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Abstract: Saccadic electrooculograms are discrete biosignals that contain the instantaneous angular
position of the human eyes as a response to saccadic visual stimuli. These signals are essential to
monitor and evaluate several neurological diseases, such as Spinocerebellar Ataxia type 2 (SCA2).
For this, biomarkers such as peak velocity, latency and duration are computed. To compute these
biomarkers, we need to obtain the velocity profile of the signals using numerical differentiation
methods. These methods are affected by the noise present in the electrooculograms, specially in
subjects that suffer neurological diseases. This noise complicates the comparison of the differentiation
methods using real saccadic signals because of the impossibility of establishing exact saccadic onset
and offset points. In this work, we evaluate 16 differentiation methods by the design of an experiment
that uses synthetic saccadic electrooculograms generated from parametric models of both healthy
subjects and subjects suffering from Spinocerebellar Ataxia type 2 (SCA2). For these synthetic
electrooculograms the exact velocity profile is known, hence we can use them as a reference for
comparison and error computing for the tasks of saccade identification and saccade biomarker
computing. Finally, we identify the best fitting method or methods for each evaluated task.

Keywords: numerical differentiation; electrooculograms; saccades identification; saccades
biomarkers computing

1. Introduction

Eye movements are those performed by the eyes as a response to some environmental
stimulus. For neurologists, the study of the control of eye movements presents an opportu-
nity to understand the human brain [1]. Moreover, these movements have a very useful
role because they can identify disfunctions caused by several neurological diseases such as
Spinocerebellar Ataxia type 2 (SCA2). Furthermore, pursuit and saccadic movements are
necessary to track objects in motion and provide a tool to explore neural functions [2].

Electrooculography (EOG) is a technique used to capture eye movements in clinical
research. It is based on the measurement of potential generated in the retina–cornea area of
the ocular system [3]. This technique was introduced by Fenn and Hursh in 1934 and uses
superficial electrodes around the skin of the eyes. The resulting potential signal is called
an electrooculogram and can be translated later into an angular movement signal using
calibration methods.

Saccades are abrupt eye movements performed to move images of objects of interest
to the fovea. Diseases such as Spinocerebellar Ataxias affect the performing of the saccadic
system. For example, SCA2 provokes slowdowns in the saccadic movements [4]. Numeri-
cally, a saccade is a vector of contiguous eye positions that belong to an electrooculogram
(measured in angular degrees).

The velocity profile of an electrooculogram is a vector of instantaneous velocity points
associated to the position vector of the electrooculogram. Obtaining this velocity profile
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is one step of saccade identification algorithms. For instance, one of the classic papers in
saccade identification recommends use always of the velocity as the criteria to identify
onset and offset saccade points [5]. This profile allows us to compute relevant biomarkers
such as peak velocity, latency and duration. We compute the instantaneous velocity profile
of an electrooculogram by the differentiation of its values.

Given the discrete nature of the electrooculograms, there is a requirement to use
numerical differentiation methods to obtain the velocity profiles. These methods always
introduce a level of noise to their output (velocity profile), even when the position profile
is noise-free.

Thus, Figure 1 shows how, from an electrooculogram with almost no noise, the output
of the differentiation method presents a high level of noise. Figure 1a shows a very clean
position signal of a saccadic electrooculogram. In Figure 1b,c we show noisy velocity
profiles computed from the position signal using a central difference of three and five
points, respectively. The noise of the output affects the identification of the position of the
onset and offset points of a saccade. This situation leads to errors in the calculation process
of important biomarkers such as maximum velocity, latency and duration of saccades.

In the literature reviewed we found four numerical differentiation method families
based on different mathematical approaches: Central Difference, Lanczos, Super Lanczos
and Smooth Noise Robust. Methods such as Central Difference and Lanczos have been
used to differentiate electrooculograms. However, for the rest of the methods we found no
usage for these signals. Is very interesting to evaluate how to perform methods such as
Super Lanczos and Smooth Noise Robust for our specific tasks.
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Figure 1. An example of an electrooculogram differentiated using the central difference of 3 and
5 points.

