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Background: Motivated by the setting of clinical trials in low back pain, this

work investigated statistical methods to identify patient subgroups for which

there is a large treatment effect (treatment by subgroup interaction). Statistical

tests for interaction are often underpowered. Individual patient data (IPD)

meta‐analyses provide a framework with improved statistical power to investi-

gate subgroups. However, conventional approaches to subgroup analyses

applied in both a single trial setting and an IPD setting have a number of issues,

one of them being that factors used to define subgroups are investigated one at

a time. As individuals have multiple characteristics that may be related to

response to treatment, alternative exploratory statistical methods are required.

Methods: Tree‐based methods are a promising alternative that systematically

searches the covariate space to identify subgroups defined by multiple charac-

teristics. A tree method in particular, SIDES, is described and extended for

application in an IPD meta‐analyses setting by incorporating fixed‐effects and

random‐effects models to account for between‐trial variation. The performance

of the proposed extension was assessed using simulation studies. The proposed

method was then applied to an IPD low back pain dataset.

Results: The simulation studies found that the extended IPD‐SIDES method

performed well in detecting subgroups especially in the presence of large

between‐trial variation. The IPD‐SIDES method identified subgroups with

enhanced treatment effect when applied to the low back pain data.

Conclusions: This work proposes an exploratory statistical approach for sub-

group analyses applicable in any research discipline where subgroup analyses

in an IPD meta‐analysis setting are of interest.
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1 | INTRODUCTION

Randomised controlled trials typically evaluate the performance of an intervention with the aim of answering a primary
hypothesis, or research question, on the effect of treatment. Secondary subgroup analyses may subsequently be
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performed to identify subgroups that most, or least, benefit from treatment. For instance, in the area of drug develop-
ment, subgroup analyses of predictive biomarkers have gained much popularity in recent years and are considered an
important part of the drug development process. Identifying subgroups in this way can help inform decision making thus
improving individualized patient care by targeting treatment accordingly.

Statistical issues associated with subgroup analyses, in particular, lack of power and multiplicity are well known.1 It is
therefore important to adhere to recommendations and proposed subgroup analysis guidelines to ensure that analyses are
of a credible standard.2-7 However, conventional approaches to subgroup analyses have some limitations. First, the most
common statistical approach for performing subgroup analyses is to fit a regression model including a treatment‐covariate
interaction term that tests participant characteristics one at a time. However, in reality, trial participants have multiple char-
acteristics that also need to be investigated either simultaneously or in a systematic stepwise fashion. Secondly, it is recom-
mended that a clear distinction is made between confirmatory subgroup analyses and exploratory subgroup analyses.
Confirmatory analyses investigate a small number of well‐defined pre‐specified subgroups thus limiting multiplicity,
whereas exploratory analyses investigate a larger number of loosely defined subgroups. Part of defining subgroups in both
these analyses involves selecting cut‐points for continuous and categorical covariates that are to be pre‐specified and clearly
justified at the outset based on current clinical knowledge. However, limiting the number of subgroups explored and
selecting cut‐points solely based on clinical knowledge could result in important alternative subgroups defined by other
covariates and cut‐points going unnoticed. The aforementioned issues therefore clearly suggest that alternative and more
sophisticated exploratory statistical approaches are required to identify all potential subgroups. The potential subgroups,
provided they are clinically or biologically plausible, can then be tested using standard methodology before being accepted.

In general, there are a broad range of statistical methods that have been developed for conducting exploratory and
confirmatory subgroup analysis.8,9 In the field of data mining, a number of data‐driven approaches exist that offer a dif-
ferent approach for performing subgroup analyses. In particular, tree‐based methods are popular approaches used when
the aim is to identify subgroups with high and low outcome. Many of these methods are based on the classification and
regression tree (CART) methodology for identifying predictors of outcome in cohort studies proposed by Breiman et al.10

More recently, other advanced variants of the CART type approach, also referred to as subgroup discovery methods, have
been developed that specifically perform subgroup analyses in a single trial setting. Key methods include the following:
Virtual Twins, STIMA, QUINT, GUIDE, Interaction Trees, and SIDES.11-16 A recent tutorial nicely describes, compares,
and summarises the key features of these various methods.17 This paper will focus on one these methods; the Subgroup
Identification based on Different Effect Search (SIDES) method.16

