal and C-terminal domains without first anneal-
ing back into double-stranded DNA. The direct interaction
between topoisomerase I and RNA polymerase would fa-
cilitate such a mechanism. Further biochemical studies are
needed to verify this scenario.

The interactions between ssDNA and the C-terminal do-
mains are dominated by multiple parallel and T-shaped
�–� stackings between the bases of the ssDNA and the
side chains of the aromatic residues from the C-terminal

domains. Noticeably, the conserved aromatic residue from
the �3-strand of each zinc ribbon domain, with a Zn(II)-
binding site (D5 and D7) or not (D8), is the center of these
�-stacking interactions of each domain. The importance of
these �-stacking interactions in the catalytic mechanism of
the enzyme is clearly illustrated by the reduction in relax-
ation activity from the F616 mutations introduced. In ad-
dition, some basic residues, arginines or lysines, contribute
a couple of cation–� interactions to the bases of ssDNA.
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They also form salt bridges to some backbone phosphate
groups.

It should be noted that all these dominant �-stackings
and cation–� interactions, together with van der Waals
interactions mentioned earlier, between EcTOP1 TOP30C
and ssDNA are independent of the ssDNA sequence. Only
a few hydrogen bonds were observed in the ssDNA se-
quence and most of them appear nonspecific. For exam-
ple, the residue N635, which forms two hydrogen bonds
to the guanine G28, could also form at least one hydro-
gen bond with an adenine at the same position, and poten-
tially with thymine or cytosine as well. The DNA sequence-
independent interactions between TOP30C and ssDNA
suggest that these domains can bind ssDNA of a wide range
of sequences, as expected from the function of EcTOP1 in
global gene expression. However, we cannot exclude any
potentially preferred nucleotide sequences at given binding
sites for maximal interactions between the C-terminal do-
mains and ssDNA.

The lack of sequence specificity for ssDNA binding to
EcTOP1 C-terminal domains might cause problems in the
trials of the co-crystallization of EcTOP1 and ssDNA. The
success of EcTOP1/O29-O20 co-crystallization was likely
due to (i) the right length of ssDNA in the substrate,
which covered the C-terminal domains from D5 to D9; (ii)
the presence of a dsDNA segment in the substrate, which
does not bind the C-terminal domains and therefore pre-
vents random binding registration of ssDNA along the C-
terminal domains. This limited the binding mode of the
substrate to the C-terminal domains and helped the co-
crystallization with EcTOP1.

The presence of Zn(II) has been proven to be criti-
cal to the structure and function of EcTOP1(20). In the
full-length EcTOP1/O29–O20 structure, none of the three
Zn(II)-binding sites in TOP30C are directly involved in ss-
DNA binding. D8 and D9, which do not bind zinc, bind
ssDNA as well as D5 and D7. The metal binding site at
the top of each zinc ribbon domain seemingly assists in sta-
bilizing the fold of the domain and likely helps to main-
tain certain conformations suitable for the association and
dissociation of ssDNA. In the case of D8 and D9, it may
be that the helical hairpin between the two domains sta-
bilizes their structures and maintain their ssDNA binding
conformations. The removal of Zn(II) from D5, D6 and D7
would likely destabilize these domains. In the center of the
C-terminal domains and with two flexible linkers to D6 and
D8, D7 may play a central role in the movement of the pass-
ing ssDNA strand during the catalytic cycles of the enzyme.
This is supported by the experimental data that show severe
loss of relaxation activity for the I701term mutant.

In the proposed model for the DNA relaxation mecha-
nism, the movement of the passing strand of DNA is guided
by the C-terminal domains. We believe the interdomain flex-
ibility of D7 to its preceding and succeeding domains and
the coordination of the C-terminal domain movement and
the opening-closing of the N-terminal toroid hole would
greatly facilitate cycles of the passing strand of DNA enter-
ing and exiting the toroid hole for multiple processive cycles
of removal of negative supercoils with only short pauses, as
observed in single-molecule studies (47). The charged loop

in domain D2 may play an active role in the entry and exit
of the passing strand of DNA in and out of the toroid hole.

