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ABSTRACT

During protein synthesis genetic instructions are
passed from DNA via mRNA to the ribosome to as-
semble a protein chain. Occasionally, stop codons
in the mRNA are bypassed and translation contin-
ues into the untranslated region (3′-UTR). This pro-
cess, called translational readthrough (TR), yields a
protein chain that becomes longer than would be
predicted from the DNA sequence alone. Protein se-
quences vary in propensity for translational errors,
which may yield evolutionary constraints by limiting
evolutionary paths. Here we investigated TR in Sac-
charomyces cerevisiae by analysing ribosome pro-
filing data. We clustered proteins as either prone or
non-prone to TR, and conducted comparative analy-
ses. We find that a relatively high frequency (5%) of
genes undergo TR, including ribosomal subunit pro-
teins. Our main finding is that proteins undergoing
TR are highly expressed and have a higher propor-
tion of intrinsically disordered C-termini. We suggest
that highly expressed proteins may compensate for
the deleterious effects of TR by having intrinsically
disordered C-termini, which may provide conforma-
tional flexibility but without distorting native func-
tion. Moreover, we discuss whether minimizing dele-
terious effects of TR is also enabling exploration of
the phenotypic landscape of protein isoforms.

INTRODUCTION

Mutations occurring in the DNA are the main source
of evolutionary novelty. The average genotypic base-
substitutional rate for prokaryotes is estimated to be 0.5
(SE = 0.2) × 10−9 per site per DNA replication (1,2) and
even higher in unicellular eukaryotes (1.6 × 10−9), due to a
greater effect of drift on smaller populations (1,2). While the
genotypic error rate is low, the error rate during protein syn-
thesis is estimated to be 10−3 to 10−4 misreadings per codon
in Escherichia coli (3). Phenotypic mutation is here defined
as mutations occurring during protein synthesis (transla-

tional errors), which cause an alteration to a protein. In the
following, we consider such a change as a ‘molecular phe-
notype’ which may or may not affect the organismal phe-
notype. There is an upper limit for the load of phenotypic
mutation that a cell can handle and a lower limit, where
the error rate is minuscule at the cost of synthesis efficiency
(4). Within the limits of the upper and lower threshold for
phenotypic mutations that a single-cell system can handle,
a mathematical model by Bürger et al. (4) finds that there is
still evolutionarily leeway to reduce the error rate. However,
there is seemingly no selective pressure to reduce the pheno-
typic mutation rate (4), which is surprising given that muta-
tions may be deleterious and decrease the fitness of the or-
ganism. According to the drift-barrier hypothesis, the abil-
ity of selection to increase the fidelity of replication, tran-
scription, and translation is limited and should scale posi-
tively with the effective population size of the organism in
question (1,2). However, regardless what processes under-
pin the relatively high phenotypic mutation rate, it remains
an open question what impact phenotypic mutations have
on protein evolution. If errors are unavoidable, an alterna-
tive may be to evolve towards increased tolerance of errors.
Proteins that are tolerant towards errors, a property that is
known as robustness, will fold and function in the presence
of many phenotypic mutations. Selection pressure for pro-
tein robustness has been been predicted (5,6) and confirmed
(7) to increase protein thermostability (8–11).

Increasing tolerance towards phenotypic mutations
would not only neutralize the cost of errors, but potentially
also facilitate the evolutionary emergence of novel traits.
Protein isoforms generated by erroneous translation have
been proposed to be used as a mechanism for exploration
of the phenotypic landscape (12,13), where phenotypic mu-
tations act as intermediate stepping stones for traits not yet
encoded in the DNA (12). Taken together, tolerance for er-
rors would facilitate rapid adaptation, for which there is
accumulating support (13,14). A recent study in fungi has
shown how phenotypic mutations may yield protein iso-
forms that are functional and increase fitness in stressful
conditions (13). However, gaps remain regarding the con-
text of translational errors with respect to structural fea-
tures and what selection may act upon. Knowing what prop-
erties are responsible for the robustness of a protein fac-
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ing phenotypic mutations elucidates the evolutionary paths
available for novel features to evolve.

Here, our aim is to understand the biophysical and evolu-
tionary context of phenotypic mutations on protein evolu-
tion, specifically so called ‘translational readthrough’. Dur-
ing protein synthesis the genetic instructions are passed
from DNA via mRNA to the ribosome to assemble a
protein chain. The ribosome terminates protein synthesis
upon encountering a stop codon in the mRNA. Recent re-
search finds that stop codons are occasionally ignored by
the ribosome and that translation continues into the un-
translated region (3′-UTR). This process, called transla-
tional readthrough (TR), yields a protein chain that be-
comes longer than one would predict from the DNA se-
quence alone. Recent studies indicate functionality in pro-
teins that undergo TR (13,15,16). Here, we take advantage
of the availability of public ribosome profiling data to in-
vestigate TR and what features co-occur with TR in Sac-
charomyces cerevisiae by analyzing ribosome profiling data
from Nedialkova and Leidel (17). We analyse the physical
features of genes experiencing TR, and try to elucidate se-
lective pressures and evolutionary constraint.

