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Abstract

cancer therapies.

Background: Aberrant activation of protein kinases is one of the essential oncogenic driving forces inherent to the
process of tumorigenesis. The protein kinase CK2 plays an important role in diverse biological processes, including
cell growth and proliferation as well as in the governing and transduction of prosurvival signals. Increased
expression of CK2 is a hallmark of some cancers, hence its antiapoptotic properties may be relevant to cancer
onset. Thus, the designing and synthesis of the CK2 inhibitors has become an important pursuit in the search for

Results: Using a high-throughput microarray approach, we demonstrate that two potent inhibitors of CK2, 4,5,6,7-
tetrabromo-benzimidazole (TBBz) and 2-Dimethyloamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), blocked
mitogen induced mRNA expression of immediate early genes. Given the impact of these inhibitors on the process
of transcription, we investigated their effects on RNA Polymerase Il (RNAPII) elongation along the mitogen
inducible gene, EGRIT (early growth response 1), using chromatin immunoprecipitation (ChIP) assay. ChIP analysis
demonstrated that both drugs arrest RNAPII elongation. Finally, we show that CDK9 kinase activity, essential for the
triggering of RNAPII elongation, was blocked by TBBz and to lesser degree by DMAT.

Conclusions: Our approach revealed that small molecules derived from halogenated imidazole compounds may
decrease cell proliferation, in part, by inhibiting pathways that regulate transcription elongation.

Background

Phosphorylation is the most common post-translational
protein modification that regulates a wide spectrum of
cellular processes [1]. Protein kinases modify the tar-
geted protein by transferring phosphate groups from
ATP or GTP to free hydroxyl groups of serine, threo-
nine or tyrosine in protein amino acid backbone causing
conformational change in the protein structure. It has
been estimated that approximately one-third of the
eukaryotic proteome is phosphorylated at any given
time. Dysregulation of protein kinase-mediated signaling
pathways may impair cell growth, proliferation and
apoptosis, leading to various disease states [2]. The suc-
cess of the kinase inhibitor imatinib mesylate (Gleevec)
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in treatment of selected cancers has generated great
interest and hope to use inhibitors of this class of
enzymes to treat cancer including promising results
with the use of CK2 small molecule inhibitors [3-5].

Specificity of phosphorylation by protein kinases is
important for the fidelity of signal transduction largely
determined by amino acids flanking Ser/Thr/Tyr resi-
dues and kinase-substrate concentrations in situ [6].
The constitutively active CK2 kinase is the most pleio-
tropic protein kinase known; it phosphorylates multiple
cellular proteins both in vitro and in vivo [3]. CK2 is
required for cell viability and it is involved in regulation
of almost all stages of the cell cycle in yeast and mam-
mals [7-12]. Increased expression of CK2 is one of the
hallmarks of cancers including the lung, mammary
gland, kidney and prostate [3]. This observation has gen-
erated great interest and has fueled the search for speci-
fic inhibitors of this enzyme.
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The ATP analog 5,6-dichloro-1-b-D-ribofuranosylben-
zimidazole (DRB) was one of the earliest CK2 inhibitors
used. Modifications of the DRB structure by removing
the sugar moiety and replacing the chlorines with bro-
mine atoms produced the 4,5,6,7-tetrabromo-1H-benzo-
triazole, TBB. Further reactions within triazole ring
generated 4,5,6,7-tetrabromo-benzimidazole (TBBz) and
2-Dimethyloamino-4,5,6,7-tetrabromo-1H-benzimidazole
(DMAT). Both compounds were shown to be potent
CK2 inhibitors, in vitro [13]. Although CK2 inhibitors
exhibit different efficacy and specificity, almost all of
them inhibit cell proliferation and induce caspase-
related apoptosis in the established cancer cell lines [3].
Here, we used several assays to examine the mode of
action of TBBz and DMAT in vivo.

