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Understanding memristive switching via in situ
characterization and device modeling
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Owing to their attractive application potentials in both non-volatile memory and unconven-

tional computing, memristive devices have drawn substantial research attention in the last

decade. However, major roadblocks still remain in device performance, especially concerning

relatively large parameter variability and limited cycling endurance. The response of the

active region in the device within and between switching cycles plays the dominating role, yet

the microscopic details remain elusive. This Review summarizes recent progress in scientific

understanding of the physical origins of the non-idealities and propose a synergistic approach

based on in situ characterization and device modeling to investigate switching mechanism. At

last, the Review offers an outlook for commercialization viability of memristive technology.
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Memristive devices have been studied intensively since
the link between memristor theory and physical resis-
tive switching devices was established in 20081, which

was initially driven by the need for high-performance non-volatile
memory and has more recently been fueled by energy-efficient
unconventional computing2. Postulated as the fourth funda-
mental passive circuit element in addition to resistor, capacitor,
and inductor, the memristor can store information in a form of
resistance, which can be modulated by the history of its external
stimuli3. The typical structure of memristors is a two-terminal
three-layered stack, consisting of a switching layer sandwiched
between two metallic electrodes. The switching layer ranges from
semiconducting to insulating inorganic or organic materials.
Through materials engineering, memristive devices can be tai-
lored to provide non-volatile or volatile memory. Non-volatile
memristor maintains its resistance state after the removal of the
applied switching voltage or current. The stable resistance state is
used to represent stored information, making memristive devices
suitable for data storage applications. Integrated memristive
crossbar arrays are considered promising candidates for future
application in mainstream non-volatile memory. This is because
memristive devices can store information at the sub-2-nm scale4

and possess many other desired properties, including high speed5,
low energy consumption, three-dimensional integration cap-
ability, and compatibility with complementary metal oxide
semiconductor (CMOS) technologies6. Furthermore, in-memory
analog computing is being developed to process information
where it is stored7. Such in-memory computing is expected to
offer an efficient and reconfigurable solution to process analog
information in artificial intelligence (AI) applications8. On the
other hand, the programmed resistance state of a volatile mem-
ristor gradually relaxes toward a thermodynamically stable state
upon the removal of the programming signal, offering desirable
dynamics for emulating biological synapses and neurons9.
Memristors at the individual device level have shown short- and
long-term plasticity similar to that of biological synapses9,10.
Neural networks with memristors at the array level have been
used to demonstrate brain-inspired functions11.

Consequently, memristive devices have attracted significant
attention in the past decade as a key enabler of new computing
paradigms to overcome the limitations of the conventional
von Neumann computing architecture. However, although
significant research efforts have been directed toward mem-
ristive devices, a large-scale commercialization of these devi-
ces has not yet been achieved. In addition to challenges at the
circuit, algorithm and architecture levels, issues at the device
level are likely still the primary reason. Two of the major
remaining challenges at the device level are relatively large
parameter variability and poor cycling endurance (Fig. 1a). To
improve the cycling endurance and reduce the parameter
variability to a level sufficient for large-scale commercializa-
tion, it is necessary to acquire an in-depth understanding of
ion migration and its coupling with electron transport—the
dominating dynamics in memristive mechanism—during the
switching process. To reveal the dynamic process of switching,
in situ characterization techniques are necessary; then, device
modeling is needed to thoroughly explain the phenomena
observed in situ. As such, in situ characterization combined
with device modeling is the most efficient approach to achieve
a complete and in-depth understanding of the switching
mechanism. In this Review, we summarize state-of-the-art
understanding of memristive switching mechanism and dis-
cuss future research directions. We primarily focus on in situ
characterization techniques and device modeling methods,
aiming to monitor and analyze the switching behavior of
memristors at the single-atom level.

Memristive switching mechanism
Based on the active switching region and geometry, memris-
tors can be classified as filament type, interface type, and bulk
type. Among them, the filament type memristors have been
attracted more research attentions due to their overall
superior performance as well as greater challenges in
mechanism studies. Thus, the Review will discuss more on
filament type memristors than other types. On the other hand,
according to the type of mobile species and migration beha-
vior, memristors can be classified as cation devices, anion
devices, and dual ionic devices (Box 1). To understand the
underlying memristive switching mechanisms, the current
research has been focused on the following five aspects: che-
mical composition of materials in the active region; driving
forces for ion migration; filament morphology; electron con-
duction mechanisms; and switching dynamics (Table 1). It is
notable that a complete mechanistic understanding of resistive
switching still remains largely ambiguous at this stage due to
limited assessable experimental data, especially those con-
cerning switching dynamics, such as the evolution of filament
morphology and transport mechanism during repetitive
cycling.

