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Abstract Invited Referees
Ewing sarcoma is a small round blue cell malignancy arising from bone or soft 1 2 3
tissue and most commonly affects adolescents and young adults. Metastatic

and relapsed Ewing sarcoma have poor outcomes and recurrences remain version 1 W ", W
common. Owing to the poor outcomes associated with advanced disease and published

the need for a clear research strategy, the Children’s Oncology Group Bone 15 Apr 2019

Tumor Committee formed the New Agents for Ewing Sarcoma Task Force to

bring together experts in the field to evaluate and prioritize new agents for

incorporation into clinical trials. This group’s mission was to evaluate scientific
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and clinical challenges in moving new agents forward and to recommend
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Representative appraisal of agents of highest priority, including eribulin,
dinutuximab, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors,
anti-angiogenic tyrosine kinase inhibitors, and poly-ADP-ribose polymerase
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Introduction

Ewing sarcoma (ES) is a small round blue cell bone tumor most
commonly occurring in adolescent and young adult (AYA)
patients. ES is a classic fusion oncoprotein-driven tumor
typically associated with a reciprocal translocation involving
EWSRI (chromosome 22) and the ETS family transcription
factor FLII (chromosome 11)'. These fusions may arise from
chromoplexy events’. Whereas classically no known genetic
predisposition syndromes were linked to ES tumor develop-
ment, recent evidence suggests that germline mutations in genes
regulating DNA damage pathways are associated with an
increased risk of developing ES’. The field continues to learn
more about the origins, nature, and behavior of the EWS-FLI1
oncoprotein in the context of individual tumor cells and the
micro-environment™. This knowledge could assist in the future
discovery of new therapeutic targets and in developing
guidelines for risk stratification and treatment.

Currently, the strongest prognostic factor is stage at initial
diagnosis. In North America, survival in localized ES improved
to more than 70% 5-year event-free survival (EFS) by treating
with alternating cycles of interval-compressed vincristine,
doxorubicin, cyclophosphamide and ifosfamide and etoposide
(VDC/IE)°. The Euro-Ewing 99 clinical trial improved
outcomes in localized ES with high-risk features by intensifi-
cation of therapy with high-dose chemotherapy with busulfan
and melphalan’. The addition of IE cycles in earlier studies or
intensification of therapy with high-dose chemotherapy has not
improved outcomes for patients with metastatic disease®. As
patients with metastatic ES have not benefited from treatment
intensification, it suggests that targeted agents will be needed
for this population. As an example, an ongoing Children’s
Oncology Group (COG) trial is evaluating the insulin-like growth
factor 1 receptor (IGF-1R) antibody ganitumab with cytotoxic
chemotherapy (ClinicalTrials.gov Identifier: NCT02306161)".
Patients with relapsed ES also have a dismal prognosis, and
survival estimates are about 10%'. Current efforts in the relapsed
setting have focused on targeting EWS-FLII itself, targeting
DNA damage vulnerabilities, or exploring immunotherapy
strategies'*". For the purpose of this report, we consider
patients with either newly diagnosed metastatic or relapsed
ES to have advanced disease. There is a dire need for new
therapies to improve outcomes for patients with advanced
ES.

It is in this clinical climate that the COG Bone Tumor
Committee established the New Agents for Ewing Sarcoma
Task Force. The COG Bone Tumor Committee previously estab-
lished a successful working group for drug development in
osteosarcoma’'. The purpose of this ongoing effort in ES is to
bring together experts (basic scientists, experts in preclinical
testing, pediatric sarcoma clinicians, and clinical investigators)
with the primary goal of identifying potential agents of high
priority for clinical evaluation and expeditiously incorporating
these agents into clinical trials. Many new agents are being
investigated in relapsed ES and many of these are listed in
Table 1. In this report, we summarize our work to date, includ-
ing establishing a framework to prioritize potential agents in
this rare disease, characterizing challenges in understanding the
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disease biology, determining the bar for preclinical data,
recommending an appropriate cytotoxic chemotherapy backbone
on which to layer novel agents, and highlighting practical
considerations for clinical trial development in the advanced
ES patient population. We aim to provide clinicians and basic
scientist’s insight into our approach in order to broadly facilitate
discussions on moving new agents forward in this rare tumor.
For additional background on ES more generally, we refer the
reader to a recent review article”.