One could power a trial for subgroup analyses; however, such a trial might be unfeasibly large. An alternative approach
would be to pool together and analyse individual patient data (IPD) from several similar trials. IPD meta‐analyses provide
an ideal framework with improved statistical power to investigate and identify subgroups.18 The SIDES method, however,
has only been developed and implemented in a single trial setting. It cannot be applied directly to an IPD meta‐analysis
setting as the method would ignore the trial level clustering inherent in the data. In an IPD setting with a hierarchical data
structure, tree methods that utilise fixed or mixed effects modelling are required. A number of tree‐based methods have
been proposed for data with a correlated structure,19-24 but these methods are only applicable in a longitudinal or repeated
measures settingwhere data are collected over time. Hajjem et al25 proposed amixed‐effects regression tree for hierarchical
or nested data; however, this approach identifies trees that best predict response rather than identify subgroups with dif-
ferential responses to treatment. It is more clinically useful to identifymeaningful subgroups than to predict response. This
paper therefore proposes an extension to the SIDESmethod, as a novel exploratory approach for subgroup identification in
an IPD meta‐analyses framework. The extended method will be referred to as the IPD‐SIDES method.

The structure of this paper is as follows. Section 2 describes the example thatmotivated the proposedmethodological exten-
sion in this paper. Section 3 begins with a general introduction to the concept of recursive partitioning and tree‐based meth-
odology followed by a description of the original SIDESmethod. Section 4will then detail the proposed extension of the SIDES
method (IPD‐SIDES) for application to IPD meta‐analyses data. Thereafter, the results of simulation studies are presented in
Section 5 to demonstrate how the proposedmethod performs in an IPDmeta‐analysis setting. Section 6 provides an example of
the proposed method applied to real clinical trial data. Finally, in Section 7, some concluding remarks will be provided.
2 | MOTIVATING EXAMPLE

The methodological development in this paper was motivated by the challenge of finding subgroups of patients who
most benefit from the available recommended therapist delivered interventions for non‐specific low back pain
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(NSLBP).26-29 This work was part of a project that collected a repository of IPD from 19 existing NSLBP trials testing sim-
ilar interventions to then go on to perform subgroup analyses. Because subgroup analyses in individual NSLBP trials are
generally underpowered and of a poor quality,30 a large repository of similar data was collected to provide improved sta-
tistical power to better undertake the task at hand.

The aim of the subgroup analyses using the proposed tree‐based method is to identify subgroups of patients with
the greatest treatment benefit in terms of their back‐related disability. If such subgroups do exist, then this will aid
decision making and matching treatments to those patients who present with NSLBP who are most likely to benefit.
Targeting treatment in this manner would mean increased effectiveness of the treatment when compared with the
average.

This paper will look at a pooled dataset consisting of data on 4540 individuals from 4 trials to illustrate how the
approach might work when applied to a real dataset. There were 3 demographic and baseline covariates that were
common across the 4 trials: age, gender, and baseline quality of life. The quality of life was measured using the
SF‐36 questionnaire which was also recorded at short‐term follow‐up for all 4 trials. The SF‐36 questionnaire mea-
sures health‐related quality of life and when scored comprises of 2 aggregated summary measures, namely, the men-
tal component score (MCS) and physical component score (PCS).31 The MCS and PCS scores range from 0 to 100
where a lower score represents poorer mental or physical functioning. The proposed methods will be applied to these
data later on where the change from baseline to short‐term SF‐36 MCS and SF‐36 PCS scores will be analysed as 2
separate dependent variables with age, gender, and the baseline value of the dependent variable used as the set of
baseline covariates.
3 | EXISTING METHODOLOGY

In general, the tree growing component of many tree methods relies on a technique referred to as recursive partitioning
which utilises a splitting criterion to form binary splits of the covariate space in order to grow a tree‐like structure. The
splitting criterion is essentially used to compute a score for any given split where either the largest score or smallest score
is indicative of a better split. It thus plays a key role in determining how a tree is grown. For example, a tree method that
searches for subgroups using the treatment‐covariate interaction effect as the splitting criterion would identify a split
with the largest score as the best split, whereas a method that uses the associated interaction effect P‐value as the split-
ting criterion would identify a split with the smallest P‐value as the best split. For a more detailed insight on recursive
partitioning, one can refer to a review provided by Zhang and Singer on recursive partitioning and its applications.32

The SIDES methods will now be described. For further detail, one can refer to the original SIDES paper.16
3.1 | SIDES method

1. Growing an initial tree

We first describe the algorithm for the SIDES procedure followed by a more detailed description of the splitting cri-
terion and the continuation criterion. The algorithm for growing the tree is as follows:

• Start at the root node consisting of the entire dataset
• Step 1 ‐ Evaluate the splitting criterion for all possible splits of every covariate, excluding any covariates already used

to define the parent node, retaining only the best split for each covariate. Order the covariates from smallest adjusted
P‐value to largest adjusted P‐value where the adjusted P‐values are computed using the Sidak‐based multiplicity
adjustment which adjusts for the number of splits searched for a given covariate (see below).