MATERIALS AND METHODS

Mapping of reads

The ribosome profiling data and respective RNAseq data
was retrieved by Nedialkova and Leidel (17) from Gene
Expression Omnibus (18). The reads were trimmed and
mapped accordingly to (17). Adaptors described in the orig-
inal publications were trimmed from filtered reads. Reads
below 26 nucleotides were not considered. Trimmed reads
were filtered by mapping them to reference RNA (rRNA)
using Bowtie, version 1.0.0 (19). The remaining unaligned
reads were aligned with reference genome with TopHat (20)
version 2.0.12. As there is always a risk of detecting spu-
rious reads in the 3′-UTR that is not necessarily a yield
from translational readthrough, extra measures were taken
to align reads to the 3′-UTR. For mapping reads to the 3′-
UTR, we used bowtie allowing only one mismatch and no
multimapping (bowtie -S -m 1 –best –seed 21 -n 0 -e 1 -p
22). Genome for S. cerevisiae S288C was downloaded from
Ensembl with annotations (21).

Detecting translational readthrough

Only expressed genes that have annotated 3′-UTR were in-
cluded in further analyses. Annotations by Yassour et al.
(22) were used for mapping reads to the 3′-UTR. HTSeq
was used (23) to retrieve the count number of reads mapped
with genes and respective 3′-UTR, using strict-mode that
excludes overlapping reads.

Genes that consistently were showing translational
readthrough (TR) in all replicates were grouped as ‘leaky
genes’. Genes displaying TR in some but not all replicates
were grouped as ‘semi-leaky genes’. Genes with annotated
3′-UTR without any count hits, consistently between repli-
cates, were grouped as ‘non-leaky genes’.

Mapped reads to 3′-UTR can indicate continued trans-
lation of the mRNA beyond the first stop codon, but these
reads can also be mere noise. Several measures were made to

ensure reads mapped to the 3′-UTR were justifiably counted
as TR. Firstly, annotated 3′-UTRs that are overlapping with
a gene on the same strand were excluded. 3′-UTRs with a
sequence length shorter than 30 nucleotides were excluded
as they infer high stochasticity when calculating coverage.

Before TR rate was estimated, an initial threshold was set
for at least 5 reads to be registered as mapped to the 3′-UTR
for each replicate. This is a common lower threshold when
considering gene expression (24). TR rate was calculated as
the following: The sequence hit count (obtained by HTSeq)
was normalised by dividing read length with the sequence
length, as done by (25). The normalized hit count for the
3′-UTR was divided with the normalized hit count value
of the protein coding sequence (CDS), yielding relative ex-
pression of 3′-UTR. Genes displaying spurious translation
by relative expression of one or above were excluded. Rela-
tive expression over or near one, effectively implies that the
3′-UTR is being expressed as high as the CDS.

Assuring that the reads were accurately indicating TR,
we controlled for background noise and that the TR fol-
lowed the appropriate open reading frame (ORF). We es-
timated background noise by quantifying the coverage of
riboreads that aligned to tRNA, that were aligned by the
same stringent criteria as 3′-UTR. tRNA is not translated
by the ribosome. We therefore interpret riboreads aligned
to tRNA as noise––either caused by ribosomes that spu-
riously bind to RNA or imperfect alignment. By dividing
the read count with sequence length we retrieved the nor-
malised coverage for tRNAs. The highest value––between
the replicates, not the mean of the replicates––was used as a
threshold for noise: all genes that had a read coverage in the
3′-UTR equal or lower to the tRNA coverage (our thresh-
old) were excluded from our analyses. After this step the
leaky set contained 408 genes. Lastly, we control for that
our indicated TR follow the appropriate ORF. Ribosome
profiling data enables calculation of the ribosomal reading
frame of the mRNA (26). However, the data we made use of
had a relatively modest digestion step (17), which is known
to make the reading frame imprecise. We have no ambition
of establishing the reading frame, but rather establish real
translation from spurious binding of the ribosome. We con-
trolled, by an in house script, that the reads aligned with
the open reading frame up until next stop codon in frame
in the 3′-UTR. If the coverage was higher or equal beyond
the first stop codon encountered in the 3′-UTR, they were
dismissed from further analyses as ambiguous. After these
steps the leaky set contains 323 genes and the semi-leaky set
contains 44 genes.