Conceptual framework for assessing novel agents in
advanced Ewing sarcoma

The task force defined key criteria against which to gauge
potential new agents of relevance to ES (Figure 1). These criteria
were broadly divided into non-clinical and clinical criteria.

Non-clinical criteria

The fundamental non-clinical criterion is the strength of the basic
science evidence demonstrating that the target either is critical
to ES pathogenesis or has an expression pattern that is relatively
specific to ES. Mechanistic dependency may be linked directly
to targeting the oncoprotein EWS-FLI or effectors downstream
of EWS-FLI1 or micro-environmental factors critical to the
tumor. Once a target is identified, it is crucial to have proof-
of-concept data that a putative drug is active against the intended
target.

In addition to proof-of-concept data, the remaining requirements
for preclinical data will likely vary greatly depending on the
agent and the model systems available. For example, although
ideally animal model data would be obtained in the preclinical
setting, acquiring animal data for immunotherapy agents is
currently not optimal given the lack of transgenic and well-
developed humanized mouse models of ES*. Although a range
of in vitro and in vivo supportive preclinical testing can be
considered to help prioritize agents for further development, for
a rare tumor such as ES for which relapse is nearly uniformly
fatal, extensive preclinical testing need not be required if the
rationale for the agent is otherwise strong. Preclinical data in
ES have not always predicted clinical response; furthermore,
the degree of testing is not standardized and particular atten-
tion to pharmacokinetics, pharmacodynamics, and the use of a
clinically relevant dose and schedule is recommended to provide
translational relevance”*.

Clinical criteria

From a clinical perspective, the paramount criterion is a signal
of activity in early-phase testing with agents meeting this
criterion prioritized for rapid translation into a trial for relapsed
or newly diagnosed metastatic populations. Drug availability,
through US Food and Drug Administration (FDA) approval for
other indications, inclusion in the Cancer Therapy Evaluation
Program (CTEP) portfolio, or collaboration with an engaged
industry partner, offers another factor in prioritization. Avail-
ability of pediatric dosing schedules is an advantage but not a
prerequisite in this AYA cancer”'. Given that single-agent
therapy is unlikely to be curative in most circumstances, it is
important to consider the feasibility of combination therapy.
Other clinical parameters discussed are outlined in Figure 1.
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Table 1. Agents discussed and evaluated by New Agents for Ewing Sarcoma Task Force in 2018. The agents appearing in a bold

typeface are expanded upon in Table 2.

Drug/Target Class

EWSR1-FLI1 Target agents:
Splicing inhibitors
Minor groove-binding agents

Epigenetic therapies

CD99 targeting agents

Novel cytotoxic agents

Multi-targeted tyrosine Kinase Inhibitors
Mammalian target of rapamycin (mTOR) inhibitors

DNA damage/Repair

Cell cycle cyclin-dependent kinase (CDK) inhibitors
Transcriptional CDK Inhibitors

MDM2 Inhibitor

Insulin-like growth factor 1 receptor (IGF-1R)
inhibitors

Platelet-derived growth factor receptor (PDGFR)
antibodies

Other monoclonal antibodies

Metabolic modulators

Example drugs

TK-216
Mithramycin, Trabectedin and Lurbinectidin
Lysine-specific demethylase 1A (LSD1) inhibitors (seclidemstat and IMG-7289)

Histone deacetylase inhibitors (vorinostat, entinostat, and panobinostat)
Bromodomain inhibitors

Clofarabine/Cladribine and CD99 antibody

Eribulin, aldoxorubicin and palifosfamide

Pazopanib, regorafenib and cabozantinib

Nab-Rapamycin, temsirolimus

Poly-ADP-ribose polymerase (PARP) inhibitors (niraparib, olaparib, talazoparib)
Wee1 inhibitors (AZD1775)

CHK1 inhibitors (prexasertib)

