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Hippocampal pyramidal neurons have characteristic dendrite asymmetry, characterized
by structurally and functionally distinct apical and basolateral dendrites. The ability of
the neuron to generate and maintain dendrite asymmetry is vital, since synaptic inputs
received are critically dependent on dendrite architecture. Little is known about the role
of neuronal activity in guiding maintenance of dendrite asymmetry. Our data indicate that
dendrite asymmetry is established and maintained early during development. Further,
our results indicate that cell intrinsic and global alterations of neuronal activity have
differential effects on net extension of apical and basolateral dendrites. Thus, apical
and basolateral dendrite extension may be independently regulated by cell intrinsic
and network neuronal activity during development, suggesting that individual dendrites
may have autonomous control over net extension. We propose that regulated individual
dendrite extension in response to cell intrinsic and neuronal network activity may allow
temporal control of synapse specificity in the developing hippocampus.
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Introduction

Pyramidal neurons in the hippocampus and cortex have a typical morphology that includes
multiple dendrites and, in most cases, single axons. Pyramidal neurons have a characteristic
appearance that includes a pyramidal-shaped cell body from which a major primary dendrite,
the apical dendrite, extends and gradually tapers away from the soma to terminate in a branched
pattern known as an apical tuft (Spruston, 2008). Several minor dendrites, the basal dendrites, arise
from the base of the pyramidal soma. Thus, these neurons have an intrinsic dendritic polarity, in
addition to axon-dendrite polarity. Dendrites represent the major sources of information input into
neurons via their ability to host synapses. Apical and basolateral dendrites differ in size, electrical
conductivity and receptor and channel distribution (Horton and Ehlers, 2003). The asymmetry of
the dendritic architecture is intimately linked to the processing capabilities of the neurons (Branco
and Hausser, 2011; Bittner et al., 2012; Xu et al., 2012; Menon et al., 2013). The ability of neurons
to generate and maintain dendrite polarity is critical, since the polarity of the dendrite dictates
synaptic input specificity. For example, the hippocampal CA3 pyramidal neurons receive mossy
fiber synapses onto their proximal apical dendrite and excitatory synapses from stellate cells of layer
II of the entorhinal cortex onto their distal apical dendrite. Other CA3 axon collaterals synapse
onto the remainder of the apical and the entire basal dendrite (Williams et al., 2011). Unlike the
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molecular mechanisms that govern axon-dendrite polarity
(de Anda et al., 2005), much less is known about the cellular
control of dendrite polarity leading to the generation and
maintenance of the apical and basolateral dendrites in these
neurons and dendrite compartmentalization.

It is likely that both activity and cell intrinsic factors
cooperate to sculpt the developing dendritic arbor to generate
and maintain its asymmetry. While some cell intrinsic factors
that regulate dendrite polarity have been identified, the
influence of neuronal activity on the asymmetry of the
developing dendritic arbor remains obscure. Additionally, it
remains unclear if all dendrites are similarly influenced by
activity or dendrites have an asymmetric response to neuronal
activity.

We examined the establishment of dendrite polarity and
the influence of altering cell intrinsic and network activity on
differential extension of apical and basolateral dendrites in a
cultured primary neuron model during development. This is
a widely used cell culture model and studies indicate that
these neurons provide a good model system for these studies
since dendrite asymmetry is maintained in vitro (Horton et al.,
2005; Tran et al., 2009; Wu et al., 2015). In this model,
apical and basolateral dendrites are defined by length. Our
results indicate that while dendrite asymmetry is established
early in development and maintained during growth, apical
and basolateral dendrites in developing pyramidal neurons
have differential net extension in response to cell intrinsic and
neuronal network activity.

Our data are consistent with a model in which individual
dendrites may have differential responses to cell intrinsic and
network neuronal activity. Further, individual dendrites may
have autonomous control over extension. This may provide an
additional mechanism for temporal control of synapse specificity
in the developing hippocampus.

Materials and Methods

Rat Hippocampal Primary Culture
Rat hippocampal primary cultures were prepared from E18–19
rats as previously described (Beaudoin et al., 2012). Neurons were
maintained in serum-free media containing B-27 supplement
(Invitrogen). All animal manipulations were performed in
compliance with the UNMC approved protocols.