Results

Inhibition of cell proliferation by TBBz and DMAT in Hela
cells

The reduction of tetrazolium salts to formazans by liv-
ing cells results in the color development in the MTT
test and reflects the combined effects of cell prolifera-
tion and survival. HeLa cells were treated with increas-
ing concentrations of TBBz or DMAT and MTT test
was performed after 24 and 48 h of the treatment. The
suppressive effect of both CK2 inhibitors on cell growth
was observed with the highest concentration of inhibi-
tors; 10 uM of DMAT and 25 pM of TBBz (Figure 1A,
B). The results of the MTT test were further confirmed
by [*H] thymidine incorporation assays. Again, the pro-
liferation of HeLa cells was inhibited after 24 h (and to
a higher degree after 48 h) of treatment with 10 and 25
pM of DMAT and TBBz, respectively (Figure 1C, D).
The observed inhibitory effect of both TBBz and DMAT
on cell proliferation is in agreement with previously
published results by Pagano et al. [14], however the
inhibition efficacy varies considerably between Jurkat
cells used in that study and the HeLa cells used here
(viability 25% and 85% respectively, Figure 1A).

TBBz and DMAT effects on gene expression profiles

To explore the molecular mechanism of action of these
inhibitors in more detail, we performed an oligonucleo-
tide microarray experiment. We hybridized cRNA pre-
pared from RNA of control HeLa cells and cells treated
for 1, 6 and 24 hours with either 25 uM TBBz or 10
uM DMAT to Affymetrix U133A 2.0 GeneChip oligo-
microarrays containing 22277 probe sets mapping to
14500 well-characterized human genes. In these studies,
we established that treatment of serum-starved quies-
cent cells with 15% of fetal bovine serum changed the
level of 925 out of 10,600 transcripts (more than 2-fold
change; FDR = 0.001) at least at one of the analyzed
time points [Additional file 1: Table S1]. Inhibitor treat-
ment for 1 and 6 hrs mainly caused a decrease in
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transcript levels (Table 1), and most of the changes at 1
hr of treatment were observed among immediately-early
genes (Figure 2A).

To confirm microarray data, next we examined the
effect of the inhibitors on serum-induced transcription
of the selected immediate early genes, EGRI (early
growth response-1), FOSB (FB] murine osteosarcoma
viral oncogene homolog B), BTG2 (B-cell translocation
gene 2), NR4A1 (nuclear receptor subfamily 4, group A,
member 1), NR4A3 ( nuclear receptor subfamily 4,
group A, member 3) and CMYC (v-myc myelocytomato-
sis viral oncogene homolog) [15], by RT qPCR. As
shown in Figure 2B, serum stimulation of HeLa cells
was accompanied by rapid induction of all transcripts,
except CMYC, with a peak increase at 30-60 min of sti-
mulation followed by a continual decline to basal
expression levels at 180 min, the latest experimental
time point. The highest increase was found for EGRI
mRNA (~300 fold change), while CMYC transcript
increased less than two-fold. Inhibitor treatment signifi-
cantly decreased the transcript levels at almost all time
points. These results showed an inhibitory effect of both
drugs on the induced transcription of immediate early
genes suggesting that both agents may inhibit RNA
Polymerase II (RNAPII) elongation. This possibility was
tested next.

TBBz and DMAT inhibit the elongation phase of
transcription

Transcription complexes of RNAPII often pause near
the transcription start site (TSS) [16], and the transition
to elongation depends on phosphorylation of the car-
boxy-terminal domain (CTD) of the largest subunit of
RNAPII. The CTD consists of multiple heptapeptide
repeats with the consensus amino acid sequence
(YSPTSPS) and phosphorylation on Ser-2 and Ser-5
residues is mediated by the homologous cyclin depen-
dent kinases (CDK), CDK7, -8 and -9, ERK-1/2, and c-
ABL [17].

A potent inhibitor of CDK9, DRB behaves as global
inhibitor of transcriptionally inducible genes [18]. Both
TBBz and DMAT belong to the class of halogenated
imidazole products whose structure was derived from
DRB.

To establish whether TBBz and DMAT arrest elonga-
tion phase of transcription, the kinetics of RNAPII bind-
ing within the EGRI gene was further studied using the
Matrix-ChIP assay. RNAPII occupancy was assayed at 4
positions along the EGRI gene, at exonl (ex1) and the
beginning (ex2) and end (ex2.1) of exon2, as well as at a
site 1 kb downstream of the poly-adenylation (A) signal
(Figure 3A). The latter site was chosen because it was
shown for several genes that the RNAPII complex con-
tinues elongation beyond the poly-(A) site and pauses
within 0.5 - 1.5 kb downstream. This process plays an
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Figure 1 The inhibitory effects of DMAT and TBBz on viability and proliferation of HeLa cells. Cells were grown in the presence of 1, 5
and 10 pM of DMAT (A, Q) or 1, 5, 10 and 25 uM of TBBz (B, D). Cell viability was monitored by MTT test (A, B), and cell proliferation by 3H
thymidine incorporation (C, D) 24 and 48 h later. Four independent experiments were performed, and all assays were repeated in octuplicate.
Results are expressed as the percentage of control cell viability or proliferation and represent means + S.D. % P < 0.05 compared to the control.