Cation memristors
Among the active electrode metals in cation devices, Ag has been
studied intensively by in situ transmission electron microscopy
(TEM) for understanding the switching mechanism of memris-
tive devices. During electroforming, the growth of conduction
filaments has been observed in the form of a chain of Ag nano-
particles12 or an Ag crystalline phase13. The growth direction and
switching dynamics of conduction filaments are governed by
kinetic factors, such as the ion mobility and the redox rate14,15.
Under the driving force of electric field, the migration of Ag
nanoparticles follows a step-by-step mass transport process to
form a complete conduction filament16.Under the reverse voltage,
the conduction filaments are ruptured and a gap region is formed.
In volatile cation memristor, which is also called diffusion
memristor, the Ag filament relaxed into a round shape to mini-
mize the interfacial energy after the removal of the bias9. Ag or
Cu can function as the active electrode for both non-volatile and
volatile memristors. Whether or not they maintain the conduc-
tion filaments after set operations without external bias depends
on the parameters defining the system, such as the diameter of the
conduction channel, the interfacial energy between the channel
and dielectric materials, the heat dissipation, and local tempera-
ture, and others17.

Anion memristors
The oxygen migration in anion devices is important because it is
involved in the switching mechanism of various materials sys-
tems. In fact, the conduction path in anion device is a chemically
reduced metal with a lower valence state, which can be regarded
as being composed of oxygen vacancies as n-type dopants.
In memristors made up of complex oxides with a single-
crystalline structure, such as Pr0.7Ca0.3MnO3

18, BiFeO3
19, and

La2/3Sr1/3MnO3
20, the dynamic behavior of oxygen ions/vacan-

cies has been clarified with conclusive experimental evidence
because oxygen vacancies can be observed directly. In these
single-crystalline materials, the oxygen vacancies originate
from the crystalline switching layer19. On the other hand, the
memristors with amorphous oxide structures, such as CuO21,
TaOx

22, Al2O3
23, HfO2

24, NiO25, TiO2
26, NbO2

27, MoOx
28, and

ZnO29, have great advantages in terms of their fabrication cost,
fab compatibility and device performance. The conclusions
regarding the origination and dynamic activities of oxygen
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vacancies in these amorphous oxides remain controversial,
primarily owing to the challenge of direct observation of oxygen
vacancies. Various driving forces, conductance mechanisms and
switching dynamics were proposed, but only a few of them are
conclusive.

Dual ionic memristors
In 2015, Wedig et al. first speculated that cation migration of Ta,
Hf, and Ti ions could dominate the resistive switching in metal
oxide memristors, competing with the migration of oxygen
vacancies30. Since then, a multi-switching mechanism involving
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Fig. 1 Synergistic approaches for mechanistic research of memristive devices for improving the device performance. a Parameter variability of the set and
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shown in the middle where a device model is schematically presented with switching I–V loops of simulated and experimental data. Reproduced from
ref. 12, Macmillan Publishers Ltd (c), Ag/SiO2/Pt device; ref. 22, Macmillan Publishers Ltd (c), Ta2O5-x/SiO2/Pt device

Table 1 The research status on switching mechanism of memristive devices

Properties Common items for all types Cation devices Anion devices Dual ionic devices

Chemical composition Ion migration or
phase change

Active metals, such
as Ag, Cu
Less active metals, such as
Ti, Ta

Oxygen ions or vacancies
Other anions, such as nitrogen
vacancies

Both cation and anion

Driving force Electric field
Thermal effects
(thermophoresis)20
Chemical potential gradient92

Nanobattery effect93
Interfacial energy
minimization9

Relative role of field and temperature
Thermodynamics2

Relative role of field and
temperature
Thermodynamics

Filament morphology Filamentary
Single and multiple filaments
Dendrite-like filament45
Inverted or forward cone
shape14

Chain of nanoparticles12
Inverted triangle
crystalline13
Non-filamentary81

Non-filamentary94
Percolation path
Filament rupture region

Percolation path
Filament rupture region

Electron conduction
mechanism

Ohmic conduction
Schottky emission
Tunneling (direct or FN)

SCLC model95
Quantum conductance96

P-F model, SCLC model97
Hopping (fixed-ranged, variable-
ranged)98 TAT model

Trap Assisted Tunneling (TAT)
model

Switching dynamics Redox reaction
Nucleation99
Microscopic picture of
switching

Filament growth direction
Growth dynamics14
Filament dissolution

Oxygen vacancy generation in the bulk
Interstitial oxygen ion migration
Dynamic motion of oxygen