• Step 2 ‐ Select the best M covariates from the ordered best splits. The value of M is specified by the user where the
recommended value is 5. For each of theM splits, form the split creating 2 child nodes and retain the child node with
the larger positive treatment effect, provided it satisfies the continuation criterion. The retained nodes now become
parent nodes for the next iteration.

• Step 3 – Repeat steps 1 and 2 for the newly formed parent nodes
• Step 4 – Repeat steps 1 to 3 until either a pre‐specified maximum number of levels (L) is reached or if no more splits

can be formed, ie, the continuation criterion is not satisfied. In both cases, the previously formed parent nodes
become terminal nodes.
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3.1.1 | Splitting criterion

The SIDES method uses a splitting criterion that tests the difference in the treatment effect precision between 2 child
nodes with the aim of identifying the subgroup or child node with the most significant treatment effect. The splitting
criterion is of the form

p ¼ 2· 1−Φ
ZE1−ZE2ffiffiffi

2
p

� �� �
(1)

where ZE1 and ZE2 are the 1‐sided test statistics for the treatment effect computed for the 2 subgroups, respectively, and

Φ
ZE1−ZE2ffiffiffi

2
p

� �
is the cumulative distribution function of the standard normal distribution.16 For covariates with more

than 2 potential cut‐points, the P‐value of each evaluated potential split is adjusted by applying a Sidak‐based multiplic-
ity adjustment to overcome a well‐known issue associated with tree‐based methods known as variable selection bias.33-35

The multiplicity adjustment is of the form

1− 1−pið ÞG*

where pi is the unadjusted P‐value for the i‐th split obtained using1 and G* is the effective number of splits computed

byG* ¼ G1−r where G is the total number of splits that a particular covariate has and r is the average correlation of all the
unadjusted P‐values for all splits of that covariate.16
3.1.2 | Continuation criterion

The SIDES method controls the tree complexity by using a continuation criterion as part of the tree growing algorithm.
In step 2 of the SIDES algorithm, a child node with a large positive treatment effect is retained only if it satisfies the con-
tinuation criterion. The continuation criterion is given by

pc≤γ·pp

where pc is the treatment effect P‐value of the child node, pp is the treatment effect P‐value of the parent node, and γ
is the relative improvement parameter that controls the complexity of the tree. Prior to running the method, the user
must specify the maximum number of covariates or levels L that defines a subgroup, where the recommended value
is 3. This means that any identified subgroups will at most be defined by L covariates; hence, the tree will have at most
L levels where L = 0 is the starting level, ie, the entire dataset. Each level of the tree has a relative improvement param-
eter value that ranges from 0 to 1 where a smaller value makes the procedure more selective. The values for each level
can be either user specified or optimally selected using a cross‐validation procedure as described by the authors.16 Hence,
once the relative improvement parameter values are in place, a child node is only retained provided its treatment effect
P‐value is less than or equal to the right hand side of the continuation criterion.

• Selecting the final candidate subgroups

The first step of the SIDES procedure grows the tree and produces a list of candidate subgroups. Many of these sub-
groups may be spurious findings or an artefact of the dataset and thus need to be removed. To control for this and assess
reproducibility of subgroups, the authors propose a resampling‐based procedure that is applied only once at the end after
the whole tree has been grown. The resampling procedure computes an adjusted treatment effect P‐value for each of the
identified candidate subgroups to control the overall type I error in the weak sense.16 This procedure fixes the covariate
columns and randomly scrambles the rows of the outcome and treatment variables together in order to maintain the
treatment effect and correlation structure. The SIDES procedure is then applied to this resampled dataset, and the P‐
value of the best subgroup is recorded. This resampling procedure is repeated many times, eg, 1000 times, to form a dis-
tribution of P‐values. Adjusted P‐values are then computed by calculating the proportion of P‐values in the distribution
obtained using the resampling procedure that are less than the observed candidate subgroup P‐value. Comparing the
unadjusted P‐value to the adjusted P‐value gives a good indication as to whether the identified subgroups are spurious
or not.
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4 | EXTENSION OF THE SIDES METHOD TO AN IPD META ‐ANALYSIS
SETTING (IPD ‐SIDES)