important role in the maturation of the nascent tran-
script [19]. The ChIP results show that both TBBz and
DMAT caused an increase in RNAPII occupancy at the
first exon of EGRI compared to control (no inhibitors)
but suppressed inducible elongation of RNAPII at all
regions further downstream after 30 min of serum sti-
mulation (Figure 3B, C). DRB exhibited similar inhibi-
tory effects. This suggested that the inhibitors were
preventing RNAPII elongation but not recruitment to
the EGRI promoter. Because both agents inhibited tran-
scription elongation, and both are derivatives of DRB,
we reasoned that they might affect CDK9 kinase activity.
According to the postulated model, transcription

initiation of RNAPII is regulated by CDK7/CDK8-
mediated phosphorylation of CTD at Ser-5 near the
TSS. Further down-stream phosphorylation of the CTD
at Ser-2 is required for RNAPII to transition to elonga-
tion phase [16]. Ser2 phosphorylation is mediated by
CDKO9, a kinase that exist in a complex with cyclin T in
the positive elongation factor b, P-TEFb. Western blot
analysis revealed that both TBBz and DMAT at a con-
centration 25 pM decreased phosphorylation of the
CTD at Ser-2 residues (Figure 4A, lower panel) while
the levels of CTD RNAPII were not changed (Figure
4A, upper panel) suggesting inhibition of CDK9 kinase
activity.

Table 1 Number of probe sets/genes predominantly affected by CK2 inhibitors.

Differentially expressed Underexpressed Overexpressed
Inhibitor Time point (hr) Probe sets Genes Probe sets Genes Probe sets Genes

TBBz 1 65 51 63 49 2 2

6 818 692 742 624 77 70

24 319 272 162 142 157 130
DMAT 1 29 23 28 22 1 1

6 223 192 185 162 38 30

24 66 57 27 22 39 35
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Figure 2 Changes in gene expression induced by TBBz and DMAT. (A) List of 42 genes and fold change in their expression in response to
treatment with inhibitors (1 hr) were analyzed by the Affymetrix U133A 2.0 GeneChip microarray. Dark grey indicates a high decrease and light
grey lower decrease in expression. Expression of the boxed genes was confirmed by real time PCR and is presented as fold change at zero time
B).

TBBz and DMAT inhibit the activity of CDK9

To test the effect of CK2 inhibitors on CDK9 activity,
several in vitro phosphorylation assays were performed.
Both TBBz and DMAT produced the same dose-depen-
dent decrease in in vitro phosphorylation of hnRNP K
protein, a well characterized CK2 substrate [20] (Figure
4B, C). They also inhibited the autophosphorylation of
several protein bands when nuclear extracts (NE) were
used as a source of both kinase activity and substrate
proteins (Figure 4D). Densitometric analysis of two
highly phosphorylated protein bands revealed that both
inhibitors decreased the level of their phosphorylation;
TBBz, however, inhibited phosphorylation more effi-
ciently than DMAT (Figure 4E).

To test the effect of CK2 inhibitors on CDK9 activity,
NE proteins were in vitro phosphorylated with or with-
out inhibitors and then were immunopecipitated with
antibodies to both CDK9 and its partner cyclin T1.
TBBz but not DMAT inhibited phosphorylation of

precipitated protein with the molecular weight around
40 KDa, which corresponds to molecular weight of
CDKO. These data suggested that TBBz targets compo-
nents of the P-TEFb complex (Figure 5A). The CDK9/
cyclin-K complex has also a kinase activity towards the
CTD domain of RNAP II and can substitute P-TEFb in
vitro [21]. Thus, we tested the specificity of the drugs
inhibitory effect on CDK9 autophosphorylation using a
recombinant fusion full-length human CDK9-Cyclin K
protein (Figure 5B). Treatment with 10 uM TBBz signif-
icantly decreased CDK9 phosphorylation while the 25
uM concentration completely inhibited it (Figure 5B,
lower panel). On the other hand, DMAT at concentra-
tion of 10 uM had little or no effect on CDK9 autopho-
sphorylation and at higher concentration (25 uM) there
was a decrease in signal which was less pronounced
than that for 10 uM TBBz.