Transient Transfection
Neurons were transfected with Lipofectamine 2000 (Invitrogen)
as previously described (Arikkath et al., 2009; Beaudoin et al.,
2012). The Kir2.1 and mutant Kir2.1 plasmids were a kind
gift from Dr. Venki Murthy (Harvard University). For the Kir
studies described in Figure 3, the neurons were transfected
with the plasmids on DIV 0 or 1 and fixed on DIV 7 or
transfected on DIV 7 and fixed on DIV 14. Neurons were
also immunostained with anti-αCaMK2 antibody to identify
glutamatergic neurons for quantitation (Figures 3–5). For
data in Figures 3F, 4F, and 5F neurons were identified by
morphology.

Antibodies
MAP2 – Millipore MAB3418, anti-αCaMK2 – Millipore 05-532,
GM130- BD Transduction lab 610822, GABA – Sigma–Aldrich A
2052. Ctip2 and Prox1 – (Williams et al., 2011).

Chemical Treatment of Neurons
Primary neurons in culture were treated with 50 mMKCl for 24 h
or 1 m TTX (tetrodotoxin) (Tocris) for 5 days prior to fixation
(DIV 7) and microscopy. For the data shown in Figure 4F,
neurons were treated for 24 h with TTX.

Image Acquisition and Preparation
After fixation, neurons were mounted in ProLong Gold antifade
reagent (Invitrogen). Imaging was performed on an inverted
Zeiss LSM700 microscope with 10X and 20X objectives as
previously described (Yuan et al., 2013). LSM files obtained
from the imaging software were converted into TIFF files
and put together in Adobe Photoshop with minimum image
manipulation. When image manipulation was needed, only to
adjust intensity, the adjustment was applied to the entire image
and not to parts of the image.

Quantitation of Dendritic Arbors
Dendrite arbors were quantitated using ImageJ with or without
the NeuronJ plugin, as previously described (Arikkath et al.,
2008). The longest and second longest dendrites were visually
identified before quantitation. The length of dendrite described
in the figures indicates the total length of the dendrite including
the higher order branches, except in Figure 2. For the data shown
in Figure 2, only the longest shafts of the primary or secondary
dendrites were analyzed. Note that at this stage of development,
the primary shaft length is quite comparable to the entire dendrite
length, since there is limited branching of the primary dendrite.
For data in Figure 2, data was obtained from 287 neurons from
three independent experiments. All data were obtained from
three or more independent experiments and a total of 21–25
neurons for total dendritic length in Figures 3A–E and 23 to 45
neurons (Figures 4A–E and 5A–E), for each condition, for all
other experiments described. For Figures 3F, 4F, and 5F, data was
obtained from 36 to 44 neurons for each condition from three or
four independent experiments.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism or
Excel. The one-way ANOVA analysis in Figures 3, 4F, and 5F
was performed using the Greenhouse–Geisser correction and
Dunnet’s multiple comparison test. P < 0.05 was considered
significant. Student’s t-test was performed using two-tailed t-test
assuming unequal variances.

Results

Pyramidal neurons in the hippocampus have distinct apical and
basolateral dendrites. This asymmetry is recapitulates in vitro
and apical and basolateral dendrites are distinguished by their
lengths, with the apical being the longest and the basolateral
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being the second longest (Miao et al., 2013). It has previously
been demonstrated that the Golgi apparatus is polarized toward
the apical dendrite in vitro. We took advantage of this to
examine the establishment of apical–basolateral dendrite polarity
in vitro (Horton et al., 2005, 2006). Rat primary neurons
in vitro were immunostained with antibodies to GM130, a
Golgi marker, and the polarization of the Golgi relative to
the longest dendrite was examined at different days in vitro.
Neurons were also co-stained with antibodies to αCaMK2 to
identify excitatory neurons and MAP2, a dendrite marker. In
young neurons (DIV 1), the majority of neurons had Golgi
apparatus that was not polarized toward a single dendrite (0
polarity) (Figure 1A). As development proceeded, the number of
neurons with 0 polarity decreased with a concomitant increase
in neurons with the Golgi polarized toward a single dendrite.
The number of neurons with the Golgi polarized toward a
single dendrite was not significantly different between DIV 5
and DIV 7. A small percentage of neurons demonstrated Golgi
polarization toward two dendrites. This proportion increased
with neuronal maturity. These results suggest that the temporal
stabilization of the Golgi apparatus polarity relative to dendrite
polarity occurs at around DIV 5 in these cultures (Figure 1B).
Interestingly, unlike glutamatergic neurons, the GABAergic
neurons did not have a polarized Golgi apparatus, consistent with
the lack of apical–basolateral dendrite polarity in these neurons
(Figure 1C) (Horton et al., 2005). We also took advantage of
differential labeling of CA1/CA3/DGneurons by Prox1 and Ctip2
(Williams et al., 2011) to identify the subtype of neuron and
examined Golgi polarity (Figure 1D). In all the three types of
neurons, the Golgi was predominantly polarized toward a single
dendrite.