4.1 | A proposed new splitting criterion

The objective of the SIDES method splitting criterion is different to what we require the method to do. In particular, the
method seems to evaluate the difference in precision between 2 nodes when forming a split rather than directly evalu-
ating the differential effect, which is what we are interested in. This became more apparent when closely inspecting the
subgroups identified by the method when applied to real NSLBP data. Many of the selected subgroups had a positive
treatment effect that were rather similar to its disregarded counterpart subgroup. For example, one of the splits formed
2 nodes with a treatment effect of 3.4 (SE: 0.29, n = 3464) in 1 node and 3.5 (SE: 0.93, n = 381) in the second node. Com-
puting the test statistics in1 gives ZE1 = 11.5 and ZE2 = 3.8, which suggests there is a large differential effect between the 2
nodes despite the treatment effects being quite similar. The resultant SIDES splitting criterion was very small (P < 0.001)
indicating a difference that is highly significant. The same differential effect evaluated using a treatment‐covariate inter-
action term in a regression model suggested otherwise; with an estimated interaction effect of 0.1 (SE: 0.93, n = 3845,
P = 0.891), ie, a non‐significant difference. This therefore highlights the need for a new splitting criterion to be defined
in order to meet our objective, ie, directly assess the differential treatment effect. For this reason, we propose a new split-
ting criterion

P ¼ 2· 1−Φ Zintð Þ½ � (2)

where Zint is the 2‐sided hypothesis test statistic computed for the interaction effect estimate obtained using a linear
regression model.36 The proposed criterion computes a P‐value for the interaction effect where a smaller p‐value is indic-
ative of a larger interaction effect.

The second issue identified from preliminary work was that the SIDES method tended to detect spurious subgroups
when large or very large single 1‐way interaction effects were present.37 The proportion of spurious subgroups detected
increased as the sample size increased. This issue was investigated to try to identify the source of the problem. Due to the
sample sizes being large, the treatment effect estimates have small variability hence giving a highly significant 1‐sided
treatment effect approximated as being zero at level 1 of the tree for the selected subgroup. Consider the example in
Table 1 where the SIDES method was applied to a simulated dataset (N = 5000) where there is a standardized 1‐way
interaction of 1.5 (very large). At level 1, the correctly selected subgroup (X1 > 0) has a treatment effect of 0.81 (SE:
0.04, P = 0.00). The splitting criterion P‐values are then used to order the next best potential splits from best to worst,
ie, smallest P‐value to largest P‐value, regardless of whether the P‐value is significant or not. Hence, non‐significant dif-
ferential effects are considered by the method at level 2 of the tree. Again, referring to the example in Table 1, X2 > 0 was
considered as the next best split at level 2 with a non‐significant splitting criterion value (P = 0.425). As the sample size of
the selected subgroup is large at level 2, the method identifies the 1‐sided treatment effect as being highly significant
(P = 0.00). The continuation criterion in this situation is satisfied as the 1‐sided treatment effect P‐value approximation
of the selected subgroup at level 2 is equal to the P‐value of the selected subgroup at level 1. Hence, a spurious subgroup
is detected. A solution to control this issue was to introduce a significance threshold V in Step 1 of the algorithm. It is not
necessary that a strict threshold be imposed, eg, V ≤ 0.05, but a less stringent threshold, eg, V ≤ 0.20, would suffice to
ensure the method has some flexibility to detect plausible subgroups. The SIDES method that uses the proposed splitting
criterion as defined by Lagakos2 and that also uses the significance threshold V will be referred to as the modified SIDES
method.
TABLE 1 – Example of spurious subgroup detection using the SIDES method applied to simulated data (N = 5000) when there is a single

standardized 1‐way T × X1 interaction of 1.5 (very large)

Selected Subgroup Disregarded Subgroup

Level Subgroup n1 T1 SE (T1)
T1

P‐Value n2 T2 SE (T2)
T2

P‐Value
Differential
Effect

Splitting
Criterion
P‐Value

1 X1 > 0 2500 0.81 0.04 0.00 2500 −0.76 0.04 1.00 1.57 0.000

2 X1 > 0 and X2 > 0 1250 0.84 0.06 0.00 1250 0.77 0.06 0.00 0.07 0.425
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4.2 | Proposed extension to allow for IPD meta‐analysis

Because we now want to apply the modified SIDES method to IPD from different trials, we need to extend the method so
that it adjusts for the between‐trial variability. This requires us to estimate the interaction effect test statistic parameter in
the splitting criterion2 having accounted for the between‐trial variation. A natural extension of the modified SIDES
method is to estimate the splitting criterion by fitting a fixed trial effect in the regression model to give a model of the
form

Yij ¼ β0i þ β1Tij þ β2Xij þ β3Tij·Xij þ εij (3)

where β0i is the intercept term for the i‐th study, the ij subscript denotes the j‐th observation in the i‐th study, and εij is a
normally distributed error term with mean zero. Another option would be to fit a random effects model of the form

Yij ¼ β0i þ β1Tij þ β2Xij þ β3Tij·Xij þ εij (4)