Migration dynamics of cations
and anions
Reaction of cations and anions

Non-italicized indicates the conclusive findings, and italicized represents arguments not fully conclusive yet
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the motion of both cations and anions has been experimentally
observed. In these dual ionic devices, the motion of cations or/
and anions can play the dominating role in the switching process,
depending on the migration energy barrier of mobile species in
the switching layer31, such as oxygen vacancies in Ni/HfO2/SiO2/
Si32, Ag ion in Ag/Ta2O5/Pt33, and simultaneously migration of
Ta ions and oxygen vacancies in Ta/HfO2/Pt31. In addition, noble
metal ions can also act as migrating cations, such as the Pd ions in
a SiO2 switching layer34. As a result of the cation movement
towards the cathode and the anion movement towards the anode,
the conduction filaments can be identified as metal atoms31,35 or
a combination of metal atoms and oxygen vacancies33. However,
the dynamic evolution of cations and anions needs further
explorations to reveal the details.

The importance of understanding switching mechanism
The fundamental reasons for the non-ideal performance of
memristive devices, including the large parameter variability,
cycling endurance degradation, and so on, are attributed to

uncontrolled ion migration. For example, in the filament type
memristor, the ion migration dominates the evolution of con-
duction filaments. The initial formation of conduction filaments
decides the device-to-device variability, while the repeated rup-
ture and re-formation of the filaments affect the cycle-to-cycle
variability and cycling endurance (Fig. 1a, b). Parameter varia-
bility and cycling endurance issues are not concerns for metal
oxide semiconductor (MOS) transistors because they rely on the
transport and storage of a large number of carriers (electrons or
holes). In contrast, the resistive switching in a memristor is rea-
lized via a limited number of ions migrating through a switching
layer or at the electrode/switching layer interface (Box 1), so it is
more challenging to quantify and control the ions engaged in the
switching process. Meanwhile, the location and morphology of
the ion migration region, e.g., conduction filament region, appear
to be largely random, governed by a number of currently
unknown factors, which in turn exacerbate the parameter varia-
bility issue21. The situation can be further complicated due to the
expansion of active areas by ion migration to new locations

Box 1 | Classification of memristive switching mechanisms

During memristive switching, the atomic motion induces microscopic changes in memristors following three types of reconfiguration. The first type is
filamentary switching, the mechanism of which is correlated with the growth of single or multiple localized conduction filaments through the switching
layer80. This type is very common, and the active switching region is concentrated at the tip of a filament typically close to the interface between the
switching layer and an electrode. The second type is non-filamentary interfacial switching, in which resistive switching is resulted from the modulation
of the carrier transport barrier at the electrode/switching layer interface induced by ion migration81,82. This type of switching is typically slow, likely
because of the lack of effective Joule heating associated with a localized conduction filament to induce a local temperature increase and to enable a fast
ion motion at elevated temperature during switching. The third type of resistive switching occurs inside the bulk of the entire or a part of the switching
layer, which is typically triggered by a phase change, and it involves short-term atomic rearrangement. The phase change devices include an
amorphous-crystalline transition as in the GexSbyTez memristors (also called phase change memory, PCM)83, and topological transition or lattice
structure transition as in VO2 and NbO2 memristors (also called Mott memristors)27.
According to the types of mobile species responsible for the resistive switching, memristors can be classified into three categories, namely cation
devices (also called electrochemical metallization memory, ECM), anion devices (also called valence charge memory, VCM), and dual ionic devices. A
typical cation device consists of an electrochemically active metal/dielectric/inert metal structure. When the scale is reduced to nano-size, the
dielectric layer can be converted into solid electrolytes84. The mobile ions are usually the cations of the active metal, such as Ag, Cu, Ni, or an alloy of
these metals14,15. In anion devices, the switching layers are made of compound or organic materials, including binary metal oxides, complex oxides,
carbon-based oxides, nitrides, chalcogenides, etc2. Among them, metal oxides are the most common material system, in which the mobile ions are
normally oxygen ions, or equivalently, oxygen vacancies6. Recently, a multi-switching mechanism involving the motion of both cations and anions has
been established by a number of reports30,33, and thus, these memristors can be defined as dual ionic devices.
Schematics of switching mechanisms using different classification criteria: a Filamentary switching. b Interfacial switching. c Bulk switching caused by
phase change. d Set operation of Cation device: Ag/SiO2/Pt. e Set operation of Anion device: TiN/HfO2/Pt. f Set operation of Dual ionic devices: Ag/
Ta2O5/Pt. During set operation, positive voltage is applied on the top electrodes, and the conduction filament is marked by a black dashed line in d–f.
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during cycling, leading to the irreversible damage to devices36. All
of the above-mentioned uncertainties and complications can
cause the eventual failure of memristive switching. Therefore,
from a materials science perspective, understanding ion migra-
tion in active materials during resistive switching is crucial for
building robust memristors, which is the main focus of this
Review (Fig. 1c).