Essential genes

Essential gene list (Essential ORFs) was retrieved from the
Saccharomyces Genome Deletion Project (27). An essential
gene indicate that by a knock-out, the cell will die as the
gene’s designated function is vital. The term ‘essential gene’
is one way to assess the relative biological importance of a
protein’s functionality. However, the term is discussed fur-
ther in (28). We scanned our gene sets against the essential
gene list by an in house script and conducted enrichment
tests by Fischer exact test (using the statistical python mod-
ule scipy.stats - http://www.scipy.org/).
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Gene ontology and pathway enrichment analyses

Gene ontology analyses were performed for leaky genes
against all expressed genes as background, using TopGO
(29) in the R environment version 3.3.0 (30). To make
the word cloud we used tagcloud (https://CRAN.R-
project.org/package=tagcloud). The pathway enrichment
analysis was performed on the online platform DAVID
(31,32).

Gene expression, RNA stability, disorder

For each replicate of both footprints and RNA-seq, gene
expression was calculated as Transcript Per Million (TPM).
Translational efficiency (TE) was calculated as described
by Ingolia et al. (26), dividing TPM of the ribosome pro-
filing reads by the TPM of the RNA-seq reads. Sequence
length was measured in nucleotides of the CDS (not includ-
ing UTR). The replicates were investigated for significant
distribution differences by a Kolmogorov-Smirnov test and
found to be non-significant. Thereafter, we used the mean
of the replicates, for TPM and TE, in further analyses.

To analyse the mRNA of yeast we relied on the anno-
tations by Yassour et al. (22) to retrieve the 5′-UTR and
3′-UTR. By an in house script the UTRs were added to
the CDS to remake the full mRNA. To retrieve data on
mRNA structural stability we made use of RNA minimum
free energy (mfe). We used RNAfold (33) to retrieve mfe
of the mRNA (we excluded those where UTRs were not
available). The significance of a mfe-value is commonly es-
timated by comparing it to random sequences of the same
length and base composition. We generated random se-
quences (re-shuffled native sequences) by using an algo-
rithm (34) as implemented in the MEME suite (35). The ra-
tio of mfe of the native mRNA was calculated by using the
ratio Z = (x − �)/�. x represents the mfe of the mRNA, �
the standard deviation and � the arithmetic mean obtained
of the mfe of the shuffled controls. Moreover, we investi-
gated for enriched motifs in the start of the 3′-UTR (first 30
nucleotides) using DREME, which is part of the MEME
suite (35). DREME scans the region for RNA secondary
structures and compares if the given cluster, which was the
leaky set, are enriched for motifs, relative to the non-leaky
set. Previous studies have reported on stop codon context
with respect to TR (36). We investigated stop codons as well
as the nucleotide after the stop codon by an in house script.
We compared and clustered the genes by presence of TR.

We used the IUPred short algorithm to predict intrinsic
disorder in the protein sequences based on the frequency
of disorder-promoting amino acids (37), which uses 0.5 as
the threshold for a sequence to be disordered. For practices
on disorder, see (38–41). As a measurement of folding po-
tential, we employed Seg-HCA, which analyses clusters of
hydrophobic amino acids (42,43).

3′-UTR extension

We retrieved the translated 3′-UTR as estimated by trans-
lational readthrough (TR). The presence of stop codons
throughout the 3′-UTR sequence makes it questionable to
analyse as a translated protein. Therefore, only the sequence
from the initial stop codon until the next stop codon in the

first reading frame (continuation of the CDS) were kept of
the 3′-UTR. This was used as an imitation of what the 3′-
UTR peptide may look like, assuming no frameshift. Both
the extended peptide - translated 3′-UTR fused with the
parent peptide - and the extension itself were analysed for
disorder.

Codon usage

We analyzed codon usage for the proteins within all three
sets. We made use of Codon Adaptation index (CAI) (44).
We used codonW version 1.4.2 (http://codonw.sourceforge.
net/) to conduct the analyses. We analysed all CDS in all
three sets. Moreover, we analysed the last 30 nucleotides of
each CDS in all sets as an estimation of the C-termini.

Search for protein domains

To investigate if TR would yield a functional protein do-
main, we investigated protein domains in the 3′-UTR. Stud-
ies have shown that a protein product yielded by frameshift,
yield a very similar isoform to the encoded one (13), es-
pecially in disordered regions (45). We therefore generated
multiple strand specific open reading frames (ORFs) by us-
ing gffread from cufflinks (46). The generated ORFs were
all scanned by pfam (47). This was done for all protein se-
quences in all sets.