CDKA4/6 Inhibitors (palbociclib, ribociclib, abemaciclib)

CDK7 inhibitor (SY-1365)
CDK12 inhibitor

AMG-232, DS-3032b, ALRN-6924 and idasanutlin

Ganitumab

Olaratumab

MORab-004
Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors and Metformin
GD2 antibody (dinutuximab)

Immunotherapy VIGIL/FANG
Chimeric antigen receptor (CAR) T cells
| Non-Clinical Considerations ‘
MORE
Basic Science Preclinical
Evidence Evidence DATA LOw
NEEDED PRIORITY

* Proof of mechanism * In vitro activity in Ewing
« Link to EWSR1/FLI1 sarcoma

 Proof of concept: * In vivo activity in Ewing

does drug hit target sarcoma
FEEHLE S LR (E Clinical Considerations
Drug Assess Consensus
or Representative 1 Decision
Target Agents [ 1
Clinical Drug Trial Design
Evidence Availability Considerations
+ Agent in the clinic + Supportive industry + Feasible in combo
« Activity in EWS partner with chemo vs. MOVE
patients + Available via CTEP monotherapy only FORWARD

» Ongoing EWS trial
* Peds phase 2 dose
« Activity in other

cancers

« FDA approved for

another indication

« Requires cytotoxic (or
other combo) for
activity

« Best as cytoreductive
agent vs. minimal
residual disease
agent

Figure 1. Paradigm for evaluation new agents for Ewing sarcoma. Task force members proposed agents or targets (detailed in Table 1).
These proposals were then each individually discussed using the step-wise approach outlined. Agents deemed worthy to move forward were
then re-examined and re-vetted through this work flow as new preclinical or trial data updates became available. CTEP, Cancer Therapy
Evaluation Program; EWS, Ewing sarcoma; FDA, US Food and Drug Administration.
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With these non-clinical and clinical criteria in place, we for-
mulated a list of potential agents for advanced ES. Table 1 is an
inclusive list of agents considered in 2018. We next methodi-
cally considered each agent in a step-wise fashion, applying
the aforementioned criteria. We applied these criteria to
selected potential agents of greatest interest (Table 2). Table 2
also provides a benchmark for ganitumab, an agent currently
in phase 3 testing in newly diagnosed metastatic ES, and for
mammalian target of rapamycin (mTOR) inhibitors currently
proposed for the next COG trial for first recurrence.

Eribulin

Eribulin is a microtubule inhibitor that inhibits polymerization
of tubulin subunits and differs from other microtubule inhibi-
tors by preventing lengthening and shortening of microtubules
during division. Aggregation of unstable tubulin polymers
ultimately results in cellular apoptosis**~. EWS-FLII is known
to drive the expression of proteins that regulate microtubule
stability’”. Preclinical testing of ES cell lines demonstrated
apoptosis, induced through the Bcl-2 pathway®. Eribulin was
also evaluated by the Pediatric Preclinical Testing Program
(PPTP); four out of five ES xenografts demonstrated a com-
plete response to treatment’. In sarcoma treatment, eribulin is
FDA-approved for adult patients with liposarcoma who previ-
ously received an anthracycline®. The COG performed a phase
1 trial of eribulin in children with advanced solid tumors; one
of the evaluable patients with ES experienced a partial response
for four cycles”. An ongoing phase 2 trial (ClinicalTrials.gov
Identifier: NCT03441360) is assessing eribulin in patients with
relapsed ES*. An ongoing phase 1/2 trial (ClinicalTrials.gov
Identifier: NCT03245450) is evaluating eribulin in combina-
tion with irinotecan, although these agents are not expected to
have significant overlapping toxicities*'. Furthermore, vincristine
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and topoisomerase 1 inhibitors act synergistically in xenograft
models and in pediatric clinical trials; therefore, eribulin with
irinotecan may also have clinical synergy***.

Eribulin shows strong preclinical data in ES, is an FDA-approved
agent for another sarcoma indication, and has led to at least
one monotherapy response in relapsed ES. We will recom-
mend further trial development with eribulin as a component of
combination therapy pending the results of current trials.