To confirm the inhibitory effect of TBBz and DMAT
on CDK9-mediated phosphorylation of CDK, we carried
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Figure 3 TBBz and DMAT arrest RNAPII elongation along the EGR1T locus after serum treatment. (A) Position of primers relative to
transcription start sites (in bp): exon 1 +248; exon 2 +1287; exon 2.1 +3490; 1 kb +4528. (B, C) Hela cells maintained for 48 h in 0.5% serum
were treated with fresh medium supplemented with 15% FBS and -/+ 25 uM TBBz/50 uM DRB/10 or 25 uM DMAT (C) for the indicated times
and then used in ChIP assays with antibodies to RNAPII. Purified DNA was used in real-time PCR with pairs of primers spanning the EGRT locus.
The density of RNAPII on the EGRT gene was quantified by real-time PCR and is presented as a percentage of input. Data represent means + S.D
from 3 independent experiments.

out additional experiments. Proteins immunoprecipi-
tated (anti-CDK9+anti-cyclin T1 antibodies) from
nuclear extracts (Figure 5C) and CDK9-Cyclin K recom-
binant fusion protein complex (Figure 5D) were tested
in kinase assays using CTD heptapeptide repeats
(YSPTSPS) as a substrate. Both assays revealed that
TBBz and DMAT inhibited kinase activity of CDK9,
although the latter agent was a less effective inhibitor.

Discussion

Induction of cell proliferation is associated with tran-
scriptional stimulation of growth-related genes that are
required for the G;/S transition [22]. The mitogenic sti-
mulation of various cell types is accompanied by rapid
induction of immediate-early genes [23]. These genes
are involved in cell proliferation, differentiation, apopto-
sis, and oncogenic transformation [24]. They regulate
G/S transition in the cell cycle and represent diverse
functional classes of proteins including transcription fac-
tors. These processes are controlled by external stimuli
[25,26] which activate kinase cascades that transduce
mitogenic signals to the nucleus [27]. Protein kinases
are involved in the regulation of most cellular functions,
including cell cycle control, proliferation, and differen-
tiation [28,29]. CK2 is one of the most pleiotropic

protein kinases and displays constitutive catalytic activity
[30,31]; it promotes cell survival and plays an anti-apop-
totic role [3,32].

Halogenated imidazole class of small molecules are
chemotherapeutic candidates but the mode of their
action remains poorly understood [3]. In the present
study we examined the molecular mechanisms that
account for the anti-proliferative activity of two mem-
bers of this class of drugs, TBBz and DMAT. Using
microarray analysis we demonstrated that both inhibi-
tors impaired expression of serum induced immediate-
early genes, suggesting that these inhibitors block mito-
genic signaling cascades. Next, using the Matrix-ChIP
assay we found that both compounds inhibited tran-
scription elongation similarly to the known transcription
inhibitor, DRB, by arresting RNAPII near the TSS.