Our data suggest that dendrite polarity is apparent and
established at DIV 5. We examined if dendrite polarity is
maintained during development. We examined the lengths, the
ratio between the lengths and the differences between the lengths
of apical and basolateral dendrites in developing neurons at DIV
5 and DIV 7. Primary neurons in culture were immunostained
with antibodies to MAP2, examined by confocal microscopy
(Figure 2A) and lengths quantitated. The apical and basolateral
dendrites were visually identified by length. As expected, the
lengths of both the apical and basolateral dendrites increased
over time (Figures 2B,C). Interestingly, the ratio between the
apical and basolateral dendrites was not significantly altered
over time (Figure 2D), although the difference between the
apical and basolateral dendrites increased with development
(Figure 2E). These results suggest that, once the polarization of
the dendrites is established, it is maintained during development.
There is, however, one possible caveat for this interpretation.
Developing dendrites are actively extending and retracting before
they achieve their final dendritic arbor. In these studies, the
definition of apical and basolateral is based on the length
of individual dendrites. However, it is possible that during
development, there may be a switch in the lengths of individual
dendrites, such that the longest and second longest dendrites
at early time points may switch to the second longest and
longest, respectively over time. However, regardless of whether
this switching does or does not occur, the ratio between the
apical and basolateral dendrites is maintained, suggesting that the
developing dendritic arbor has active mechanisms that maintain
dendrite asymmetry.

To examine the effects of inhibiting cell intrinsic neuronal
activity, we expressed the inward-rectifier potassium channel,

FIGURE 1 | Temporal stabilization of Golgi polarity relative to dendrite
polarity. (A) Representative images of primary neurons in culture
immunostained with antibodies to GM130 and MAP2 at days in vitro
indicated. Arrowheads indicate Golgi polarization. (B) Percentage of αCamK2

positive neurons with 0, 1, or 2 Gm130 polarities. (C) Percentage of
GABAergic positive neurons with 0, 1, or 2 Gm130 polarities. (D) Percentage
of CA1/CA2/DG neurons with 0, 1, or 2 Gm130 polarities (Error bars
represent SD).
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FIGURE 2 | Dendrite polarity is maintained during development.
(A) Representative images of primary neurons in culture immunostained
with antibodies to MAP2 at days in vitro indicated. (B) Lengths of apical
dendrites at DIV 5 and 7. (C) Length of basolateral dendrites at DIV 5

and 7. (D) Differences in apical and basolateral dendrites at DIV 5,
and 7. (E) Ratio of primary to secondary dendrites at DIV 5 and 7
(Error bars represent SEM, Student’s t-test, P < 0.0005 -∗∗∗, scale bar
20 microns.

Kir2.1 (Hartman et al., 2006) in developing neurons. Developing
neurons in culture were transfected with a plasmid encoding
GFP, Kir2.1 or a mutant (non-conducting) form of Kir2.1 at
DIV 0–1 and fixed at DIV 7. The neurons were subjected to
imaging and lengths of apical and basolateral dendrites were
obtained. In neurons expressing Kir2.1, the total length of the
apical dendrite was significantly increased in comparison to
control, while the length of the basolateral dendrite was unaltered
(Figures 3A–C). These differences were significant enough to
affect the ratio of the lengths of the apical to basolateral dendrites
(Figure 3D). In addition, the differences in lengths between the
apical and basolateral dendrites were significantly increased with
expression of Kir2.1 (Figure 3E). This is likely reflecting the
enhancement of the apical dendrite. In neurons expressing the
Kir2.1 mutant that is non-conducting, the length of the apical
dendrite was not significantly different from the control neurons.
Similar results were obtained in older neurons (transfected
at DIV 7 and fixed at DIV 14) expressing these constructs
(Figures 3B–E). Interestingly, the polarization of the Golgi
toward the dendrite was not significantly affected by expression
of the Kir2.1, since the number of neurons with zero, one, or two
Golgi polarities was not significantly altered in comparison to the
GFP transfected neurons (Figures 3F,G). Taken together, these
results indicate that inhibition of cell intrinsic neuronal activity
selectively enhances the net extension of the apical dendrite

without significantly affecting the extension of the basolateral
dendrites in both developing and mature hippocampal neurons.