Researchers use central difference methods with acceptable results when the signal is
noise-free [6,7]. However, Figure 1 shows the undesired effects of the noise in the differenti-
ation output of these methods. Note how a minor noise in the movement signals produces
a very noisy differentiated signal. in addition, filtering the signal before differentiation
does not improve the output of the process.

The signals captured using devices like electronystagmographers or eye trackers pro-
duce electrooculograms which may include several noises such as tremors (biological),
power line noise, digitalization noise, and others. Using these position signals we can not
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obtain the associated exact velocity profile because of the included noise, hence is impossi-
ble to create a framework to evaluate the performance of the numerical differentiators.

The goal of this work is to compare numerical differentiation methods available in the
literature for its application in saccadic identification and biomarker extraction tasks. This
comparison must be based on quantitative values of the errors introduced in the referred
tasks. To measure the performance of each method, we will use a set of synthetic saccadic
signals at different amplitudes and subject statuses (healthy or sick with SCA2) with added
noise. These signals allow knowledge of the exact values of the errors introduced because
the exact values of the biomarkers associated with these signals are also known.

In summary, we consider that this work presents two major contributions: (a) we find
the best method to differentiate saccadic electrooculograms, (b) we provide the implemen-
tation of these methods for free in a GitHub repository.

The rest of this paper is organized as follows: In the Material and Methods section we
describe the experiment designed to compare the differentiation methods. The Discussion
section shows an analysis of the designed experiment results. Finally, the Conclusions
section summarizes the main ideas and findings of this work.

2. Material and Methods
2.1. Numerical Differentiation

The derivative of a function f in x0 is defined in the Equation (1) [8]:

f ′(x0) = lim
h→0

=
f (x0 + h)− f (x0)

h
(1)

Using Lagrange’s interpolation polynomials, we can develop several differentiation
methods based on central difference. Equation (2) represents the general form of the central
difference methods.

f ′(x0) ≈
1
h

(N−1)/2

∑
k=1

ak( fk − f−k) (2)

In this equation, x0 is the point where the instant velocity is calculated, f±k repre-
sents f (x0 ± kh), h is the time interval between samples, and ak are the parameters to
be determined.

The 3-point central difference was proposed by Bahill and McDonald in [6] and
Niemenlehto in [7] to differentiate eye movement signals. This last method has to be used
with a low-pass filter to obtain reliable results [9].

Inchingolo and Spanio proposed in [10] an algorithm to calculate the velocity profile
of eye movement signals that is a particularization of the nine-point central difference. This
method is described by Equation (3) where fs is the sampling frequency. In the particular
case of signals sampled at 200Hz, authors found that the best coefficients are a1 = 0.8024,
a2 = −0.2022, a3 = 0.03904 and a4 = −0.003732.

f ′(x0) = fs

4

∑
k=1

ak( fk − f−k) (3)

Analog to central difference methods, the Lanczos methods have been developed as
a particular set of Savitzky–Golay [11] differentiation filters. The fundamental difference
regarding their predecessors is that they use curve fitting strategies instead of interpolation,
making them more noise-robust. Lanczos differentiators works as follows: for a fixed h step
and sample f (x) at odd N points around a central point x0 we construct the polynomial
shown in Equation (4) minimizing the cost function shown in Equation (5) with respect to
unknown coefficients aj [12].

PM(x) =
M

∑
j=0

ajxj (4)
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Z =
(N−1)/2

∑
k=−(N−1)/2

( fk − PM(xk))
2 (5)

After the polynomial is computed, f ′(x0) can be estimated as:

f ′(x0) = P′M(x0) (6)

We call Lanczos differentiators to the filters built using M = 2 and Super Lanczos
when M = 4.

One last family to be considered is the Smooth Noise-Robust methods [12]. They make
up a variation of Lanczos family, and they are described by Equations (7) and (8)

f ′(x0) ≈
1
h

M

∑
k=1

ck( fk − f−k) (7)

ck =
1

22m+1

[(
2m

m− k + 1

)
−

(
2m

m− k− 1

)]
, m =

N − 3
2

, M =
N − 1

2
(8)

where N is the filter length, as in the previous equations.