RESULTS AND DISCUSSION

Detecting translational readthrough

Ribosome profiling data for wildtype yeast were retrieved
from NCBI GEO database, published by Nedialkova and
Leidel (17) (Materials and Methods). Continued trans-
lation beyond the stop codon may indicate translational
readthrough (TR). To detect TR we looked for reads
mapped to the 3′-UTR of expressed genes and then we
clustered them by occurrence of TR (Supplementary Fig-
ures S1 and S10). Genes that consistently were showing TR
in all replicates were grouped as ‘leaky genes’. Genes dis-
playing TR in some but not all replicates were grouped as
‘semi-leaky genes’. Genes with an annotated 3′-UTR with-
out count hits in any replicate were grouped as ‘non-leaky
genes’. The set of “leaky genes“ contained 323 genes, which
is 5% of the annotated genes. In the leaky set there are 22
proteins (or 0,3% of all annotated proteins) that have a TR
rate equal or >3%.

Translational readthrough occurs regardless of protein func-
tion

We wondered if leaky genes might have a functional bias,
i.e. if TR occurs in proteins with specific functions. We find
70 essential genes in the leaky set, 207 in the non-leaky set
and 18 in the semi-leaky set. A gene ontology (GO) and a
pathway enrichment analysis (Materials and Methods) dis-
played that proteins of the leaky set are enriched for the
GO term translation, amongst other terms (Supplementary
Figure S3). We found that the biggest cluster are all ribo-
somal subunit proteins (Supplementary Table S9). These
results are corroborated by a previous study investigating

http://codonw.sourceforge.net/
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proteins prone to TR (48), that also found proteins prone
to TR to be involved with translation and the ribosome
apparatus. A separate GO-analysis for proteins with a TR
rate of 3% or higher from the leaky set (22 proteins) dis-
played a variety of biological functions including metabolic
and stress regulation (Supplementary Figure S4). The sub-
set with TR rate greater than 3% did not have any signifi-
cantly enriched pathways. Many of these genes are classified
as non-essential or even as hypothetical proteins. However,
five of these highly leaky proteins are in fact included in the
essential gene list (Supplementary Table S8).

We also investigated gene expression and found that leaky
genes have an overall higher gene expression (Figure 1 C).
Previous research on highly expressed genes reports that
‘protein synthesis’ is among the most enriched categories
in the yeast transcriptome (49). If TR is a result of gene
expression––and not protein functionality––one would ex-
pect a functional bias toward translation.

In conclusion, most proteins undergoing the highest lev-
els of TR are non-essential. As expected, we find most es-
sential genes in the non-leaky set. However, we find the
leaky set to contain essential genes, e.g. ribosomal and chap-
eron subunit proteins, in addition to be enriched for the
GO biological process term ‘translation’. As the leaky set
has an overall high gene expression, we believe that our
findings––of essential proteins and the enriched involve-
ment of translation––are a reflection of high gene expres-
sion, rather than of protein functionality.

Protein characteristics

Given how our results of functional bias towards protein
synthesis may be explained by gene expression, we asked if
leaky genes might have some structural bias related to gene
expression and translation. Translation has been found to
be affected by mRNA stability, whereas GC-content and
sequence length affect mRNA stability. We analysed several
features in all three sets (leaky, semi-leaky and non-leaky):
GC-content of both CDS and 3′-UTR, translational effi-
ciency, gene expression (Transcripts Per Million), sequence
length of CDS, and mRNA structural stability by mini-
mum free energy (see Materials and Methods), henceforth
referred to as mRNA stability.

Translational readthrough rate is most strongly reflected in
gene expression. The leaky set has relatively higher GC-
content, shorter sequence length, higher gene expression,
and lower mRNA stability than the other two sets. At the
other end of the scale, we find the non-leaky set to have
longer genes, lower gene expression, GC-content and higher
mRNA stability (Figure 1 and Supplementary Figure S5).
For the measured parameters, the values of proteins belong-
ing to the semi-leaky set are in between as of a gradual tran-
sition between the leaky and non-leaky sets.

When analysing all the sets, TR correlates weakly and
negatively with all factors except gene length. As the non-
leaky set also contains the highest quantity of genes, the sta-
tistical analyses become zero-inflated when correlating with
TR, for which the rate is 0 (Table 1). When only analysing
the error prone proteins (semi-leaky and leaky sets), we find
that gene length correlates positively with TR rate, whereas

translational efficiency and gene expression correlate neg-
atively and more strongly with TR rate. In other words,
the rate of TR increases with sequence length but decreases
with gene expression. The fact that TR rate increases with
sequence length makes sense intuitively, assuming that a
longer protein would see a relatively small effect of an ex-
tension by TR, compared to a shorter protein.