β0i∼N β0; σ
2
β0

� �

where the study level covariate β0i is set as having a random effect with mean β0 and variance σ2β0 . We can thus define the

splitting criterion in the same way as shown in Equation 2, where the interaction effect parameter is estimated using
either a fixed‐effects model or a random‐effects model instead of a linear regression model. The extension of the modified
SIDES method applied to IPD will be referred to as the IPD‐SIDES method. The remaining components of the method,
ie, complexity control and final subgroup selection, remain the same.
5 | SIMULATION STUDIES

5.1 | Simulation study design

Simulation studies were conducted to assess the performance of the proposed IPD‐SIDES method compared with the
modified SIDES method in detecting subgroups with enhanced treatment effect when applied to data with a hierarchical
structure. The simulation studies considered both the fixed‐effect model3 and random effect model4 for estimating the
splitting criterion for the proposed IPD‐SIDES method. A simple linear regression model was used to simulate data
for a single trial. The model related a continuous dependent variable Y to a treatment indicator T, 5 dichotomous covar-
iates X1, X2,…X5 with normally distributed error ε with ε~N(0, 1). The overall mean for the single trial was randomly gen-
erated using a normal distribution with zero mean and variance τ2, ie, N(0, τ2), to incorporate between‐trial heterogeneity
where τ2 is to be specified. Several single trial data were simulated separately using this model and then pooled together
to form an IPD dataset. Each single trial dataset was simulated such that there was an equal proportion of observations
in each quadrant of the 2 × 2 table for the treatment‐covariate interaction. A full factorial design was used to investigate a
number of different simulated scenarios by varying 4 factors; the sample size of each trial in the combined IPD dataset,
the size of the interaction effect for T · X1, the size of the interaction effect for T · X2, and the between‐trial variance τ2.
There were 5 trials in each pooled dataset where each trial had a fixed sample size of either 200, 500, or 1000. The pro-
portion of individuals in each category of the treatment indicator and the covariates were assumed to be equal. For both
T · X1 and T · X2, we considered standardized interaction effect sizes of 0, 0.2 (small), 0.5 (medium), and 0.8 (large). The
values for τ2 were specified as being either 0.1 (small) or 0.9 (large) as these values are inside the range of the typical
between‐trial heterogeneity found in IPD meta‐analyses.38,39 These values equate to an intra‐cluster correlation coeffi-
cient (ICC) of approximately 0.08 and 0.42, respectively. Finally, the main effects and interaction effects for all other
covariates were set as zero. All permutations in the full‐factorial design were simulated 1000 times where each permu-
tation took approximately 5 hours to run when using a fixed‐effect model, and around 14 hours when using a random
effect model. Simulations were performed using R software (version 3.3.2).
5.2 | Parameter specifications

Application of the methods to the simulated data required certain parameters to be pre‐specified. A stopping criterion
was put in place such that the minimum number of individuals in any node was 10% of the total sample. The maximum
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number of levels was set to 2 (L = 2) as there are only 2 covariates, ie, any identified subgroups can only be defined by a
maximum of 2 covariates. Moreover, the best 2 splits (M = 2) were considered for each node where the significance
threshold was set as V = 0.10. The relative improvement parameters for the continuation criterion were selected using
5‐fold cross validation where all permutations of the values from 0 to 1 at the first level and 0.2 to 1 at the second level
were searched to find the optimum relative improvement parameter sequence. The final subgroups were selected using
the re‐sampling based procedure, drawing 1000 samples each time.
5.3 | Simulation results

The results of the IPD‐SIDES method when using a fixed‐effect model and random effect model were very similar.
Hence, only the results from the fixed‐effect model simulation studies will be presented. The results of the random effect
model simulation studies can be found elsewhere37 or made available upon request.
5.4 | Modified SIDES and IPD‐SIDES results

The modified SIDES and IPD‐SIDES simulation results for the pooled sample sizes N = 1000, N = 2500, and N = 5000 are
presented in Tables 2, 3, and 4, respectively. The performance of both the modified SIDES and IPD‐SIDES methods were
found to be quite similar and within the range of variability due to simulation error in the presence of small between‐
trial variation (τ2 = 0.1). In the scenario when no interactions are present, both methods correctly detect no subgroups
with enhanced treatment effect more than 91% of the time. When a single 1‐way interaction is present, ie, there is a sub-
group with enhanced treatment effect, both methods detect the correct subgroup around 77% of the time when a
medium sized interaction is present in a sample size of 1000. The methods detect the majority of medium sized 1‐way
interactions when the sample size is ≥2500, and they detect the majority of large 1‐way interactions for all sample sizes
≥1000. When two 1‐way interactions are present, ie, 2 subgroups with enhanced treatment effect, the methods detect the
correct subgroup the majority of the time when both interactions are either medium, large, or a combination of the 2 for
all sample sizes ≥1000. Furthermore, the methods perform fairly well in detecting the correct subgroups when the sam-
ple size is 5000 and when one of the 1‐way interactions is small and the second 1‐way interaction is either medium or
large.