A synergistic characterization approach
To characterize the localized ion motion in memristors, especially
the dynamics during real-time cycling operations, it is essential to
combine in situ characterization techniques with device modeling
—a synergistic approach—as outlined in Fig. 1c. Using a variety
of in situ techniques, the dynamic evolution of electrochemical
and structural changes inside the functioning device during
resistive switching can be visualized to a certain degree, and some
of the dominant dynamic factors can be captured via the direct
observations. However, experimental characterization techniques
always have certain limitations in observing the switching process
due to finite spatiotemporal resolution, which can be com-
plemented and completed by modeling studies. Based on the
input of the experimental results, equations describing the
dynamic switching process can be developed using appropriate
physical modeling, and the driving forces, electron conduction, as
well as ion migrations can be simulated at the atomic level. With
the combination of in situ techniques and device modeling, a
holistic picture of switching mechanism can be eventually
established.

The switching mechanism needs to be studied over a broad
spatiotemporal range, which requires a closely collaborative
application of in situ techniques and device modeling (Fig. 2
and Table 2). The time scale of ion migration can vary over a
range from picoseconds to seconds depending on the condition
of the driving force. Due to the fast speed of ion migration
under high electric field and/or elevated temperature, resistive
switching may occur as rapidly as a sub-nanosecond37. Typi-
cally, the switching speed is exponentially dependent on the
applied voltage38. The requirement for data retention in

commercialization is normally ten years at ambient tempera-
ture. On the other hand, the parameter variability of memris-
tors results from the unstable behavior of the conduction
filaments, as well as non-uniformity during fabrications at the
device, array, chip, and wafer levels. The diameters of the
conduction filaments range from angstroms to nanometers9,13.
In Fig. 2, the temporal ranges of the physical properties and the
electrical behaviors are positioned along the top horizontal axis,
and the spatial ranges from atom level to wafer level along the
right vertical axis. In principle the combination of in situ
techniques and device modeling is capable of covering a broad
spatiotemporal range and thus providing a comprehensive
understanding of device behavior. The in situ techniques can
typically work in a temporal range from microsecond scale to
several days and in a spatial range from sub-angstrom level to
several micrometers. Device modeling further expand this
temporal-spatial region. The first principles (FP), molecular
dynamics (MD), and kinetic Monte Carlo (KMC) methods can
be used to investigate the resistive switching of memristors
down to less than a picosecond, whilst KMC and compact
models cover long-time domains up to years.

The strategy of combining in situ characterization with device
modeling has shown a great potential in mechanism under-
standing and performance optimization of memristors. For
instance, Li et al. have used in situ holography to characterize the
evolution of oxygen vacancies distribution in a HfO2-based
memristor under electrical biases24. The dynamics of the oxygen
vacancies were also modeled by KMC simulation, revealing that
the rupture of conduction filaments occurred in the region near
the top electrode. Using scalpel scanning probe microscopy
(SPM), Celano et al. differentiated the oxygen exchange layer
(OEL) from the conduction filament in Hf/HfO2 and Ta/Ta2O5

systems with a nanometer lateral resolution39. First principles
(FP) calculation indicated that the diffusion of oxygen at the
OEL/oxide interface can induce variations in the density of states
near the Fermi level in the oxide. The minimum thickness of the
OEL/oxide interface has to be ~3 nm to achieve the optimized
performance. For a Ag/ZrO2 system, Liu et al. discovered that an
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electric field increased the nucleation of nanocrystals in the ZrO2

layer, providing controllable locations and directions for the
growth of Ag conduction filaments. The driving force distribution
has been simulated by the finite element (FE) methods40. These
examples showcase that in situ observation techniques provide
valuable information on the dominant dynamic factors deter-
mining the morphological or compositional changes upon resis-
tive switching, based on which the equations governing the ion
migration can be further developed. The developed models can in
return guide the understanding of the existing experimental
results and the design of new experiments.