Dinutuximab

GD2 is a disialoganglioside that is expressed on the surface
of tumors of neural crest origin, such as neuroblastoma*. The
precise cell of origin for ES is unknown; however, it is thought
to be a neural crest or mesenchymal-derived tumor”~’. ES
tumors have been evaluated for GD2 expression, and results
range from no detectable surface expression to diffuse/intense
staining in some tumors®>'. It is not known whether GD2
expression changes upon relapse or whether levels differ in
patients with newly diagnosed metastatic ES. Several available
antibodies in the clinic are known to bind to this target, includ-
ing dinutuximab, which is approved by the FDA for use in
neuroblastoma. There is currently no preclinical evidence for
utility of dinutuximab in ES.

The clinical evidence supporting dinutuximab borrows heavily
from another GD2-positive pediatric cancer, neuroblastoma.
The combination of irinotecan, temozolomide, and dinutuximab
has been shown to demonstrate significant clinical benefit in
children with advanced neuroblastoma’. Pediatric dosing,
schedules, and toxicities are well documented with this therapy
combination. Patients with relapsed neuroblastoma are gener-
ally younger than patients with relapsed ES, and there is the

Table 2. Work-flow summary of the top five promising agents in 2018. Work-flow summary of eribulin,
dinutuximab, tyrosine kinase inhibitors, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, and poly-
ADP-ribase polymerase (PARP) inhibitors. Ganitumab (currently in a metastatic Ewing sarcoma clinical
trial) and mammalian target of rapamycin (mTOR) inhibitors (currently in a trial proposal) are also included

using the task force’s work flow for comparison.

Dru Ssﬁesr:g o Preclinical Clinical Drug Trial Design Consensus
9 Evidence Evidence Evidence Availability Consideration Decision
Ganitumab t + . + t In trial
(in trial) (AEWS1221)
mTOR inhibitor f
(proposed trial) ++ + + ++ ++ Move forward
Anti-GD2
monoclonal ++ + ++ ++ Move forward
Eribulin + + + ++ ++ In early trials
Multi-targeted
tyrosine kinase + + + ++ + In early trials
inhibitor
CDKA4/6 inhibitor ++ ++ ++ + In early trials
PARP inhibitor ++ ++ - ++ - In early trials

Table 2 - = negative data, + =some evidence, ++ =significant evidence, blank=no data
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potential for different toxicity in older patients. As some ES
tumors express GD2, determining whether the addition of
dinutuximab to chemotherapy extends to ES is a logical clinical
trial question. Dinutuximab is FDA-approved and also available
in the CTEP portfolio. As demonstrated in neuroblastoma trials,
dinutuximab is both feasible and more effective in combination
with irinotecan and temozolomide (IT).

The task force determined that the available clinical data in
another GD2-positive tumor treated with this combination
are sufficiently strong to nominate this approach for clinical
evaluation in ES. Irinotecan and temozolomide are agents
routinely used in relapsed ES therapy, and a next-step trial
could determine the efficacy of dinutuximab added to IT. The
combination would be strategically combining immune-based
treatment with traditional cytotoxic therapy. Given the current
inconsistency in GD2 immunohistochemistry staining, it would
not be possible to select patients upfront on the basis of tumor
GD2 expression.

Anti-angiogenic tyrosine kinase inhibitors

A large body of work highlights the role of angiogenesis in
ES**7° Several tyrosine kinase inhibitors (TKIs) targeting ang-
iogenesis have been developed, although most are multi-targeted
TKIs that target other receptor tyrosine kinases (RTKs). RTKs are
important regulators of cell growth, proliferation, and survival.
Aberrant RTK signaling resulting from amplification, mutation,
or overexpression has been implicated in many cancers, including

ES”.