RNA structural stability has previously been found to be
under translational selection, and we therefore next asked if
there is also a link between RNA stability and translational
fidelity e.g. TR. Using default parameters of RNAfold (see
Materials and Methods) we estimated structural stability of
the mRNA. We find mRNA stability to correlate moder-
ately with gene expression (Supplementary Figure S8) and
TR rate (Table 1) whereas the strongest correlation with
mRNA stability is sequence length (Supplementary Figure
S8). The weak correlation between TR rate and mRNA sta-
bility can be explained by the fact that error prone pro-
teins have relatively short sequences compared to those in
the non-leaky set. Additionally, to investigate the region
that is directly affected by TR––the C-terminus––we also
conducted an mRNA stability analysis for the last 30 nu-
cleotides of the CDS, as well as the first 30 nucleotides the
3′-UTR. We find no meaningful difference between the sets
(Supplementary Figure S7), which suggests that the mRNA
stability in the vicinity of the stop codon does not affect the
occurrence of TR. We do not deem there to be a signifi-
cant relationship between TR rate and GC-content given
the weak correlation (Table 1 and Supplementary Figure
S5).

Previous studies have reported on stop codon context
with respect to translational readthrough (36). We did not
find any enriched nucleotide context, neither with respect
to stop codons (Supplementary Table S2), nucleotide af-
ter the stop codons (Supplementary Table S3) or with re-
spect to TR rate (Supplementary Table S4). Investigating
enriched motifs in the first 30 nucleotides of the 3′-UTR by
the MEME suite (35) did not yield any enriched motifs.

The majority of genes undergoing TR, does so at a very
low TR rate. Our data suggest therefore that deep coverage
is needed to detect most of TR. In other words, the connec-
tion between gene expression, translational efficiency and
TR rate may be a data sampling artefact derived by high
gene expression. However, it has been predicted that highly
expressed genes are––by a higher expression level––prone
to undergo erroneous translation simply by higher trans-
lation exposure (8,9). Our results are in accordance with
this assumption that the majority of erroneous translational
events are found among highly expressed genes. Whether
the connection between high expression and TR is a sam-
pling artefact or a real biological connection remains unre-
solved until more data sets of deep coverage are available.

In conclusion, the variables measured––gene expression,
translational efficiency, sequence length, GC-content and
mRNA stability––are not complete predictors of TR. Par-
tial correlations did not increase the strength in describ-
ing TR for any the variables (Supplementary Table S7).
Nonetheless, gene expression is the strongest indicator of
TR: high gene expression increases the probability of TR,
whereas the TR rate decreases with increased gene expres-
sion (Figure 1).
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Figure 1. Density distributions of characteristics in sets (A–E). (A) mRNA stability (as minimum free energy) for each of the sets. The mRNA is more
unstable the closer to 0. (B) Translational efficiency of the proteins in each set. (C) Gene expression (Transcript per million) for proteins in each set (log
transformed). (D) Gene length (log transformed) for CDS in each set. (E) Frequency of optimal codon amongst sets. Ratio goes from 0 to 1, where 0 is
non-optimized and 1 is fully optimized. Correlation plots of TR rate against different variables (A–E). TR rate is always depicted on the Y-axis and the
other variable on the X-axis. a: TR rate versus mRNA stability. b: TR rate versus Translational Efficiency. c: TR rate versus gene expression. d: TR rate
versus gene (CDS) length. e: TR rate versus codon usage (calculated according to Cai, see Materials and Methods).
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Error prone genes are codon optimized. As we found a sig-
nificant correlation between TR and gene expression, we
next analysed the sets for optimal codon usage. Codon
usage is known to be under selection and strongly affect
gene expression (50). We used the Codon Adaptation In-
dex (CAI) to calculate optimal codon usage. Optimal codon
usage corresponds to cognate tRNA species that are more
abundant and that are associated with efficient translation
(50). The ribosome slows down over non-optimal codons
and, conversely, translates faster over optimal codons. Stud-
ies on this topic concluded that the distributions of non-
optimal and optimal codons in mRNAs are non-random
with respect to proper protein folding, and that the codon
distribution maximizes translation fidelity and efficiency
(51–53). For example, non-optimal codons are commonly
found between regions coding for secondary structures of
encoded proteins (54,55). It has been suggested that the
structuring of non-optimal and optimal codons promotes
co-translational folding (56–58) because usage of optimised
codons is foremost associated with fast translation and thus,
highly expressed genes (59,60). This is in accordance with
our findings: we find gene expression to correlate positively
with codon optimisation (Supplementary Figure S8) and
again we find a significant difference between sets (Table
Supplementary S6) with genes in the leaky set being codon
optimised (Figure 1E). When considering only error prone
proteins (leaky and semi-leaky sets), codon optimisation
correlates negatively with TR rate (Table 1). We find the
same trend, but somewhat weaker, for the last 30 nucleotides
(Supplementary Figure S5 and Table 1). Like the CAI value
based on the whole CDS, the CAI value for the C-termini
correlates with TR rate, but less strongly.