Memristive switching studied by in situ techniques
From a microscopic view, the in situ characterization of switching
dynamics can be divided into four different physical stages
(Fig. 3a). In stage I, the initial step is the generation of mobile ions
in the switching layer or at the switching layer/electrode interface,
followed by the drift of ions under an electric field. The redox
reactions in memristors are essentially electrochemical reactions,
which are closely related to the interfaces and moisture con-
centration in the ambient atmosphere41. Although diffusion
coefficients have been determined by experimental methods41,
this dynamic process, from the redox reactions to the nucleation
of mobile atoms in the switching layer, has not been directly
characterized using existing in situ techniques, partially because
of the high temporal resolution required. During stage II, after the
aggregation of mobile ions develops into nanoparticles for cation
devices or the concentration of oxygen ions reaches a detectable
level for anion devices, in situ TEM is the most suitable technique
for visualizing the dynamic evolution of morphology at nanoscale
and the moving paths of the nanoparticles. Once the formation of
conduction region (filamentary or non-filamentary) is completed,
the memristor is switched from the high resistance state (HRS) to
the low resistance state (LRS) in stage III. The morphological
evolution of the ion migration region and the resistive switching
of the device can be characterized simultaneously by most of
in situ techniques. The correlation between the morphology
change and the electric behavior provides clues to parameter
variability of memristors. During stage IV, the memristor is
switched back and forth between the HRS and LRS by applying
switching voltages. To characterize this repetitive cycling, in situ
scanning tunneling microscopy (STM) and in situ conductive

atomic force microscopy (CAFM) can be employed to monitor
local morphological changes in the conduction channel and the
resistive switching of the device30,42. Therefore, in situ STM and
in situ CAFM are key techniques for studying device failure
during cycling endurance.

Different device structures have been in situ characterized,
including vertical, lateral, or tip-based structures. The vertical
structure is a thin slice of the stacked device (Fig. 3b)43 or a stack
of a three-layer device on a supporting membrane12. Such vertical
structure more closely represents the actual devices in applica-
tions44. With the lateral structure (Fig. 3c)45, the memristive
device is usually fabricated directly on a specialized chip designed
for in situ characterization. Since the gap between the two elec-
trodes is wider than the vertical structure, the dynamics of ion
migration can be easily observed. The tip-based structure utilizes
a metallic tip on the instrument as the opposite electrode to form
a memristive device with the oxide layer and metal substrate
(Fig. 3d)46. In this structure, ion migrations happen around the
tip electrode, which is easier for device preparation and provides a
better control for the resistive switching during dynamic
observations.

Currently, several in situ techniques have been employed
individually to study the switching mechanisms of memristive
switching. Table 2 lists the details of their operational features. In
situ TEM plays an important role in elucidating the underlying
microscopic mechanisms of switching dynamics due to its
unprecedented spatial resolution47,48. For the cation devices, the
formation of a conductive bridge composed of Ag nanoparticles
under an applied bias was observed by high-resolution bright-
field imaging, under the driving force of electric field and Joule
heating (Fig. 4a)9. The dynamic relaxation process of the con-
duction filament was recorded after the removal of biasing.
Furthermore, the combined application of in situ TEM and atom
probe tomography (APT) has revealed the elemental distribution
of conduction filaments in Ag/TiO2/Pt devices in three-
dimensional space13. The results showed that the conduction
filament was Ag-doped TiO2, which means that the switching
dynamic was accompanied by doping/de-doping with mobile ions
rather than the connection/disconnection of the entirely metallic
conduction filament. For anion devices, the evolution of oxygen
ions in a single crystal during resistive switching was identified by
the combination of TEM and electron energy loss spectroscopy
(EELS)49. It was found that the change in the overall oxygen

Table 2 Features of various in situ techniques for investigating the switching mechanism

In situ technique Spatial scale Temporal scale Sample type Information

In situ TEM100 Å ~ μm μs ~ hours Vertical structure
Lateral structure
Tip-based structure

Filament morphology
Chemical distribution
Electronic structure
IV measurement

In situ STXM26,51 nm ~ μm ms ~ hours Vertical structure Elemental distribution
Chemical state
IV measurement

In situ EBIC52 10 nm ~ 10 μm ms ~mins Vertical structure
Lateral structure

Distribution of electric field
IV measurement

In situ STM30 nm ~ 100 nm 100ms ~ days Tip-based structure Local electron density
IV measurement
Cycling

In situ CAFM42 10 nm ~ 10 μm, 100ms ~ days Tip-based structure Electrochemical reactions
IV measurement
Cycling

In situ cyclic voltammetry57,58 Å ~ 100 nm 10ms ~ days Vertical structure Electrochemical kinetics
Diffusion activity

In situ optical microscopy56 100 nm ~ 10 μm s ~ hours Lateral structure Filament morphology
Electrochemical reactions
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vacancy concentration within the device is associated with the
electrocatalytic release and reincorporation of oxygen at the
electrode/oxide interface. Although it is challenging to char-
acterize the oxygen ions/vacancies in amorphous materials, the
combination of in situ TEM and electro-holography provides a
workable solution24. The experimental results demonstrated that
the conduction filaments constituted by oxygen vacancies were
initiated in the bulk of the HfO2 layer and ruptured at the
interface of the HfO2/TiN top electrode24.