We similarly examined the effects of inhibition of global
network activity by TTX treatment on the differential extension
of dendrites. In striking contrast to the effects observed with
cell intrinsic inhibition of neuronal activity, TTX treatment
resulted in an increase in the net extension of both apical and
basolateral dendrites (Figures 4A–C). However, this did not
significantly alter the ratio of the apical to basolateral dendrite
lengths (Figure 4D). In addition, the differences between the
apical and basolateral dendrite lengths were not significantly
altered (Figure 4E), although there appeared to be a trend
toward increase with TTX. Similar to the Kir2.1 expression, the
polarization of the Golgi toward the dendrite was not significantly
affected by TTX treatment, since the number of neurons with
zero, one or two Golgi polarities was not significantly altered
in comparison to the untreated neurons (Figures 4F,G). Thus,
global inhibition of neuronal activity promotes the net extension
of both apical and basolateral dendrites. Taken together with
the results in Figure 3, these results demonstrate that the net
extension of apical and basolateral dendrites are differentially
affected by inhibition of cell intrinsic versus neuronal network
activity.

We similarly examined the effects of enhancement of global
neuronal activity by KCl treatment on differential dendrite
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FIGURE 3 | Inhibition of cell intrinsic neuronal activity chronically
selectively promotes net extension of apical dendrites.
(A) Representative confocal images of neurons transfected with GFP or
Kir2.1 (DIV 7). (B) Length of apical dendrite. (C) Length of basolateral
dendrite. (D) Ratio of lengths of apical to basolateral dendrites, and
(E) Difference between apical and basolateral dendrite lengths in neurons

expressing GFP, Kir2.1 or mutant form of Kir2.1 fixed at DIV 7 or DIV 14.
(F) Confocal images of neurons expressing GFP or GFP and Kir2.1 and
immunostained with anti-GM130. (G) Percentage of neurons with Golgi
polarized toward 0, 1, or 2 dendrites in neurons expressing GFP or Kir2.1 or
mutant form of Kir2.1, fixed at DIV 7. (Error bars represent SEM, One way
Anova, P < 0.005 -∗∗, P < 0.0005 -∗∗∗, scale bar – 20 microns).

extension. In neurons treated with KCl, the net extension of the
apical dendrite showed a trend toward reduction, however, these
differences were not significant. In contrast, the length of the
basolateral dendrite was significantly reduced (Figures 5A–C).
These changes did not significantly affect the apical to basolateral
dendrite length ratio (Figure 5D). However, there was a
significant increase in the difference in length of the apical and
basolateral dendrites with KCl treatment (Figure 5E). Although
the Golgi apparatus was partially fragmented (Thayer et al.,
2013), these changes were not accompanied by any significant
alterations in the polarization of the Golgi toward the dendrite,
since the number of neurons with zero, one, or two Golgi
polarities was not significantly altered in comparison to control

neurons (Figures 5F,G). These results suggest that enhancing
global synaptic activity selectively reduces the net extension of
the basolateral dendrite, without significantly affecting the net
extension of the apical dendrite.

Discussion

Regulated dendritic growth forms the basis for wiring of the
nervous system. Dendrite asymmetry in pyramidal neurons
is critically linked to their functional roles (Xu et al., 2012).
Accordingly, various cellular receptors and ion channels are
distributed asymmetrically on these dendrites (Kerti et al., 2012;
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FIGURE 4 | Global chronic inhibition of activity promotes net extension
of both apical and basolateral dendrites. (A) Representative confocal
images of neurons transfected with GFP and chronically treated with or without
TTX. (B) Length of apical dendrite. (C) Length of basolateral dendrite. (D) Ratio
of lengths of apical to basolateral dendrites, and (E) Difference between apical
and basolateral dendrite lengths in neurons expressing GFP chronically treated

without or with TTX at DIV 7. (Error bars represent SEM, Student’s t-test,
P < 0.0005 -∗∗∗, scale bar – 20 microns). (F) Confocal images of neurons
expressing GFP treated without or with TTX and immunostained with
anti-GM130. (G) Percentage of neurons with Golgi polarized toward 0, 1, or 2
dendrites in control or TTX treated neurons expressing GFP. (Error bars
represent SEM, One way ANOVA, P < 0.0005 -∗∗∗, scale bar – 20 microns).