Next to fast elongation, it has been suggested that op-
timal codon usage reduces the frequency of nonsense er-
rors (3,61,62) but it is debated whether it also reduces mis-
sense errors, where an amino acid––different from than
what is encoded––gets incorporated into the peptide chain
by a non-cognate tRNA (50,63). The negative correlation
indicates that optimised codon usage may offer a selective
advantage by lowering the error rate in highly expressed
genes. Due to their high abundance, highly expressed genes
will contribute more in absolute numbers to the phenotypic
mutational load, than lowly expressed genes (10). Harm-
ful phenotypic mutations are predicted to impose selection
for compensatory mechanisms: Either, the mutational load
leads to selection for error avoidance, e.g. increased proof-
reading mechanisms, or the mutational load leads to selec-
tion for elevated tolerance towards errors, also known as
increased robustness (10).

In conclusion, we have shown that TR takes place in
short and highly expressed genes with optimised codon us-
age. Moreover, we show how optimised codon usage of the
CDS correlates negatively with TR rate. We hypothesise
that highly expressed genes cannot avoid TR altogether but
that high optimised codon usage may decrease the TR rate
(51–53).

Error prone proteins have highly disordered C-termini. To
investigate if there are any patterns of physical proper-
ties that are common to error prone proteins, we anal-
ysed protein sequence features: ratio of disordered residues

(IUPred (37)), disordered binding sites (Anchor (64)), and
hydrophobic clusters (see Materials and Methods). The
analyses were conducted for each sequence separately in all
sets. No meaningful correlation was found between TR rate
and protein structural features such as ratio of disordered
residues, hydrophobic clusters, disordered binding sites. We
did not find the distributions of disordered residues to differ
between the sets (see Figure 2).

Moreover, we analysed the last 30 amino acids of the pep-
tide chains separately. All sets have a high frequency of dis-
ordered C-termini (see Figure 3 and Supplemental Figure
S6.), but the leaky set has a significantly higher proportion
than the non-leaky set (Mann Whitney one-sided rank test,
p value 0.03). We found five of our proteins to be curated
in the DisProt database (65) (see Table S1). In other words,
we find that the leaky and semi-leaky sets have significantly
more disordered C-termini than proteins belonging to the
non-leaky set.

Due to the lack of structural constraints of intrinsically
disordered regions, a missense error, i.e. shifting the read-
ing frame, would not significantly disrupt the structure and
errors are therefore believed to have a near-neutral effect
(39,40,66). However, by mutating native protein sequences
into random sequences, Schaefer et al. (67) found that form-
ing secondary structures is an intrinsic feature of peptides,
whereas maintaining long disordered regions appears hard
to maintain by evolution (67). On the other hand, the study
by Schaefer et al. (67) found this to apply foremost to long
disordered regions. Short disordered regions seem to be
functionally robust with introduction of single mutations,
and thereby more easily maintained (67). In other words,
the impact of mutations and translational errors on proteins
with intrinsically disordered regions vary with respect to re-
gion length and context. To infer about the impact of TR,
we investigated the predicted extensions from TR for intrin-
sic disorder and sequence length (Materials and Methods).
Next to being very short, we found the predicted extensions
to be ordered, see Supplementary Figures S6 and S9. This
is in accordance with the results of Schaefer et al. (67), as-
suming that the translated 3′-UTR yields random peptides.
A more recent study found that next to be able to form sec-
ondary structures, random sequences are well tolerated in
vivo (68). We can only cautiously speculate what the full im-
pact are of the extensions. As the extensions are ordered and
short, we have no support to assume the extensions would
be interactive. We suspect that the extensions have a low im-
pact on native protein functionality. Moreover, when a pro-
tein is yielded by the ribosome, it starts at the N-terminus,
which is little influenced by the remaining peptide chain.
The C-terminus, on the other hand, is suggested to be under
influence of the already folded part of the protein and does
not influence the protein fold as the N-terminus (69,70).
As the termini have been found to be located on the sur-
face in most proteins, especially C-terminus (71), we specu-
late that alterations of the C-terminus are effectively near-
neutral with respect to the protein fold. Our study highlights
that the majority of proteins that undergo TR have an in-
trinsically disordered C-terminus. The full impact and effect
of TR undoubtedly deserves further research.