When there is large between‐trial variation (τ2 = 0.9), both methods perform very well when there are no interactions
present; however, the modified SIDES method performs slightly better in this scenario. In general, the IPD‐SIDES
method clearly outperforms the modified SIDES method in the presence of large between‐trial variation. Just to give
an example, when 2 medium sized 1‐way interactions are present with a sample size of 1000, the modified method
detects the correct subgroups 51.2% of the time whereas the IPD‐SIDES method detects the correct subgroups 84.8%
of the time. The IPD‐SIDES method performs very well when there are two 1‐way interactions that are either medium
or large in size for all sample sizes ≥1000. Moreover, the IPD‐SIDES approach also performs well when one of the two 1‐
way interactions is small and the second 1‐way interactions is either medium or large for a sample size of 5000.
TABLE 2 – Simulation results for modified SIDES and IPD‐SIDES when there is small (τ2 = 0.1) and large (τ2 = 0.9) between‐study vari-

ation and N = 1000. Results display % of correctly identified final trees

T × X2 Standardized Interaction
Effect Size (τ2 = 0.1)

T × X2 Standardized Interaction
Effect Size (τ2 = 0.9)

T × X1 Standardized
Interaction Effect Size

None =
0

Small =
0.2

Medium =
0.5

Large =
0.8

None =
0

Small =
0.2

Medium =
0.5

Large =
0.8

None = 0 Modified SIDES 91.7 16.0 78.6 88.00 97.0 6.7 66.7 96.9

IPD‐SIDES 91.0 15.5 76.5 92.1 90.3 17.9 78.9 93.1

Small = 0.2 Modified SIDES 16.3 5.7 26.8 18.9 8.3 1.8 9.8 8.7

IPD‐SIDES 19.1 7.0 32.8 22.3 14.4 14.4 20.9 21.8

Medium = 0.5 Modified SIDES 77.6 23.9 74.3 82.2 70.1 9.0 51.2 67.0

IPD‐SIDES 65.9 23.4 74.6 89.8 77.1 23.0 84.8 91.6

Large = 0.8 Modified SIDES 94.1 30.4 90.1 100 97.5 16.1 76.9 97.1

IPD‐SIDES 92.4 22.5 92.8 100 92.1 22.1 81.6 100



TABLE 3 – Simulation results for modified SIDES and IPD‐SIDES when there is small (τ2 = 0.1) and large (τ2 = 0.9) between‐study vari-

ation and N = 2500. Results display % of correctly identified final trees

T × X2 Standardized Interaction
Effect Size (τ2 = 0.1)

T ×X2 Standardized Interaction
Effect Size (τ2 = 0.9)

T × X1 Standardized
Interaction Effect Size

None =
0

Small =
0.2

Medium =
0.5

Large =
0.8

None =
0

Small =
0.2

Medium =
0.5

Large =
0.8

None = 0 Modified SIDES 92.5 39.4 90.3 94.0 97.3 23.7 95.4 97.4

IPD‐SIDES 91.2 38.5 91.7 93.5 90.9 37.7 91.0 92.5

Small = 0.2 Modified SIDES 36.4 21.7 42.5 42.8 23.0 10.0 25.3 23.6

IPD‐SIDES 38.3 31.3 45.8 43.3 38.1 25.1 44.5 41.6

Medium = 0.5 Modified SIDES 92.6 47.8 99.6 99.1 93.8 23.1 97.3 99.3

IPD‐SIDES 91.7 43.3 99.9 99.7 93.0 44.1 92.5 99.5

Large = 0.8 Modified SIDES 93.9 41.4 99.9 100 98.1 24.0 98.5 100

IPD‐SIDES 93.7 43.4 99.8 100 92.7 44.5 99.9 100

TABLE 4 – Simulation results for modified SIDES and IPD‐SIDES when there is small (τ2 = 0.1) and large (τ2 = 0.9) between‐study vari-

ation and N = 5000. Results display % of correctly identified final trees

T × X2 Standardized Interaction
Effect Size (τ2 = 0.1)

T × X2 Standardized Interaction
Effect Size (τ2 = 0.9)