Besides the significant findings via in situ TEM, switching
mechanisms were also partially elucidated via other in situ
techniques. In situ scanning transmission X-ray microscopy
(STXM) enables nondestructive studies of a vertical specimen to
reveal chemical composition distribution50. The formation of
conduction filaments in Pt/HfO2/Hf/Pt devices was captured
under biasing, finding a ring-like feature in Fig. 4b51. The local
distribution of an electronic structure in TiO2-based memristors
was measured with in situ electron beam-induced current (EBIC),
as shown in Fig. 4c, providing a clear image of the underlying
switching region, and reveals propagating polarization domains
of symmetrical device structures52. Electron transport and elec-
trochemical reactions of HfO2-based memristors were investi-
gated with in situ CAFM. As shown in Fig. 4d, increasing the
applied voltage generated an oxygen-deficient region, and oxygen
vacancies accumulated in the location with higher applied bias,
leading to the formation of conduction filaments with diameters
of ~15 nm53. As shown in Fig. 4e, the highly conductive regions
in TaOx-based memristors were visualized by in situ STM30. The
measured corresponding I–V curve indicated that a purely
metallic or mixed metallic-semiconductor structure was formed
during resistive switching, suggesting that both cations and
anions participate in the switching process in oxide-based

memristors30. Valov et al. have developed an approach invol-
ving the STM technique to visualize the electrochemical forma-
tion and dissolution of Ag clusters54. Through further material
design, a single ion/atom transfer can be manipulated in an
atomic layer-by-layer manner, enabling a discrete control of the
electrical properties55. Combined with in situ TEM, in situ STM-
TEM system have been applied successfully to reveal the details of
the electrochemical dynamics in cation memristive devices,
including the migration and redox reactions of Cu+, and the
nucleation and growth of Cu protrusion. This finding convin-
cingly demonstrates that the chemical potential difference is a
key driving force for the oxidation of Cu, besides the external
electric field. The dynamics of the redox reaction for a lateral
graphene oxide device was visualized by in situ optical micro-
scopy (Fig. 4f)56, presenting effective information of filament
growth kinetics. Redox reaction at the interface of the active
electrode and the electrolyte was studied with in situ cyclic
voltammetry57,58. The activation barrier for the reduction (Ag+

to Ag, Ag2+ to Ag+) and oxidation (Ag to Ag+, Ag+ to Ag2+)
reactions experienced by Ag atoms/ions at the cathode and anode
can be measured (Fig. 4g)57, and a second-order oxidation of Ag
at the interface was observed.

In summary, most in situ characterization results have been
focusing on the formation of conduction filaments (stage III) and
the corresponding resistive switching, while the initial ion
migration (stage I), nanoparticle movement (stage II), and cycling
between LRS and HRS (stage IV) have been less often revealed
using in situ techniques. However, it has become more and more
clear that the parameter variability of memristive devices is clo-
sely related to the non-uniformity of the conduction path during
set process and the variation of the gap length after the rupture of
conduction path during reset process. Unfortunately, the
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corresponding details remain poorly understood to date, while
the factors determining cycling endurance haven’t yet been well
investigated either. Therefore, an immediate attention to the
switching mechanism in stages I, II, and IV via in situ studies is
urgently demanded.

Device modeling based on in situ characterizations
Device modeling and in situ techniques complement each other
to improve our understanding of resistive switching. According to
different application requirements, device modeling can be clas-
sified into physical modeling and compact modeling (Box 2). One
target of physical modeling is to reconstruct the ion migration
during the resistive switching process. For example, while in situ
techniques are capable of characterizing the morphology of

conduction filaments as shown in Fig. 1c, physical modeling can
be further used to shed light on the intermediate filament
growing/rupturing processes at high spatial and temporal reso-
lutions beyond those of experiments59–61. Modeling results can
also clarify the driving force by simulating the distribution of
electric field, temperature, and chemical potential in the active
layers61–63.

Several physical modeling techniques have been explored for this
purpose. First Principles (FP) (also called ab initio) calculations are
widely used to obtain the conduction property of a stable state and
the transition energy between different stable states63. As illustrated
in Fig. 5a, FP calculations were used to construct a supercell with tens
to hundreds of atoms. With this technique, there is no need to
introduce any model parameters. A typical task with the FP approach
is to calculate the activation barrier of ion migration. This calculation
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is very useful for evaluating whether a specific doping configuration
can help improve the uniformity or reliability of a memristor64. FP
calculations have also been used to investigate some simple dynamics,
such as single oxygen migration events, charging/decharging
events63,65, or resistance volatility66. However, existing FP approaches
still face the challenge of how to accurately model the polycrystalline,
amorphous, or complex stack structures in real memristive devices.
In addition, it is also challenging to simulate long-term and multi-
event dynamic processes owing to its complex computation
procedure.