2.2. Experiment Design

With the goal to choose the best fitting numerical differentiation method for saccadic
electrooculograms, an experiment was designed. In this experiment we compare 16 meth-
ods belonging to four families: Central Difference (CD3, CD5, CD7, CD9), Lanczos (L5,
L7, L9, L11), Super-Lanczos (SL7, SL9, SL11), Smooth Noise-Robust (SNR5, SNR7, SNR9,
SNR11). Each number attached as a suffix to the method name means the length of the
corresponding filter.

Our experiment compares the performance of the differentiation methods using
4 different metrics:

• Mean Square Error (MSE) between the output of the method as approximated signal
and the synthetic real velocity profiles as the exact signal.

• Misidentified saccades.
• Over-identified saccades.
• Absolute error introduced in the biomarkers values.

The MSE is computed from the output of the differentiation methods with respect
to the exact velocity profile of synthesized signals. This metric gives a quantitative value,
which describes similarity or, in contrast, the level of error/distortion between the signals.
Formally, the operation is defined as follows: given two discrete signals x and y of finite
length, x = {xi|i = 1, 2, . . . , n} and y = {yi|i = 1, 2, . . . , n}, where n is the number of
samples of the signals, and xi and yi are the value of the i-th samples of x and y, respectively,
the Mean Square Error between both signals is described in Equation (9).

MSE(x, y) =
1
n

n

∑
i=1

(xi − yi)
2 (9)

To obtain saccadic biomarkers, first we need to identify the saccades. We can evaluate
the performance of the differentiation methods by obtaining how many saccades are
misidentified or over-identified using a simple velocity threshold algorithm with the
output (velocity profile) of each method. For this algorithm we are going to use the same
velocity threshold employed to generate the synthetic signals as onset and offset thresholds.

There are many biomarkers used to study SCA2. Among the most common and
relevant are the Latency, Duration and Peak Velocity. Latency is the time between the
start of the visual stimulus and the response of the subject. The duration of the saccade
is the time between its start and its end. The Peak Velocity is, from our experience, the



Sensors 2021, 21, 5021 5 of 12

most important biomarker to diagnose SCA2 and is the maximal velocity reached during
the saccade.

The designed experiment is structured as follows:

1. Generate synthetic saccadic records using characteristics parameters obtained from
electrooculograms of healthy and SCA2-sick subjects. We obtain the exact velocity
profile (EVP) from which the saccadic records are generated.

2. Apply each differentiation method to the synthetic electrooculograms with noise
added, resulting in the approximated velocity profiles (AVP).

3. For each AVP:

(a) Compute the MSE between the EVP and AVP. Analyze the results and drop
methods with significantly poor performance.

(b) Identify saccades using the AVP and compare them against the exact saccades
identified using the EVP. We compare the performance of the identification pro-
cess using misidentified and over-identified saccade metrics. All the saccades
correctly identified using the AVP are defined as AS and their corresponding
exact counterparts identified using the EVP as defined as ES.

(c) For each AS and their associated ES we compute the biomarkers peak velocity,
latency and duration. For each pair (ES, AS) and for each biomarker, we
compute the error using the absolute value of biomarker (ES)– biomarker (AS).

4. Analyze statistically the results yielded by the previous step and determine which
methods to use for the different tasks in processing saccadic eye movements.

Regarding step 4 of our experiment, a comparative analysis using the Friedman statis-
tical test was performed [13]. This is a non-parametric statistical test equivalent to Analysis
of Variance (ANOVA) with repeated measures, which determines if there are significant
differences between the results of a set of methods over the same datasets. Applying the
Friedman test to the result yielded by each biomarker allows the determination that for
each of the biomarkers there are significant differences among their means.

Now, to determine which of the methods are fit to compute each of the saccadic
biomarkers, we applied a post-hoc Wilcoxon signed-ranked test pairing the method with
lower error with the rest [14]. Each of the tests determines if there are significant differences
between the pairs of biomarker means.

2.3. Building Synthetic Saccadic Signals Dataset

The set of saccade signals employed for the comparison was generated synthetically
using the method described by Coughlin in [15]. This algorithm follows an inverse process
regarding the natural generation of the signals: first the velocity profiles are generated and
then they are integrated to obtain the position profiles. The characteristic parameters used
to generate the synthetic velocity profiles were maximum velocity, latency and duration
obtained from a statistical analysis performed on healthy and SCA2-sick subjects.