T × X1 Standardized
Interaction Effect Size

None =
0

Small =
0.2

Medium =
0.5

Large =
0.8

None =
0

Small =
0.2

Medium =
0.5

Large =
0.8

None = 0 Modified SIDES 93.0 60.8 94.3 88.5 97.6 56.4 98.3 97.1

IPD‐SIDES 91.4 62.0 93.2 83.6 90.5 70.2 93.0 83.9

Small = 0.2 Modified SIDES 69.7 71.3 74.3 76.0 53.9 40.4 64.1 56.3

IPD‐SIDES 69.9 63.5 75.1 79.1 61.1 63.4 78.6 81.7

Medium = 0.5 Modified SIDES 93.8 74.5 100 100 98.1 54.4 100 100

IPD‐SIDES 91.5 76.0 100 100 93.5 77.3 99.7 100

Large = 0.8 Modified SIDES 88.9 76.9 100 100 97.4 60.2 100 100

IPD‐SIDES 85.5 81.9 100 100 83.9 80.2 100 100
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6 | APPLICATION TO BACK PAIN DATASET

The IPD‐SIDES method was applied to the pooled acupuncture dataset described earlier with the aim of identifying sub-
groups with enhanced treatment effect that most benefit from acupuncture treatment for NSLBP. The splitting criterion
was estimated using the fixed‐effects model and then adjusted using the Sidak‐based multiplicity adjustment to control
for selection bias due to the inclusion of continuous covariates. The parameters had to be specified prior to applying the
method. The minimum node size at any given time was set to 30. The maximum number of levels was set as being 4
(L = 4), the number of best splits considered for each node was set as 3 (M = 3), and the significance threshold was
set to V = 0.10. The optimum relative improvement parameter values for each of the levels were determined using a grid
search. The final subgroups were selected using the re‐sampling procedure (1000 samples drawn).
6.1 | IPD‐SIDES results

The results of the IPD‐SIDESmethod are presented in Table 5. Three subgroups with enhanced treatment effect were iden-
tified for the change from baseline to short‐term PCS outcome where the overall treatment effect was 3.75 (95% CI: 3.20,
4.30). Those with baseline MCS > 51.4 have a mean treatment benefit of 4.34 (95% CI: 3.43, 5.25), those with MCS > 51.4
and PCS ≤35.9 have an average treatment benefit of 5.44 (95% CI: 4.24, 6.63), and finally those participants with Age ≤ 43
have an average treatment benefit of 4.93 (95% CI: 3.90, 5.96). Hence, younger people or those with better mental



TABLE 5 – Subgroups identified by the IPD‐SIDES method when applied to the pooled acupuncture dataset

Subgroupsa n
Treatment Effect (95%
Confidence Interval, CI)

Interaction
Effect

Unadjusted
P‐Value

Outcome: Short‐term PCS

Overall treatment effect (95% CI): 3.75 (3.20, 4.30)

Candidate 1

MCS > 51.4 1531 4.34 (3.43, 5.25) 0.94 0.086

MCS ≤ 51.4 2314 3.40 (2.72, 4.09)

Candidate 2

MCS > 51.4 and PCS ≤ 35.9 919 5.44 (4.24, 6.63) 2.38 0.016

MCS > 51.4 and PCS > 35.9 612 3.05 (1.90, 4.21)

Candidate 3

Age ≤ 43 1170 4.93 (3.90, 5.96) 1.69 0.005

Age > 43 2675 3.24 (2.59, 3.88)

Outcome: Short‐term MCS

Overall treatment effect (95% CI): 2.50 (1.83, 3.17)

Candidate 1

MCS ≤ 54.5 2701 3.29 (2.47, 4.10) 2.65 0.001

MCS > 54.5 1144 0.64 (−0.21, 1.48)

aThe first row of each candidate subgroup is the selected subgroup with enhanced treatment effect. The second row is the disregarded subgroup.
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functioning and worse physical functioning at baseline have better treatment benefit when the outcome is the change in
physical functioning. One subgroup with enhanced treatment effect was identified for the change from baseline to short‐
termMCS outcomewhere the overall treatment effect was 2.50 (95% CI: 1.83, 3.17). Those with baselineMCS≤ 54.5 have a
greater average treatment benefit of 3.29 (95%CI: 2.47, 4.10). In other words, those with poorer mental functioning at base-
line have greater treatment benefit when the outcome measure is the change in mental functioning.
7 | DISCUSSION

This paper proposes the IPD‐SIDES method as a modified exploratory statistical approach for identifying subgroups in an
IPD meta‐analyses framework. The proposed method differs from the typical statistical interaction test approach to sub-
group analyses in both a single trial and an IPD meta‐analyses setting, thus overcoming some of the key concerns asso-
ciated with the conventional approach. Although the development of this method was motivated by a research priority in
the area of NSLBP, its application is not limited to this field. The proposed method can be applied as an exploratory tool
in any other research discipline where subgroup identification in an IPD meta‐analysis setting is of interest. The IPD‐
SIDES method is not an improvement or replacement for the standard non‐exploratory approach, but is considered
an additional exploratory approach for identifying potential subgroups to be used alongside standard methods. We rec-
ommend that any potential subgroups identified by the method be assessed to see if they are clinically or biologically
plausible before testing them using standard methodology in further studies.