Pazopanib primarily targets VEGFR-1 and -2, PDGFR-o. and
-B, and c-Kit*. Pazopanib has gained FDA approval for treat-
ment of refractory soft tissue sarcoma (STS) in adult patients.
A phase 3 clinical trial for patients with advanced STS demon-
strated improved progression-free survival (PFS) (4.6 months)
in the pazopanib arm compared with placebo (1.6 months)™. The
PPTP evaluation of pazopanib revealed a statistically prolonged
EFS in ES xenografts but no objective responses®. Several
case reports have demonstrated partial responses in patients
with ES; however, resistance seems to develop with prolonged
use® ", Cabozantinib targets VEGFR2, ¢c-MET, and AXL and
is FDA-approved for the treatment of medullary thyroid cancer
and renal cell carcinoma in adults. A phase 2 study of cabozan-
tinib in patients with recurrent ES showed tumor control with
9 (27.7%) partial responses and 10 (30.3%) with stable
disease*’. Pediatric phase 2 dosing is established for both
pazopanib and cabozantinib®. Regorafenib is an oral multi-
kinase inhibitor that targets VEGFR-1-3, FGFR1, PDGFR-a
and -B, CSFR-1, and c-Kit. It has FDA approval for use in
metastatic colorectal carcinoma, gastrointestinal stromal tumor,
and hepatocellular carcinoma. SARC024 evaluated regorafenib
in 30 patients with ES. The median PFS was 3.6 months, and the
median duration of response was 5.5 months®’.

At least three anti-angiogenic TKIs have shown clinical
monotherapy activity in relapsed ES. This clinical activity
together with preclinical rationale and drug availability should
motivate evaluation of this class of agents in combination with
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cytotoxic chemotherapy or other targeted agents or as a potential
maintenance therapy in future trials.

CDKa4/6 inhibitors

CDKNZ2A is a gene that codes for two proteins: pl6 and pl4arf.
Both proteins are tumor suppressors; pl6 inhibits cyclin-
dependent kinases 4 and 6 (CDK4 and CDK6) by phosphorylat-
ing the RB protein, thus preventing cell cycle progression®.
About 13 to 30% of ES tumors have deletions in CDKN2A®-"!.
CDKN2A deletion does not appear to be associated with
clinical outcome™”. Owing to the alteration of pl6 in a subset
of ES, there is clinical interest in CDK4/6 inhibitors that
target and inhibit this pathway. The cyclin D1 gene has been
shown to be associated with a superenhancer in ES™. ES cells
consequently have an activated cyclin D1/CDK4 pathway and
require CDK4 and cyclin D1 for growth. /n vivo data demon-
strated decreased tumor growth and prolonged survival with
CDK4/6 inhibition”*. These data provide a rationale for use
even in the absence of CDKN2A deletions’.

Currently, three CDK4/6 inhibitors have been FDA-approved
for advanced breast cancer: abemaciclib, palbociclib, and ribo-
ciclib. These agents each have ongoing or completed single-
agent pediatric phase 1 trials (ClinicalTrials.gov Identifiers:
NCT02644460, NCT01747876, and NCT02255461)". As
in adults, the predominant toxicity seen in children is hema-
tologic’. Since single-agent therapy is rarely curative in
sarcomas, there is little interest in evaluating single-agent
CDK4/6 inhibitors in patients with ES. Combination with
conventional cytotoxic chemotherapy agents, many of which
are dependent on S-phase cycling, may be challenging because
of antagonistic mechanisms”. Furthermore, the significant
myelosuppression seen with CDK4/6 inhibitors complicates
combinatorial therapy. Without significant adult data evaluat-
ing CDK4/6 inhibitors with chemotherapy, we await the results
of a planned trial evaluating palbociclib with IT before recom-
mending a chemotherapy combination approach in advanced ES
(ClinicalTrials.gov Identifier: NCT03709680)*. There are other
trials in the US combining CDK4/6 inhibitors with agents, includ-
ing MEK and mTOR inhibitors (ClinicalTrials.gov Identifiers:
NCT03387020, NCT03114527, and NCT02703571)*'-%. Other
preclinical data suggest that dual inhibition of CDK4/6 and
IGF-1R may be a combination to consider in ES, as CDK4/6
drug resistance is mediated by activation of IGF-1R signaling®.
In sum, CDK4/6 inhibitors have potential efficacy in ES but
identifying the appropriate combination therapy has been
challenging. We recommend additional preclinical and clinical
data before moving this class of drugs forward in first-relapse
or metastatic ES.