Although both TBBz and DMAT are potent inhibitors,
none of the halogenated benzimidazoles affect selectively
CK2 kinase activity. In fact, only quinalizarin (1,2,5,8-
tetrahydroxyanthraquinone) which belongs to the same
chemical class as emodin, has been shown to be the
most potent and selective CK2 inhibitor characterized
so far, as recently reported by Cozza et al. [33]. How-
ever, the specificity of CK2 inhibitors action in vivo has
not been fully characterized. Therefore, our studies may
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Figure 4 The effects of DMAT and TBBz on phosphorylation of RNAPII and other nuclear proteins. (A) Equal amounts of nuclear extracts
prepared from untreated and inhibitor-treated cells (60 min) were separated by SDS-PAGE followed by Western blotting with anti-RNA PIl CDT
repeat (ab5408, Abcam) or anti-Ser2-phospho-RNAPII CDT (ab5095, Abcam). Similar patterns were obtained in 3 different experiments using
different nuclear extracts. (B) Bacterially expressed recombinant hnRNP K protein (rec-hnRNPK, left panel) was phosphorylated by CK2 kinase,
purified from rat liver (Sigma; C3460), with increasing concentrations (0; 0.001; 0.01; 0.1; 1.0, 10; 100 uM) of TBBz or DMAT. Assays were stopped
by boiling samples in Laemmli loading buffer. K protein was separated by SDS-PAGE, and dried gels were autographed (right panel -
representative gel with TBBz treatment). (C) Densitometry of the results with inhibitors are expressed as the percentage of control kinase activity
and represent means + S.D from 3 independent experiments. (D) Nuclear extracts prepared from untreated and inhibitor-treated cells were used
for autophosphorylation reactions with or without 1, 10, and 25 uM TBBz or DMAT. Assays were stopped by boiling samples in Laemmli loading
buffer. Proteins were separated by SDS-PAGE, and dried gels were autoradiographed (Phosphorimager) (E). Densitometrical analysis of two
phosphorylated protein bands [marked on panel (D)] is shown as means + S.D from results expressed as the percentage of controls.
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Figure 5 Differential inhibitory effects of DMAT and TBBz on CDK9 activity in vitro. (A) CDK9/Cyclin T1 proteins pulled down from nuclear
extracts (anti-CDK9+anti-cyclin T1, Santa Cruz Biotechnology, D-7 and H-245, respectively) were used in CDK9 autophosphorylation reactions
without or with DMAT or TBBz. Autophosphorylated proteins were resolved by SDS-PAGE, transferred to PVYDF membrane and immunostained
by anti-CDK9 antibody (upper panels) and scanned using a Phosphorimager (lower panels). Similar patterns were obtained in 3 different
experiments. (B) Recombinant fusion full-length human CDK9+CyclinK proteins, co-expressed by baculovirus in Sf9 insect cells (Abcam, ab70320)
were used in autophosphorylation assays as above. (C) Complexes of CDK9/Cyclin T1 proteins pulled down from nuclear extracts or (D) human
CDK9+CyclinK protein were used in kinase assays, with or without DMAT or TBBz. The heptapeptide YSPTSPS was used as a substrate. The
reaction mixtures were applied to acidic hydrolysis of y*?P- ATP followed by phosphomolybdate extraction, and *?P-phosphopeptide was
determined by liquid scintillation spectrophotometry. Results are expressed as a percentage of kinase inhibition and represent means + S.D. of 2
separate experiments.

provide a better understanding of the off-target effects
of CK2 inhibitors. The routinely used in vitro assays test
specificity of CK2 inhibitors on a limited set of kinases
do not reflect the physiological conditions where other
kinases can be directly or indirectly affected by the
drugs.

Given the pro-survival role of elevated CK2 expression
in cancer cell lines, a number of studies have been done
to determine the effect of CK2 inhibitors and their value

as anti-cancer agents [3]. A number of cell lines treated
with CK2 inhibitors responded with the induction of
apoptosis through the activation of caspases. However,
the extent of this process and the dose of inhibitor used
differed between the cell lines. With respect to the inhi-
bitors investigated in our study, the viability of HeLa
cells was reduced to 85% after 24 hours treatment with
DMAT, while in another study at the same time point,
Jurkat cell viability dropped to 25% [14]. Contrary to the
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results with DMAT, Jurkat cells responded similarly to
HeLa cells when treated with TBBz, with viability
reduced to 75% after 24 h incubation. HL-60 cells, how-
ever, were more potently affected as their viability was
decreased to 30% by TBBz treatment [34].