To make the signals as real as possible, a set of noises found in real electrooculograms
were added. Specifically, sinusoidal interference of 60 Hz simulating noise introduced
by the industrial network, white noise, which has a uniform spectral distribution and
color noise between 3 and 7 Hz. The color noise was found when performing the spectral
analysis of records of people with the disease.

With the goal to obtain reliable statistic results, a set of 120 signals are generated and
distributed, as shown in Table 1. Each of these signals contains a set of 20 saccades, making
2400 saccades in the full dataset. Here the saccades are generated from stimulation angles
of 20, 30 and 60 degrees as found in real clinical electrooculograms.
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Table 1. Record distribution per subject status and angle.

Class 20◦ 30◦ 60◦ Total

Healthy 20 20 20 60
SCA2-Sick 20 20 20 60

Total 40 40 40 120

The signals were generated with a sampling frequency equal to 1000 Hz. However,
to mimic the characteristics of the real signals, we need to re-sample the synthetic signals
to a sampling frequency of 200 Hz. To make this we use the function decimate (https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.signal.decimate.html, accessed on
23 July 2021) of the SciPy library [16]. This function downsamples the signal after applying
an 8th Order Chebyshev antialiasing filter. Is important to note that all the calculations of
the experiment are performed using the 200 Hz re-sampled signals.

2.4. Saccade Identification Algorithm

The previous step to biomarker computing is identifying the saccades from which they
are going to be extracted. There are several methods to identify saccades in eye movement
recordings; we are going to use a simple velocity based saccade identification detailed by
Algorithm 1. In this algorithm, we use the output of the differentiation methods as V. For
the occurrence threshold Ot we select the used value to generate the synthesized signals,
and to set the onset and offset points of the saccades we use Pt = 20◦/s [17,18]. The step h
is equal to 0.05 s because the signals are sampled using a 200 Hz frequency.

Algorithm 1: Velocity threshold saccade identification algorithm
Input: V computed velocities, Ot occurrence velocity threshold, Pt onset and

offset velocity threshold, Dt minimal duration threshold, h sampling step
begin

V ←− abs(V);
last←− length(V);
index←− 0;
while index < last do

if Vindex > Ot then
onset←− index;
while onset > 0 and Vonset−1 ≥ Pt do

onset←− onset− 1;
end
offset←− index;
while offset < last and Voffset+1 ≥ Pt do

offset←− offset + 1;
end
duration←− (offset− onset) ∗ h;
if duration >= Dt then

yield Saccade (onset, offset)
end

end
end

end

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.decimate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.decimate.html
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3. Results and Discussion
3.1. Error of the Waverform of the Output Filter

To compare the signal waveform errors introduced by the differentiation algorithm, we
build the box plot shown in Figure 2. In this plot we can notice how the central difference
methods introduce errors higher than the rest by several orders of magnitude.

cd3 cd5 cd7 cd9 l11 l13 l5 l7 l9 sl11 sl7 sl9snr11snr5snr7snr9
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0

250

500

750

1,000

1,250

1,500

1,750

2,000
M
SE

Figure 2. Errors introduced by differentiation methods measured using the Mean Squared Er-
ror (MSE).

Figure 3 shows an example of the poor performance of the central difference method
against the worst performing of the rest. In the figure, the error of the peak velocity intro-
duced by the noise is also noticeable. Moreover, this noise is present in the regions near
the points of saccade onset and offset, hindering the correct identification of saccade. This
low performance can be explained because of the instability inherent to numerical differ-
entiation methods added to the principle of interpretation used by the central difference
methods [8]. For these reasons, these methods will be dropped to further analyze and focus
our efforts on more adequate candidates for the tasks.
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Figure 3. Comparison between the best central difference method and the worst of the rest of the
families. The signal is from a healthy synthetic signal with saccades of 20◦.
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3.2. Saccade Identification Errors

We use two metrics to measure the performance of the identification algorithms:
unidentified saccades and over-identified saccades. Unidentified saccades are the amount
of saccades that should be identified by the algorithm and were not. Over-identified
saccades are the amount of saccades detected as false positives by the algorithm. Figure 4
shows the errors introduced by using the output of the differentiation method as the output
for the identification algorithm.
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The performance of the analyzed methods is very satisfactory. From 2400 saccades,
the worst method (snr5) misidentified only 20 saccades, less than 1%. Furthermore, more
importantly, four methods show a perfect score. It is also noticeable that all the 11-point
methods are in the set of perfect score.
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The goal of the research regarding eye movements is to extract relevant knowledge
which allows diagnosis and following of neurological diseases. This relevant knowledge is
presented very often as biomarkers, hence the importance of their computing method. In
this work, we analyze how the differentiation methods impact in the values of the relevant
saccadic biomarkers to the research of the SCA2 such as PeakVelocity, Latency and Duration.