Nusser, 2012) and some behavioral paradigms and molecular
effectors differentially affect synapse distribution on apical and
basolateral dendrites (Srivastava et al., 2012).

The molecular cues that guide the formation and maintenance
of asymmetric dendrite polarity are beginning to be uncovered
(De Marco Garcia et al., 2011; Kleindienst et al., 2011; Piatti et al.,
2011; Srivastava et al., 2012; Miao et al., 2013; Niisato et al.,
2013; Kupferman et al., 2014), however, our knowledge is far
from complete. Studies indicate that the specification of the apical
and basolateral dendrites is governed by a cell intrinsic program
independent of spatially organized extrinsic cues (Horton et al.,
2006). These programs are likely critical for neural network
wiring. For example, loss of Ube3a in developing neurons leads
to alterations in apical basolateral dendrite polarity. Mutations

in the gene encoding Ube3a underlie Angelman’s syndrome,
a developmental disorder associated with autism and related
disabilities (Miao et al., 2013). Thus, programs that regulate
dendrite asymmetry are likely critical for appropriate wiring in
the developing brain.

It is very likely that molecular mechanisms and neuronal
activity cooperate to regulate the generation and maintenance
of asymmetry of the dendritic arbor. Our data demonstrate a
differential role for cell intrinsic and network neuronal activity
in the developmental program that contributes to the asymmetry
of the dendritic arbor during development. More importantly,
our data indicate that the apical and basolateral dendrites
respond differently to cell intrinsic and network activity cues.
Interestingly, these alterations in activity do not affect the polarity
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FIGURE 5 | Enhancing global neuronal activity suppresses net
extension of basolateral dendrite extension in developing neurons.
(A) Representative confocal images of neurons transfected with GFP
and treated with or without KCl. (B) Length of apical dendrite.
(C) Length of basolateral dendrite. (D) Ratio of lengths of apical to
basolateral dendrites, and (E) Total dendritic length in neurons
expressing GFP chronically treated without or with KCl at DIV 7. (Error

bars represent SEM, Student’s t-test, P < 0.05, <0.005 -∗∗,
P < 0.005 -∗∗∗, scale bar – 20 mm). (F) Confocal images of neurons
expressing GFP treated without or with KCl and immunostained with
anti-GM130. (G) Percentage of neurons with Golgi polarized toward 0,
1, or 2 dendrites in control or KCl treated neurons expressing GFP.
(Error bars represent SEM, One way ANOVA, P < 0.05 -∗,
P < 0.0005 -∗∗∗, scale bar – 20 microns).

of the Golgi, suggesting that activity regulates the extension
of individual dendrites without affecting their polarization or
identity. These results are consistent with a model in which
once the identity of the dendrite is specified, each dendrite
functions as an autonomous compartment and generates its arbor
independently or semi-independently of the other dendrites.
Thus, developing dendrites may have dendrite specific control
mechanisms for morphogenesis, in addition to global neuronal
control mechanisms.

The ability of the different dendrites to respond differentially
to activity has important implications for development of
the neuronal circuitry. The development of the neuronal
circuitry is complex (Bloodgood et al., 2013; Joo et al.,

2014). During development, axon guidance and synaptic
targeting must be spatially and temporally controlled to ensure
correct neural circuit wiring. One mechanism that promotes
appropriate wiring is temporal coordination of presynaptic
elements and their targets. Temporal control over synapse
specificity may occur by restriction of synaptic partner choices.
By differentially responding and extending in response to
cell intrinsic and neuronal network activity, the dendritic
arbor may coordinate neuronal activity with other cues to
contribute to the eventual generation of synapse specificity
(Bloodgood et al., 2013). Thus, aligning the differential growth
of apical and basolateral dendrites to activity cues may provide
another mechanism to ensure precise sculpting of neuronal
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circuit wiring leading to the formation of functional neuronal
circuits in the developing hippocampus.
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