Dynamic simulation techniques, such as MD67 (Fig. 5b) and
KMC59 (Fig. 5c), are powerful tools for studying the ion migration
process in memristor and related variabilities. A reactive MD with the
charge equilibration method was proposed to investigate the for-
mation of metastable atom-chain and stable filaments in the cation
memristor67. KMC is essentially a stochastic and event-driven
method. It does not need to perform calculations for every time
period; instead, it counts only the duration between two events. Thus,
it is easy to cover a broad time scale ranging from resistive switching
over nanoseconds to long-term retention over years59,68. To model
the ion distribution accurately, the KMC method is applied in
combination with the finite element (FE) method (Fig. 5d). Whilst,
the FE method is sometimes used separately to simulate the resistive

switching without considering the parameter variability69. In this
case, only the concentration of oxygen vacancies is calculated, as
illustrated in Fig. 5d, thus simplifying the simulation. The dis-
advantage of the KMC and FE methods is that they require many
model parameters and assumptions.

Another goal of physical modeling is to connect the micro-
scopic ion distribution with the macroscopic electrical perfor-
mance. In some cases, the electron transport mechanisms of
memristors can directly fit in the macroscopic model (Table 1).
However, with complex structural and material components,
memristors may exhibit unique I–V curves that cannot be fit well
with existing models. In this case, the modeling of I–V char-
acteristics should start from the microscopic mechanism corre-
lated with a specific distribution of ions. A simplified way to
model I–V characteristics is to use a resistor network. The
resistors can vary according to the corresponding oxygen vacancy
distribution62. A more general way is to solve the Poisson
equation and current continuity equation.

Figure 5e summarizes a more complete flow to model and
simulate resistive switching processes based on the approaches
reported previously59–63. First, decisions should be made on which
physical mechanisms are taken into account and how to quantify
these physics processes with appropriate equations. Typically, most

Box 2 | Classification of memristive device models

Based on different application requirements, device modeling of memristor can be classified into different levels. Physical modeling starts from
microscopic physical processes of resistive switching, using numerical simulation approach to accurately reproduce to device behaviors59,60. Physical
modeling aims to clarify switching mechanisms in complementary with experimental characterizations and provide guidelines for device performance
optimization61. Compact modeling introduces some empirical assumption without concerning the underlying physics. Compared to physical modeling,
compact modeling provides the possibility of rapidly reproducing the phenomenological electrical behavior of memristors with a low computation cost.
Some compact models are established by mathematically fitting the measured electrical behaviors of memristors85,86, which are also called behavioral
models. The behavioral models are highly simplified and easy to extend to different types of memristors; however, they cannot capture the variabilities
in a real circuit. For example, in a crossbar array, the voltage drop on each memristor cell is different because of the interconnected resistance70,87,
therefore, the resistive switching behaviors are different for each cell, which is almost impossible to be captured by the behavioral model. Therefore, the
behavioral models are mainly suitable for system-level simulations, such as the benchmarking of a memristor-based neuromorphic network71. On the
other hand, a physics-based compact model is more useful for circuit-level simulation. Most physics-based compact models of memristors are derived
using the FE method by quantifying the morphological or compositional changes with simplified physical equations88,89. The simulation program with
integrated circuit emphasis (SPICE) model is a special type of compact model. It should be analytical so that it can be easily embedded into the
commercialized technology computer-aided design tools. A good SPICE model for a real memristive device should include the parasitic circuit elements,
so that it can be accurate for the simulation of a complex mixed memristor/CMOS circuit87,90. A physics-based model can help to understand the
device mechanism while a purely behavior model does not.
Schematic for the device modeling of memristors: a Physical modeling. b Memristive device design with a physical model. c Compact modeling.
d Crossbar array simulation using a compact model. e SPICE modeling. f Memristor/CMOS mixed circuit simulation using a SPICE model. Reproduced
from ref. 91, Nature Publishing Group (b); ref. 72, IEEE (c); ref. 87, IEEE (e).
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models start from ion migration or oxygen vacancy generation based
on the defect theory. The parameters should be input based on the
experimental extraction or FP calculations, and the boundary con-
ditions should be fixed. Subsequently, the distributions of various
driving forces are calculated, and a dynamic method is used to
describe the ion migration. With an updated ion distribution, the
dynamic switching processes including microscopic morphology
evolutions and macroscopic electrical characteristics are finally
simulated.