Furthermore, we find the C-termini of the leaky set to
be more codon optimised than the other sets (Supple-
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Table 1. Spearman rank correlations between TR rate and various variables

Variables Rho P-value Rho* P-value*

GC CDS 0.297 0.0 − 0.317 0.0
Gene length − 0.356 0.0 0.429 0.0
mRNA stability 0.308 0.0 − 0.304 0.0
Gene expression 0.619 0.0 − 0.848 0.0
CAI CDS 0.563 0.0 − 0.79 0.0
CAI end 0.43 0.0 − 0.652 0.0
Translational efficiency 0.496 0.0 − 0.35 0.0

Data for columns with asterisk (*) indicate that the non-leaky set is excluded (contains only proteins from leaky and semi-leaky sets). mRNA stability is
measured as minimum free energy. Gene expression is calculated as Transcript Per Million (TPM). CAI stands for Codon Adaptation Index––a parameter
for estimating codon usage. CAI CDS is for the CDS, whereas CAI end includes only the last 30 nucleotides (see Materials and Methods).

Figure 2. Ratio of disordered residues of full protein sequences. The -axis displays density of sequences and the X-axes display ratio of disordered residues.
The colours display what set the proteins belong too. (A) The leaky set (red) is mostly overlapping with the semi-leaky set (blue), but also overlapping with
the non-leaky set (green). (B) The leaky and semi-leaky sets are clustered as one (purple), whereas non-leaky is maintained unaltered (green). The leaky and
semi-leaky sets have a significantly higher proportion of disordered residues (Mann Whitney test, p-value 0.005, U-value 966).

Figure 3. Ratio of disordered residues of last 30 amino acids of protein sequences in sets. The Y-axis displays density of sequences and the X-axis displays
ratio of disordered residues. Leaky and semi-leaky sets are clustered as one (purple), whereas non-leaky is maintained unaltered (green). Many proteins of
both error prone and non-leaky set have intrinsically disordered C-termini, but the C-termini of error-prone proteins are more disordered.
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mentary Figure S5). This is in variation to previous re-
search that found disordered regions to be encoded by non-
optimal codons in yeast (57,66). As already described, op-
timal codon usage has previously been found to induce
fast translation. Intrinsically disordered proteins have been
found to be unstable with the risk of aggregation and are
tightly regulated (72). Given that many of the leaky proteins
have relatively high disorder, it may be advantageous to re-
lease the C-terminus quickly from the ribosome to allow the
peptide to quickly complete its folding structure.

In conclusion, we hypothesize that the effect of TR may
be near-neutral as the erroneous elongation by TR occurs
at an already highly disordered region. This would explain
why it is also present in essential proteins and the relatively
high frequency of TR rate.

Investigation of homology and divergence

No conservation found of the 3′-UTRs. Given our results
of protein feature analysis, we looked for conserved regions
of the 3′-UTR by a homology analysis. It is conceivable that
the 3′-UTRs were once part of a functional protein and that
TR is due to a lack of fine tuning to an evolutionarily re-
cent inserted stop codon. Protein domains may get lost in
protein evolution (73) and investigation of the ortholog’s 3′-
UTR may display the remnants of a former domain. Highly
leaky genes (TR rate above 5%) were investigated for ho-
mology. Orthologs to the leaky genes were searched for by
a blastp against 50 fungi species. Each ortholog’s transcript
was blasted against the 3′-UTR nucleotide-sequence with a
cut off value at 1e-5. No significant homology to the focal
3′-UTR was found in the ortholog transcripts to support
the notion of a recently inserted stop codon. As a previ-
ous study investigating TR in yeast (48) but with different
orthologs, we did not find the 3′-UTR to be conserved. In
other words, no support was found to indicate evolutionary
conservation or that leaky genes have evolved from longer
genes.

Protein domains and motifs. We next asked if the elonga-
tion by TR would yield a functional protein. The presence
of protein domains in the 3′-UTR would imply that TR
leads to a functionally folded elongation. Moreover, protein
domains in the 3′-UTR would imply selection for a func-
tional extension. Alternatively, the 3′-UTRs were once part
of a longer functional protein and TR is due to a lack of
fine tuning to an inserted stop codon. Domain losses has
previously been suggested to be frequent at the C-terminus
and to be explained by an introduced stop (or start) codon
(73). Implementing a more targeted approach than homol-
ogy search, by using Hidden Markov Models in pfam, we
searched for protein domains in multiple ORFs of the CDS
(Materials and Methods), as TR has been found to occa-
sionally be caused by frame-shift (e.g. 13). This was done
for all three sets (leaky, semi-leaky and non-leaky). We did
not find protein domains, suggesting that continued trans-
lation of the parent-gene beyond the stop codon into the
3′-UTR does not include a functionally annotated protein
domain. In conclusion, we do not find support for selection
of functional extensions for proteins undergoing TR.