In Table 2 we show the results obtained by the use of the proposed differentiation
methods. Applying the Friedman test, we detected significant differences in all of the
biomarkers’ errors. Consequently, to identify the set of the fittest methods for the task, we
pair the method with the lower error with each one of the rest by applying the Wilcoxon
post-hoc test.
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The performance of the analyzed methods is very satisfactory. From 2400 saccades,
the worst method (snr5) misidentified only 20 saccades, less than 1%. Furthermore, more
importantly, four methods show a perfect score. It is also noticeable that all the 11-point
methods are in the set of perfect score.

3.3. Biomarkers Calculations

The goal of the research regarding eye movements is to extract relevant knowledge
which allows diagnosis and following of neurological diseases. This relevant knowledge
is presented very often as biomarkers, hence the importance of their computing method.
In this work, we analyze how the differentiation methods impact in the values of the
relevant saccadic biomarkers to the research of the SCA2 such as Peak Velocity, Latency
and Duration.

In Table 2 we show the results obtained by the use of the proposed differentiation
methods. Applying the Friedman test, we detected significant differences in all of the
biomarkers’ errors. Consequently, to identify the set of the fittest methods for the task, we
pair the method with the lower error with each one of the rest by applying the Wilcoxon
post-hoc test. The methods highlighted in bold belong to a cluster of methods in which the
null hypothesis of Wilcoxon was accepted, meaning that the errors introduced by these
methods have the same distribution.
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Table 2. Errors introduced by differentiation methods in saccadic biomarker computing. Methods
highlighted in blue for each task are those that show no significant difference with the first ranked
using the Wilcoxon post-hoc method.

Rank Peak Velocity (◦/s) Latency (s) Duration (s)

Method Error ± Std Method Error ± Std Method Error ± Std

1 sl11 2.1375 ± 2.2142 snr11 0.0045 ± 0.0080 l11 0.0079 ± 0.0065
2 sl9 3.8759 ± 4.3384 l11 0.0045 ± 0.0042 snr11 0.0084 ± 0.0135
3 l5 4.1076 ± 3.4649 l9 0.0047 ± 0.0064 l9 0.0085 ± 0.0115
4 sl7 4.4216 ± 5.2121 sl11 0.0049 ± 0.0104 sl11 0.0098 ± 0.0186
5 snr7 4.5968 ± 3.9061 snr9 0.0051 ± 0.0098 snr9 0.0100 ± 0.0175
6 snr9 5.1840 ± 4.4540 l13 0.0065 ± 0.0048 l13 0.0129 ± 0.0094
7 snr5 5.7055 ± 5.3013 l7 0.0067 ± 0.0116 l7 0.0141 ± 0.0235
8 snr11 6.0861 ± 5.4302 l5 0.0069 ± 0.0138 l5 0.0143 ± 0.0266
9 l7 6.4026 ± 5.5485 snr7 0.0076 ± 0.0150 snr7 0.0161 ± 0.0299

10 l9 9.4111 ± 9.0850 sl9 0.0128 ± 0.0259 sl9 0.0274 ± 0.0510
11 l11 13.3196 ± 13.4722 sl7 0.0145 ± 0.0299 sl7 0.0314 ± 0.0581
12 l13 29.6168 ± 26.0764 snr5 0.0147 ± 0.0283 snr5 0.0324 ± 0.0568

Table 2 shows that for the saccadic peak velocity, the Super Lanczos Method with
11 points is the most fit for the task. This could mean that sl11 can maintain the better
waveform of the differentiated signal around the point of maximal velocity (middle of the
saccade). Further study is required.