PARP inhibitors

Much enthusiasm has surrounded poly-ADP-ribose polymerase 1
(PARP1) inhibitors in ES. PARP plays a significant role in DNA
repair, particularly with single-strand DNA damage. Inhibition
of PARP proteins can cause persistent single-strand breaks,
ultimately resulting in cellular apoptosis. EWS-FLII interacts
with PARPI1, influencing its transcriptional activity, and ES
tumors have high levels of PARP mRNA and protein activity®.
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Several PARP inhibitors, including olaparib, rucaparib, talazo-
parib, and niraparib, have received FDA approval for the treatment
of ovarian or breast cancer in adult patients. Interest in PARP
inhibitors in ES resulted from preclinical data demonstrating
sensitivity in ES cell lines®. A phase 2 trial with olaparib mon-
otherapy quickly opened for adults with relapsed ES. Of the
12 patients enrolled, none had objective responses and four
patients had stable disease. The median time to progression
was 5.7 weeks”. The PPTP and others evaluated PARP inhibi-
tors in combination with DNA-damaging chemotherapy and
demonstrated activity in ES xenografts®’~*’.

Owing to these promising preclinical data, a series of successor
trials have evaluated PARP inhibitors in combination with
irinotecan, temozolomide, or IT (ClinicalTrials.gov Identi-
fiers: NCT02116777, NCTO01858168, NCT02044120, and
NCT02392793)°%, While there have been hints of clinical
activity, preliminary presentations of the toxicity data have
shown that the myelosuppression of PARP inhibitors with
cytotoxic chemotherapy is limiting dose intensity in these
combination trials*. This drug class demonstrates that strong
preclinical activity and rationale may not always predict
clinical feasibility, particularly in a heavily pretreated, relapsed
patient population. At this time, we recommend awaiting results
from ongoing clinical trials prior to moving this class of drugs
further in advanced ES clinical trials.

The cytotoxic backbone: trial recommendations

We also discussed the chemotherapy backbone onto which
selected agents could be added for patients with first recurrent
ES. Currently, there is no established standard backbone
for patients with recurrent or refractory ES. Topotecan with
cyclophosphamide has shown activity in patients with relapsed
ES with response rates between 23 and 41%"'. Owing to
this promising activity, the COG conducted a pilot trial adding
vincristine, topotecan, and cyclophosphamide (VTc) to interval-
compressed ES therapy. This combination was tolerable, but
hematologic toxicity was between 44 and 63%'"'. The Euro
Ewing Consortium is evaluating topotecan and cyclophospha-
mide in the rEECur trial (EudraCT number: 2014-000259-99)
for recurrent ES. A randomized COG phase 3 trial, AEWS1031,
evaluated the efficacy of adding VTc to the interval-compressed
five-drug backbone, and results are pending. Owing to the sig-
nificant hematologic toxicity of this combination, incorporating
additional agents to this backbone may prove challenging but
could be considered for the appropriate novel agents.

The combination of vincristine and IT (VIT) has also shown
activity in patients with relapsed ES. VIT has demonstrated
response rates between 29 and 63% in relapsed or refrac-
tory patients, although the actual VIT response rate has not
yet been investigated in a prospective randomized trial'’>-'%.
This chemotherapy has schedule-dependent synergy'*!’”. The
combination of drugs also has limited overlapping toxicity.
Diarrhea and abdominal pain are the most common dose-limiting
toxicities of irinotecan'”'"”. The major dose-limiting toxicity
of temozolomide is myelosuppression''’~'"?. Currently, the Euro
Ewing Consortium is evaluating IT in relapsed ES. IT has a
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strong history of efficacious combination with monoclonal
antibodies or targeted therapies in other diseases™!!*!!,
Currently, there are ongoing trials for patients with ES com-
bining IT with PARP inhibitors or Vigil autologous vaccine
(ClinicalTrials.gov Identifiers: NCT02044120, NCT01858168, and
NCT03495921)”">%:115, Owing to the reported efficacy of IT in
ES and successful combination with other novel therapeutics, we
believe IT (with or without vincristine) may be a preferred and
feasible cytotoxic backbone for future combination clinical trials
in first recurrent ES.