Gene transcription in eukaryotes is carried out by the
three different DNA dependent RNA polymerases
RNAPI, RNAPII, and RNAPIII. With regard to the pro-
cess of transcription, CK2 is involved in the regulation
of transcription driven by RNAPI and RNAPIII. CK2
was found at the rDNA promoter where it interacts
with RNAPIB and phosphorylates several components of
the RNAPI transcription complex [35,36]. CK2 also
plays a fundamental role in the regulation of RNAPIII
transcription [37] as it binds to the RNAPIII complex
associated with the U6 promoter, and, through phos-
phorylation of RNAPIII associated proteins, plays both
positive and negative regulatory roles in the transcrip-
tion driven by this polymerase [38]. To date, there is
less evidence supporting a role of CK2 in the regulation
of RNAPII transcription as compared to the other two
polymerases. It has been shown that phosphorylation of
TFIIA, TFIIE, TFIIF (General Transcription Factors)
and RNAPII by CK2 can modify the formation of tran-
scription complexes on the Ad-MLP promoter [39].
CK2 also phosphorylates FCP1 (TFIIF-dependent CTD
phosphatase I) one of the major phosphatases known to
dephosphorylate the RNAPII CTD [40]. CK2-dependent
phosphorylation greatly enhances the CTD phosphatase
activity of FCP1 and FCP1-dependent dephosphorylation
of the CTD domain is essential for recycling of RNAPII
and transcription reinitiation [40,41]. Taken together,
these observations present CK2 as a key factor in the
regulation of transcription driven by three nuclear poly-
merases and we cannot exclude the possibility that the
role of CK2 in the regulation of RNAPII transcription is
far greater than currently known. So, it is possible that
inhibitors used here impair immediate-early genes
expression, in part, through CK2.

The inhibitors used in this study, TBBz and DMAT,
were previously considered as specific to CK2 kinase.
However, according to the results published by Pagano
et al., both TBBz and DMAT appear to be also powerful
inhibitors of member of three kinase subfamilies (PIM -
provirus integration site for Moloney murine leukaemia
virus, HIP - homeodomain-interacting protein, DYRK -
dual specificity protein kinase), as well as of PKD1 (pro-
tein kinase D1) and CDK2 [42]. The spectrum of kinases
affected by both inhibitors was similar for both com-
pounds, however the inhibitory effect of DMAT on
these kinases was slightly higher than that of TBBz.
Interestingly, DMAT displayed a promiscuous nature
inhibiting by > 50%, 34 kinases out of 70 tested in vitro
[42]. This observation is not surprising since the
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catalytic sites of most human kinases are highly con-
served, and cell-permeable kinase inhibitors are mostly
competitive with ATP for their ATP-binding pocket.
Thus, inhibitors may similarly target representatives of
different branches of the kinome, and the final biological
effect of these inhibitors likely reflects functions of the
multiple kinases affected.

In eukaryotes, multiple steps of transcription are con-
trolled by phosphorylation of the RNAPII CTD domain,
mediated by CDKs. CDK7 and CDKS regulate the pro-
cesses involved in transcription initiation while CDK9
regulates elongation [16]. Recent evidence indicates that
a large number of genes are regulated through promo-
ter-proximal pausing (PPP) of RNAPII. Promoters of
some genes with PPP were found to be occupied by the
transcriptional machinery but did not produce tran-
scripts, indicating that polymerase recruitment is not
rate limiting for expression of those genes. PPP is parti-
cularly prevalent at genes involved in development and
in the response to stimuli [43]. The RNAPII CTD is
hypo-phosphorylated when initially engaged to the pro-
moter, and undergoes serial phosphorylations at Ser5
during promoter clearance. This is followed by the bind-
ing of DRB sensitivity-inducing factor (DSIF) and nega-
tive elongation factor (NELF) which, without activity by
CDK9, cause RNAPII to pause [16]. A classic inhibitor
of transcription, DRB, which is also the first known inhi-
bitor of CK2, arrests global RNAPII-dependent tran-
scription by inhibiting CDK9, which normally
phosphorylates the CTD at ser2 as well as DSIF and
NELF [16]. In this case, inhibition of gene transcription
by DRB may mostly reflect its inhibitory effect on CDK9
rather than CK2. In these studies, we demonstrate that
TBBz, and at the lesser degree DMAT, block phosphor-
ylation of CDK9 and its activity in vitro (Figure 5) and
both inhibitors decrease CTD phosphorylation in vivo
(Figure 4A), suggesting the means by which they inhibit
RNAPII elongation. Knowing the promiscuous nature of
the halogenated benzimidazoles it is possible that, apart
from CDK9, TBBz and DMAT may inhibit also other
kinases which activity is essential for RNAPII elongation.