Compact modeling also plays a crucial role for memristor research,
especially in circuit analysis. Unlike CMOS transistors, the compact
model of memristors should not only focus on the basic electrical
characteristics but also capture the parameter variability and cycling
endurance degradation characteristics. Typically, to construct a
compact model of memristor, the basic model framework is firstly
developed using a simplified physical image and analytical equations.
Then, the degradation parameters and randomness parameters are
introduced in the framework to describe the cycling endurance and
parameter variability characteristics70–72. After that, the model
parameters are extracted based on the statistical measurements from
amount of memristive devices and repetitive cycling tests. Finally, a
SPICE model (simulation program with integrated circuit emphasis
model) can be constructed by further extracted the parameters of
parasitic circuit elements. To ensure the accuracy of circuit simula-
tion, the compact model of memristors also calls for a complete
picture of switching mechanism, since most of the compact models
are physics-based.

Outlook and perspectives
Despite recent progress in the in situ characterization and device
modeling of resistive switching, there are still many aspects not
fully understood yet. The currently available data from in situ
measurements has only uncovered a small portion of the entire
picture of memristive switching, which in turn limits the

application of device models to further understand it. This
situation thus calls for in situ characterizations of memristors at
high resolution in three dimensions (3D) and physical modeling
with high degree of accuracy capable of providing practical
guidelines for device optimization in the future. To this end, here
we propose several research directions that are crucial to tackle
the challenges.

First, we need to continuously improve the observation reso-
lution in order to monitor the dynamics of ion migration in a
region of atomic distances and sub-ns intervals. Currently the
biggest obstacle to increase spatial resolution is the mobility of
anions migrating through amorphous oxide layers, making it
extremely challenging to identify their positions. One possible
solution is the use of isotope elements to trace the movement of
ions73. The switching dynamics occurring in a short time range of
nanoseconds to milliseconds can be investigated via ultrafast
transmission electron microscopy (UTEM)74. Another plausible
approach is to reduce the speed of resistive switching using low
temperatures and to characterize the dynamic evolution using
cryo-TEM techniques53.

Secondly, the characterization of switching dynamics needs to
be conducted at higher dimensions. The 3D characterization of
conduction filaments is expected to provide a complete repre-
sentation of their morphology13,42. A 4D evolutionary repre-
sentation that demonstrates the 3D switching dynamics over time
can provide more direct information for understanding the
switching mechanisms. In situ techniques that can be applied in
this aspect include electron tomography75, 3D STEM tomo-
graphy76, and 4D UEM74. Studying the influence of environ-
mental conditions, such as different ambient atmosphere and
thermal field, can not only provide additional evidence of
switching mechanism, but also help to evaluate the potential of
memristors for some special applications, like automotive elec-
tronics. Environmental TEM77 is capable of providing a
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simulated environment with a controlled humidity, gas compo-
sition, liquid mixture, and temperature.

Finally, we should continuously use device modeling to further
understand the switching mechanism, especially beyond the
resolutions of the characterization techniques, and thus possibly
use the insights obtained from modeling to guide device opti-
mization and design. With the help of predictive models, we
could be able to understand how to best combine materials or
design device architecture to improve device uniformity and
reliability. We can also use the modeling to investigate the the-
oretical limit of the minimal cycle-to-cycle and device-to-device
variation in addition to the maximum cycling endurance, based
on which we decide on how to cope with this non-ideal perfor-
mance at a circuit level. The accuracy of memristor models needs
to be continuously improved. It is essential to develop realistic
physical models for the amorphous and polycrystalline states of
active materials to accurately reproduce that in testing devices.
The combination of percolation theory and Monte Carlo simu-
lation provides a possible solution to model the ion migration and
electron transport in an amorphous system. To capture the
variability and endurance degradation over trillions of switching
cycles, it is recommended to utilize machine learning in the
simulation of memristors78,79. After training a neural network
with the pre-calculated electrical data in a few switching cycles via
device modeling, a neural network can fast predict the data
during the following cycles, no need to repeat the time-cost
atomic-scale simulation.

In view of all of above-mentioned opportunities, it is our
hope that large parameter variability and poor cycling endur-
ance issues that we are currently encountering in memristor
research can be eventually solved based on a comprehensive
understanding of the resistive switching mechanism. To
this end, one possible approach is to design material stacks
with predictable ion migrating paths by confining the forma-
tion/rupture of conduction filaments to local regions using
nano-fabrication technologies, such as deliberated doping,
multilayer and side-wall protected structure, capping layer
modulation, etc.

In conclusion, we have reviewed the current research status of
the switching mechanism of memristors, outlined a synergistic
strategy of combining in situ techniques and device modeling to
uncover the detailed switching mechanism and examined its
potential. We advocate immediate action to further investigate
memristive switching dynamics at higher resolutions and higher
dimensions in experiments, and a larger degree of accuracy in
modeling. Continued research efforts are required to solve the
practical issues associated with parameter variability and cycling
endurance of memristive devices before they could be possibly
transferred to commercialization for future memory and com-
puting technologies.
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