CONCLUSION

We have shown that TR rate is seemingly related to gene ex-
pression and peptide structure, specifically intrinsic disor-
der. The evolutionary rate of proteins has repeatedly been
found to correlate with peptide structure and gene expres-
sion (74,75). We did not find an overall trend for difference
of evolutionary rate when comparing proteins that are error
prone and not error prone by our branch-site test. However,
there is a significant difference of codon usage between pro-
teins, reflected by propensity for TR. In other words, our
findings indicate there may be selection on traits influencing
translation and TR. In addition to TR being associated with
high gene expression, we found that TR is foremost associ-
ated with proteins having high intrinsic disorder––most pro-
foundly at the C-termini. This finding raises multiple ques-
tions for further exploration.

There is no gradual increase of disorder that correlates
with gene expression to support a symmetric relationship
between gene expression and intrinsic disorder. However,
a highly expressed gene is by exposure at high risk of mis-
translation (8,9). Accordingly, highly expressed proteins
are expected to be under selection for translational ro-
bustness (8,9). One study, confirming this expectation, on
antibiotic resistance in E. coli found that once an error
occurs––given short evolutionarily time-scale and in large
populations––the system first reduces the consequences of
translational errors rather than reducing the errors them-
selves (14). In other words, that proteins evolve towards er-
ror tolerance rather than error mitigation (14,76). Our re-
sults corroborate these assumptions on selective pressure
and evolutionary constraints. We hypothesize that intrinsi-
cally disordered C-termini make error prone proteins func-
tionally robust in the occurrences of TR. Intrinsically dis-
ordered regions can act as dynamic switches in response to
environmental changes, e.g. shift in pH, metabolite concen-
trations or post-translational modifications, and deliver an
alternative protein conformation, by being phosphorylised
by enzymes (41,77–80).

There is a strong evolutionary link between disorder
propensity and secondary structure (81,82). However, as-
suming that intrinsically disordered C-termini can elevate
protein robustness and be advantageous, it is peculiar that
we do not find intrinsically disordered C-termini to be
present in all proteins. As already stated, high gene ex-
pression imposes an elevated risk of phenotypic mutations.
We suggest intrinsically disordered C-termini are present
mostly in highly expressed genes because of their relatively
higher exposure risk of errors.

Moreover, highly expressed genes are found to evolve
slowly independently of protein function (8,9). Selection for
translational robustness has been suggested to explain the
constrained sequence evolution for highly expressed genes
(8,9). Addressing what possibilities exist for proteins to
evolve, phenotypic mutations may provide an opportunity
for genes under constrained selection to explore alternative
isoforms. According to the look ahead-effect (12), pheno-
typic mutations may act as intermediate stepping stones for
traits not yet encoded in the DNA, enabling rapid adapta-
tion by exploration of the phenotypic landscape. The look-
ahead-effect has been partially supported by recent exper-
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imental research in fungi (13), but demands further ex-
perimental validation. Alternative conformations, e.g. pro-
vided by intrinsic disorder, provide the most accessible so-
lution when new protein functions are needed (83). Previ-
ous research has found that intrinsically disordered regions
may diverge and evolve more rapidly than structured re-
gions (84,85), facilitate innovation (86) and protein expan-
sion (43,87), and to be indispensable to non-adaptive evo-
lutionary processes (81). We hypothesize that intrinsically
disordered C-termini may not only act to increase protein
robustness, but potentially also facilitate the exploration of
protein isoforms in evolutionarily constrained genes with-
out significantly distorting the protein structure.

In conclusion, we have shown that error prone proteins
are codon optimised, are highly expressed and have intrin-
sically disordered C-terminus. We suggest that intrinsic dis-
order may play an instrumental role in protein robustness
when facing phenotypic mutations as TR. To investigate
the effect of intrinsically disordered regions experimentally,
it should be possible to e.g. remove or add an intrinsically
disordered C-terminus and measure how it relates to gene
expression, TR rate, and fitness. The full nature of the re-
lationship between intrinsic disorder and phenotypic muta-
tions, with regard to protein robustness and evolution, in-
vites further research.
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