Conclusions

In sum, we used a combination of in vivo and in vitro
approaches to evaluate the mode of action of two halo-
genated imidazole derivative TBBz and DMAT. Both
agents inhibited cell proliferation and mRNA expression
and transcription elongation but spectra of their mole-
cular targets may not be the same. Our approach could
be used for testing an increasing numbers small mole-
cules derived from DMAT/TBB structure, for their
affect on transcription elongation by using the Matrix-
ChIP assay to asses RNAPII density at inducibly tran-
scribed loci.
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Methods

Cells

HeLa cells were grown in plastic cell culture flasks in
DME media supplemented with 10% FBS, 2 mM gluta-
mine, penicillin (100 units/ml), streptomycin (0.01%),
and humidified with 6/94% CO,/air gas mixture. Cells
were routinely subcultured using trypsin solution. CK2
inhibitors were dissolved in DMSO as 1000x stock solu-
tions, diluted in DMEM and added to cells. Control
cells were also treated with 0.1% DMSO. TBBz and
DMAT were synthesized and kindly provided by Dr.
Maria Bretner at the Institute of Biochemistry and Bio-
physics, Polish Academy of Sciences, Warsaw, Poland.
Cell proliferation and viability assays

Cell growth was determined by incorporation of [*H]
thymidine into DNA of proliferating cells and cell viabi-
lity was monitored by using 3-(4,5-dimethylthiazol-2-yl)-
3,5-diphenyltriazolum bromide (MTT) reagent. Expo-
nentially growing cells were harvested, seeded at a den-
sity 5 x 10° cells per well in 96-well plates and grown
for 24 h in DMEM containing 10% FBS. Then, cells
were supplemented with fresh medium without or with
the CK2 inhibitors at the indicated concentrations and
24 h later either 0.1 uCi of [3H]thymidine (GE Health-
care) or MTT CellTiter 96 (Promega) were added to
each well, as previously described [44]. Four indepen-
dent experiments were performed and all assays were
repeated in octuplicate. Results were expressed as the
percentage of control cells (means + SD).
Phosphorylation assays

c¢DNA of hnRNP K protein were subcloned into pET-28
(+) expression vector (Novagen), and the plasmid was
transformed into E. coli BL21 DE3 pLysS cells (Novagen)
[20]. Bacterially expressed recombinant proteins were pur-
ified by affinity chromatography using Ni-NTA agarose
(Qiagen) according to manufacturer’s protocol. Nuclear
extract (NE) was extracted as described previously [45].

0.1 pg of hnRNP K protein or 6 pg of NE proteins
were phosphorylated using CK2 purified from rat liver
(Sigma; C3460) or autophosphorylated, respectively, in a
final volume 25 ul containing 25 mM Tris, pH = 7.5,
150 mM NaCl, 0.1 mM ATP, 0.1 pCi y**P- ATP, 10
mM MgCl, for 20 min at 30°C, as described previously
[20], without or in the presence of the inhibitor. Assays
were stopped by boiling with 25 pl 1 x Laemmli loading
buffer. Proteins were separated by SDS-PAGE, dried gels
were exposed to phosphor screen, scanned using Phos-
phorimager and densitometrically analyzed.

Sixty pug of NE proteins in immunoprecipitation (IP)
buffer [150 mM NaCl, 5 mM EDTA, 1% Triton X-100,
0.5% NP-40, 50 mM Tris-HCI, pH = 7.5, containing the
protease (Roche) and phosphatase inhibitors (Sigma)]
were incubated with 1 ug of an anti-CDK9 and 1 pug of
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anti-cyclin T1 antibody (D-7 and H-245, Santa Cruz Bio-
technology, respectively) at 4°C for one hour. The com-
plexes were pulled-down by adding Dynabeads® Protein G
Magnetic Beads (Invitrogen) (20 pl) and rotating the slurry
for 45 min (4°C). Beads were washed three times with 1 ml
of IP buffer and two times with 25 mM Tris-HCI, pH =
7.5, and then used for phosphorylation assays.

Beads or 0.1 pg of recombinant fusion full-length
human CDK9+CyclinK protein, co-expressed by baculo-
virus in Sf9 insect cells (Abcam, ab70320) were incu-
bated in 50 ul of phosphorylation buffer at 25°C in an
Eppendorf Thermomixer alone or in the presence of 75
mM of peptide substrate (YSPTSPS) for 20 minutes.
The assays were terminated by either washing the beads
with IP buffer and boiling in 1x Laemmli loading buffer
or by boiling the reaction mixture in 2x Laemmli load-
ing buffer and separated by SDS-PAGE. The phosphory-
lation assays employing YSPTSPS peptide were stopped
by adding an equal volume of 2 M HCI followed by
acidic hydrolysis of y>’P- ATP and separation of >*Pi
from phosphopeptide according to the protocol
described by Ruzzene and Pinna [46].