An IPD framework provides much improved statistical power and is thus ideal for subgroup analyses. The simulation
studies demonstrated that the proposed method performs well in detecting subgroups in a number of scenarios, espe-
cially when there is large between‐trial variation. The proposed IPD‐SIDES method was also compared elsewhere using
simulation studies to the extension of another relevant tree‐based method called the Interaction Tree (IT)15 where it was
observed that the IPD‐SIDES method was the more powerful method out the two.37 A limitation of the proposed method
however is that there is a possibility for the interaction tests being ecologically biased, which means that the observed
across‐study relationship estimated using a 1‐stage approach may not be a true reflection of the individual level
within‐study relationships.40 We did not explore this possibility when developing this method; however, it is something
we aim to assess as further work.
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For many years, a well‐known limitation of tree‐based methods is the issue of variable selection bias, meaning that
the algorithm has a greater probability of selecting a covariate with a larger number of levels.33,34 It is thus important for
any tree method to ensure this bias is minimised. A number of approaches have been proposed that reduce this form of
bias.14,35 For example the GUIDE method uses a 2‐stage approach for variable selection.14 The first stage uses a chi‐
squared test for association between each covariate and outcome which ensures each covariate has the same chance
of being selected under the null (ie, if having no predictive value). The variable with the most association (ie, smallest
P‐value) is selected. The second stage then searches the selected variable for the optimal split. The proposed IPD‐SIDES
method also reduces selection bias by utilising a Sidak‐based multiplicity adjustment. This basically adjusts the splitting
criteria P‐value for covariates with many levels based on the number of levels it has, thus reducing selection bias.16 For
any continuous covariate, the method requires the selection of a cut‐point as seen in the applied example. The objective
of the method is to identify subgroups rather than to find optimal cut‐points. The selection of the cut‐point simply aids
the subgroup search process. It may well be that the selection of the cut‐point may be an artefact of the dataset, ie, it may
not be reproducible and could possibly be spurious. However, the final step of the method implements a resampling‐
based procedure to assess reproducibility and remove any identified candidate subgroups that may be a spurious finding.
Alternatively, cut‐off values can be proposed by the clinician's priori to applying the method. Just to reiterate that if the
method identifies potential subgroups, the next step would be to assess how clinically meaningful the subgroups and cut‐
points are before testing the subgroups in further studies.

The results of the simulation studies when using fixed‐effects and mixed‐effects models to estimate the splitting cri-
terion were quite similar. From a computational standpoint, application of the method when using a fixed‐effects model
was much quicker to run than when using a mixed‐effects model. Therefore, considering the extensive searching of splits
required by the method, it would be computationally more efficient when working with extremely large datasets to esti-
mate the splitting criterion using a fixed‐effects model; otherwise, the mixed‐effects model is preferred.

Like any meta‐analysis study, it is important to make sure that the trials included are of a high quality to ensure the
results and conclusions drawn are credible. Therefore, it is recommended that a risk of bias assessment is conducted for
all potential trials prior to inclusion in an IPD meta‐analyses. Furthermore, subgroup analysis in an IPD meta‐analysis
setting is only worthwhile if there is a commonality of covariates across studies. Thus, the trials considered for inclusion
must also be checked at the covariate level to ensure that there are a reasonable number of covariates common to all the
trials that can be explored for subgroups.

It has been demonstrated that the tree methods perform well when the outcome data are not normal. To give an
example, Su et al were able to show that the IT method performed well in detecting interactions in a single trial setting
when there were deviations from normality.15 The simulation studies reported in this paper generated data assuming the
outcome to be normally distributed and assuming the proportion of observations in each quadrant of the treatment‐
covariate interaction to be balanced. Therefore, future work should investigate how the IPD‐SIDES method performs
when the data deviate from normality, when there are varying degrees of imbalance in the data when forming a split,
when different types of covariates are investigated, eg, ordinal or continuous covariates, and also when there are a vary-
ing total number of covariates. Furthermore, a significance threshold V was proposed and implemented into the IPD‐
SIDES algorithm to control for spurious subgroup detection when large or very large interactions are present. In this
work, we only considered a threshold of V = 0.10 which seemed to work well; however, further work should investigate
how much we can relax the significance threshold without affecting the performance of the method.
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