The N-terminal domains (D1–D4) of type IA topoiso-
merase enzymes, found among protein family (Pfam) (48)
members of Pfam Toprim (PF01751) characterized by di-
valent ion interactions and Pfam Topoisom bac (PF01131)
(Supplementary Figure S8) are of high degrees of sequence
conservation and presumably of high structural conserva-
tion. It is not surprising that these Pfam members have a
similar catalytic function of cutting and rejoining a sin-
gle strand of DNA via the 5′-phosphotyrosine interme-
diate. Due to the sequence diversities in their C-terminal
domains, the efficiency for relaxation of negatively super-
coiled DNA would then differ among the topoisomerase I
and III enzymes (47). Most bacterial topoisomerase I en-
zymes have at least two 4-Cys zinc ribbon domains while
a small number of them, such as T. maritima topo I, have
only one zinc ribbon domain that may or may not bind
Zn(II). EcTOP1 and its most closely related bacterial topoi-
somerase I enzymes have additional zinc ribbon-like do-
mains without the hallmark of four zinc-binding cysteines.
In the EcTOP1/ssDNA structure, it is clear that both the
4-Cys zinc ribbon domains and zinc ribbon-like domains
bind ssDNA in similar fashions involving primarily multi-
ple �-stacking interactions without direct involvement of
the Zn(II)-binding sites. Zn(II) binding appears to be im-
portant for the structural stability of a zinc ribbon domain,
but is not always necessary for ssDNA binding. It is pos-
sible that during evolution when a Zn(II)-binding domain
acquires other structural element(s) that may help its sta-
ble folding, it may lose its Zn(II)-binding site. D8 and D9
of EcTOP1 may be examples of such an evolution of a ss-
DNA binding domain, in which a unique helical hairpin
linker eventually clamps the two domains when they lose
Zn(II)-binding cysteines.

It is noticed that a smaller subset of bacterial topoiso-
merase I enzymes in Actinobacteria, including Mycobac-
terium tuberculosis, Mycobacterium smegmatis (49) and
Streptomyces coelicolor (50), do not have any recognizable
4-Cys zinc ribbon domains (Supplementary Figure S8). The
C-terminal regions of bacterial and fungal topoisomerase
III enzymes also do not have recognizable zinc ribbon do-
mains. Although they are believed to utilize basic amino
acid rich domains for ssDNA binding (51), the possibilities
of zinc ribbon-like domains or even other types of folds in
their C-terminal regions cannot be excluded.

Interestingly, topoisomerase III enzymes from higher eu-
karyotes evolved to have multiple 4-Cys zinc ribbon do-
mains in their C-terminal regions (21,52,53). The structure
and ssDNA interactions elucidated here for the EcTOP1 4-
Cys zinc ribbon domains should be highly relevant for the
structure and mechanism of human TOP3� and TOP3�
that have been shown to play important roles in genomic
stability and neurodevelopment, respectively (1,54,55). Hu-
man TOP3� may specifically target hypernegatively super-
coiled DNA for suppression R-loops (23) in a function sim-
ilar to EcTOP1. A C666R single nucleotide variant in hu-
man TOP3� has been found in individuals with autism
spectrum disorders and could affect the structure of the C-
terminal region (55).
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Here we have reported for the first time the full-length
EcTOP1 structure with ssDNA bound to its C-terminal do-
mains. We have also for the first time characterized the inter-
actions of the 4-Cys zinc ribbon domain and its closely re-
lated zinc ribbon-like domain with ssDNA that are likely to
be important for recognition and suppression of hyperneg-
atively supercoiled DNA. The extended knowledge of the
ssDNA binding domains has improved our understanding
of not only the bacterial and eukaryotic topoisomerases dis-
cussed here but also other proteins, which may contain sim-
ilar zinc ribbon domains. The YrdD protein of Enterobac-
teriaceae, which seemingly contains four 4-Cys zinc ribbon
domains, has been shown to have Zn(II)-dependent ssDNA
binding activity and may be involved in DNA repair (56).
Certain transcription factors with zinc ribbon domains, for
example Brf, may utilize the zinc ribbon domains to interact
with a localized unwound ssDNA region to facilitate open
complex formation in transcription initiation (57).
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