Western blotting

Equal amounts of cellular protein were separated by
10% SDS-PAGE, electro-transferred to PVDF membrane
and immunostained by standard methods.

Chromatin immunoprecipitation (ChIP) assay

HeLa cells were grown in plastic 6-well culture plates to
50-60% confluence, then made quiescent by lowering
FBS concentration in the medium to 0.5%. Cells were
treated 48 hours later with warmed (37°C) DME media
supplemented with 15% FBS and containing either
DMSO or inhibitors (TBBz - 25 uM, DMAT - 10 uM,
DRB - 50 uM) for 5, 15, 30, 60 and 180 min. Chromatin
complexes were crosslinked by adding formaldehyde to
the culture medium (1.5%, 15 min, RT) at the time
points indicated above. Glycine (0.125 M) was then
added to plates for 5 min to quench formaldehyde. Cells
were collected and chromatin was prepared as described
before [47]. Ultrasound treatment was done in Bioruptor
(Diagenode, Philadephia, PA) using 30 s on-off cycles
for 15 min at high intensity. Chromatin immunoprecipi-
tation assays were performed using the Matrix-ChIP
platform as previously described [47]. Briefly, polystyr-
ene 96-well flat-bottom plates washed once with 200 pl
PBS/well were incubated overnight at RT with 0.2 mg
Protein A in 100 pl PBS/well. After a wash (200 pl PBS/
well), the well walls were blocked with 200 pul blocking
buffer (30 min, RT). The wells were cleared and are
incubated with 0.5 pg RNA polymerase II CTD antibody
(Abcam; ab5408 or Santa Cruz; sc-47701 ) diluted in
100 pl of blocking buffer/well (60 min, RT). Chromatin
samples (4 ul chromatin/100 pl blocking buffer) were
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added to wells (100 pl/well) and plates were floated in
ultrasonic water bath (60 min, 4°C) to accelerate pro-
tein-antibody binding. Wells were washed 3 times with
200 pl IP buffer and once with 200 ul TE buffer. Wells
were incubated with 100 pl elution buffer for 15 min at
60°C, followed by 15 min at 95°C. DNA samples were
stored at -20°C in the same Matrix-ChIP plates for
repeated use.

PCR reaction mixture contained 2.5 pl 2x SYBR
Green PCR master mix (SensiMix, Quantace), 2.4 ul
DNA template and 0.1 pl primers (200 nM each) in 5 pl
final volume in 384-Well Optical Reaction Plate
(Applied Biosystems). Amplification (two step, 40
cycles), data acquisition and analysis were done using
the 7900HT Real Time PCR system (Applied Biosys-
tems). All PCR reactions were done in triplicates. The
primers sequences are available on request. ChIP DNA
data are expressed as percent of input DNA, as
described before [47].

Sample preparation and microarray hybridization

HeLa cells were made quiescent by lowering FBS con-
centration in the medium to 0.5%. 48 h later, the med-
ium was supplemented with 15% FBS and cells were
grown with or without CK2 inhibitors. Control cells
were treated without or with 0.1% DMSO. At the indi-
cated time points, cells were harvested, and total RNA
was extracted using the RNeasy Mini Kit (Qiagen)
according to the manufacturer’s protocol.

Gene expression analysis was carried out using the
Affymetrix U133A 2.0 GeneChip oligo-microarrays con-
taining a total number of 22,277 probe sets, which
allows for analyzing the expression level of 18,400 tran-
scripts and variants, including 14,500 well-characterized
human genes. Microarray hybridization was performed
as described before [48]. Detailed description of array
data analysis and results is deposited in Additional file
1. Specific RNA concentrations were also quantified by
reverse transcription - real-time PCR [48].

Statistical analysis

Results are presented as means +/- SD. Significant dif-
ferences between mean values were assessed by the two-
tailed t-test for unpaired data using Statistica PL soft-
ware. Means were considered to be statistically distinct
if p < 0.05.

Supporting material

MIAME compliment microarray data are available at
http://www.integromics.pl/files/CK2inhibitors/

Additional file 1: Microarray data processing and results. A detailed
description of microarray data normalization, filtering and the results.
Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2199-11-4-
S1.PDF]
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