Although the original addition of IE to VDC did show improved
outcomes for localized disease, patients with upfront metastatic
ES saw no clinical benefit from this addition®''*'"". Given these
data, the group also discussed eliminating or reducing IE
cycles for metastatic patients to decrease toxicity, allowing the
addition of other targeted agents to VDC in future trials.
Furthermore, early data from a single-institution trial includ-
ing patients with upfront metastatic ES (ClinicalTrials.gov
Identifier: NCTO01864109) demonstrate the feasibility of
incorporating IT into standard upfront therapy for metastatic
ES'". Altering the number of IE cycles and adding IT to the
upfront chemotherapy backbone are both considerations for
further trial design considering drug synergism and overlapping
toxicities of the targeted agents being studied.

Additional key clinical trial design considerations

In addition to establishing recommendations for advanced ES
cytotoxic backbones, we examined other important aspects of
trial design including patient randomization, maintenance
therapy, and specific differences in trial design approach for
patients with upfront metastatic versus relapsed ES. Given the
rarity of this tumor, we continue to support collaborative, multi-
national trials in order to study this cancer in a timely and
inclusive manner.

With a goal of testing novel agents in patients with advanced
ES, we propose several potential trial designs depending upon the
agent and specific population of interest. The newly diagnosed
metastatic population presents two potential opportunities for
evaluating new agents. For agents expected to combine well
with conventional cytotoxic chemotherapy, we recommend a
randomized design comparing chemotherapy alone versus
chemotherapy plus a novel agent. Depending upon the available
evidence supporting the agent, the statistical parameters for such
a trial may incorporate a phase 2 design with early stopping
rules or a phase 3 trial to show definitive efficacy. For agents
difficult to combine with chemotherapy, those that may be
administered on a chronic schedule, or those with expected
efficacy in minimal residual disease settings, a maintenance
design could be considered. In this design, patients in a radio-
graphic complete remission would continue treatment with
the novel agent upon completion of frontline therapy. Both
approaches are used in the ongoing COG trial of ganitumab.
Given the paucity of clinical data for maintenance strategies
in ES, this approach is best studied in the context of a rand-
omized study, comparing maintenance with no maintenance or
comparing two different promising maintenance strategies.
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Likewise, the type of maintenance regimen should be carefully
considered in light of concerns about toxicity and adherence in
an AYA population'”.

For the relapse population, there are two main design consid-
erations. Given that ES often remains chemotherapy-responsive
at first relapse, trial designs should incorporate cytotoxic chemo-
therapy. Therefore, testing of new agents can be performed
as a single-arm trial combining a new agent with a standard
backbone, and inference about activity of the combination is
based on strong historical data for the backbone regimen. Alter-
natively, new agents may be tested in a randomized manner,
either as a definitive comparison against the backbone alone
or in a selection design comparing two novel agents added
to the same backbone. Promising agents that are unlikely to pair
well with chemotherapy (for example, antagonism; overlap-
ping toxicity) may be best evaluated as monotherapy in a second
relapse population.

Conclusions and future directions

We have generated a robust group and infrastructure for vetting
novel agents for evaluation in patients with ES. Future efforts
by our group and other groups may use this paradigm as new
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agents or concepts become available. We discussed several
strategies that were determined to be too early in develop-
ment for immediate translation into a clinical trial for the newly
diagnosed metastatic or first recurrent populations. Exam-
ples of these strategies include lysine-specific demethylase 1A
(LSD1) inhibition, inhibition of interaction between EWSRI-
FLI1 protein with RNA helicase, epigenetic modification of
chromatin modeling resulting in EWS-FLI1 suppression,
inhibition of transcriptionally active CDKs, and immunotherapy
approaches in ES'?*-'>2. The first two of these approaches are
particularly noteworthy as they target fundamental functions
of the fusion oncoprotein that drives this disease. The task force
will continue to discuss the progress of these and other emerging
strategies.
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