Regarding saccadic latency, Table 2 shows three methods with the best performance:
Smooth Noise Robust with 11 points, Super Lanczos with 11 points and Smooth Noise
Robust with 9 points. These results are related to how well the saccade onsets are positioned,
explaining how these methods affect the samples near to the start of the saccade.

In the case of saccadic duration, the Lanczos with 11 and 9 points have the best
performance. Like the saccadic duration they are affected by the position of the saccadic
onset, but are also affected by the saccadic offset position. The errors of the duration can
be explained by the performance of the algorithms around the samples near the start and
finish of the saccade.

Figure 5 shows the analyzed performance described in previous paragraphs in a more
visual form.

Is interesting to notice how the best methods nominally always have 11 points. This
could mean that 11 is the right size for the differentiation filters applied to signals with 200
Hz of sampling rate, or at least with the characteristics of saccadic signals similar to the
ones synthesized in this work. To confirm this theory, more study is required in this regard.
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Figure 5. Biomarker computing errors box plot by method. Methods highlighted in blue for each task
are those that show no significant difference with the first ranked using Wilcoxon post-hoc method.

4. Conclusions

In this paper we evaluated 16 numerical differentiation methods of 4 different families:
Central Difference (cd), Lanczos (l), Super Lanczos (sl) and Smooth Noise Robust (snr) for
saccadic signals differentiation of subjects suffering SCA2. First, we presented a review
of the methods traditionally used for our specific task and others used in other areas of
knowledge. We designed an experiment to compare the methods numerically using quality
and error metrics.

Our first conclusion from our experiment is that the central difference methods are
not adequate for our specific task. The level of noise introduced by these sets of methods
hinders the further processing of the signals. For the saccade identification task, all the
methods perform reasonably well, with the methods l9, l11, sl11 and snr11 obtaining
perfect score.

For each saccadic biomarker included in our study, the experiment results in a unique
set of methods fit to compute each one of them. With saccadic peak velocity, we recommend
using the sl11 method. For saccadic latency computation we recommend the use of these
methods: snr11, sl11, snr9. For saccadic duration you can use the l11 or the l9 methods.
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Is important to remark that some high performing methods like sl11, snr9 and snr11
were not used previously with electrooculograms, being a key contribution of our paper.

Author Contributions: Conceptualization, R.A.B.-G., G.J. and R.G.-B.; methodology, R.A.B.-G., G.J.
and R.G.-B.; software, R.A.B.-G.; validation, R.A.B.-G., G.J. and R.G.-B.; formal analysis, R.A.B.-G.;
resources, R.G.-B.; funding acquisition, G.J.; writing—original draft preparation, R.A.B.-G.; writing—
review and editing, R.A.B.-G., G.J. and R.G.-B.; visualization, R.A.B.-G.; project administration,
G.J.; supervision, G.J. and R.G.-B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially supported by the University of Málaga-Andalucía-Tech through
the Plan Propio de Investigación y Transferencia, Project DIATAX, Agencia Andaluza de Cooperación
Internacional para el Desarrollo (AACID), project “Red universitaria para la investigación y docencia
en técnicas de captación y procesado de señales electrooculográficas y de fijación de la mirada
orientadas a la detección de enfermedades neurodegenerativas y a la monitorización del aprendizaje”
(Proyectos de cooperación universitaria para el desarrollo 2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in our research are synthetic signals generated using
parameters computed from a population of real subjects. Is not possible to use these signals to
identify any individual. All the raw data and experimental software routines are freely available at
https://github.com/idertator/saccdiff (accessed on 23 July 2021). The software routines included is
used to generate figures and tables used in the analysis of our research.

Acknowledgments: We acknowledge the group “Engineering of Integrated Systems (TIC 125)” and
“Instituto de Telecomunicación (TELMA)”, both belonging to the University of Malaga because the
support on instrumentation resources.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ANOVA Analysis of Variance
EOG Electrooculography
MSE Mean Square Error
SCA2 Spinocerebellar Ataxia type 2

References
1. Leigh, R.J.; Zee, D.S. The Neurology of Eye Movements; Oxford University Press: Oxford, MS, USA, 2015; Volume 90.
2. Thompson, C. Eye movements, prematurity and developmental co-ordination disorder. Vis. Res. 1998, 12, 1817–1826.
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