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Abstract

Background: Long non-coding RNA H19 was demonstrated to be significantly correlated with tumor metastasis.
However, the specific functions of H19 in colorectal cancer (CRC) metastasis and the underlying mechanism are still
largely unclear.

Methods: Use public database to screen the potential lncRNA crucial for metastasis in colorectal cancer. The
expression of H19 in clinical CRC specimens was detected by qRT-PCR. The effect of H19 on the metastasis of CRC
cells was investigated by transwell, wound healing assays, CCK-8 assays and animal studies. The potential proteins
binding to H19 were identified by LC-MS and verified by RNA immunoprecipitation (RIP). The expression of
indicated RNA and proteins were measured by qRT-PCR or western blot.

Results: We found the expression of lncRNA H19 was significantly upregulated in primary tumor and metastatic
tissues, correlated with poor prognosis in CRC. Ectopic H19 expression promoted the metastasis of colorectal cancer
cells in vitro and in vivo, and induced epithelial-to-mesenchymal transition (EMT). Mechanistically, H19 directly
bound to hnRNPA2B1. Knockdown of hnRNPA2B1 attenuated the H19-induce migration and invasion in CRC cells.
Furthermore, H19 stabilized and upregulated the expression of Raf-1 by facilitated the interaction between
hnRNPA2B1 and Raf-1 mRNA, resulting in activation of Raf-ERK signaling.

Conclusions: Our findings demonstrate the role of H19/hnRNPA2B1/EMT axis in regulation CRC metastasis,
suggested H19 could be a potential biomarker to predict prognosis as well as a therapeutic strategy for CRC.
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Background
Colorectal cancer (CRC) is the third most prevalent ma-
lignancies, accounts for 881,000 deaths around the world
in 2018 [1]. Metastasis is common in CRC, which is the

major cause for CRC associated deaths [2]. The 5-year
survival rate for patients with unresectable metastases
was under 10% in CRC, while for stage I disease was
90% [3]. Therefore, to understand the molecular mecha-
nisms driving metastasis and improve treatments strat-
egy for metastasis are of urgent need in CRC.
Tumor metastasis is a multi-step process comprising

of a wide variety of molecular events [4]. Increasing long
non-coding RNAs (lncRNA) have recently emerged as
promising mechanism for metastases in various kinds of
cancers [5]. LncRNA comprise of a series of transcripts
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more than 200 nt in length and occupy limited capacity
to translate into proteins [6]. Recent findings have re-
vealed that almost 98% of human transcriptome are
non-coding RNAs [7], suggesting lncRNAs may involve
in a wide range of pathophysiological processes [8, 9].
Although several lncRNAs have been proved to be of
great importance in the dysregulation of proliferation,
apoptosis, migration, invasion and chemoresistance for
CRC [10–13], the role of most other lncRNAs in colo-
rectal cancer are rarely studied. Therefore, to identify
potential lncRNAs involving metastases in CRC is of
great need. By analyzing the public database, H19 was
one of most overexpressed lncRNAs in primary tumor
and metastatic tissues compared with adjacent normal
tissues in CRC. Aberrant expression of H19 has been
demonstrated in various kinds of malignancies including
lung cancer, gastric cancer and pancreatic cancer [14–
16]. Furthermore, Zhou et al. reported that H19 lead to
epithelial-to-mesenchymal transition (EMT), a pivotal
step in cancer metastasis [17], by acting as miRNA
sponges to inhibit the functions of related miRNA [18].
During EMT, epithelial cells acquire mesenchymal fea-
tures, beneficial for migration and invasion of cancer
cells, and eventually promotes infiltration and metastasis
[19]. Recent studies have revealed lncRNAs trigger EMT
and subsequently lead to tumor metastasis [20, 21].
Nevertheless, the exact effect of H19 in CRC and the
mechanism in regulating metastasis is remain largely
unknown.
In the current study, we identified lncRNA H19 as one

of the lncRNAs increased most substantially in primary
colorectal cancer tissues, which was further upregulated
in metastatic tissues by analyzing public dataset and
confirmed with clinical specimens. Functional analyses
demonstrated that H19 promotes the metastases of colo-
rectal cancer cells both in vitro and in vivo. Further-
more, mechanistic studies demonstrated that by directly
binding to heterogeneous nuclear ribonucleoprotein
A2B1 (hnRNPA2B1), H19 activate Raf-ERK signaling
and induce EMT, resulting in the metastases of CRC
cells. Collectively, we suggested that H19 could be a
potential prognosis biomarker and therapeutic target for
colorectal cancer.

Materials and methods
Patient and clinical samples
A total of 60 pairs of colorectal cancer samples and cor-
responding adjacent non-tumor colonic epithelium tis-
sues, as well as 11 liver metastasis specimens were
acquired from patients at The First Affiliated Hospital,
Sun Yat-sen University (Guangzhou, China). Specimens
were frozen in liquid nitrogen immediately after resec-
tion and stored at − 80 °C. These tissue samples were ex-
amined by pathologists. All patients provided written

informed consent and the Ethics Committee of The First
Affiliated Hospital, Sun Yat-sen University approved the
current study.

Cell lines and culture conditions
Human CRC cell HCT116, SW480 and DLD1 were pur-
chased from Shanghai Institute of Cell Biology, Chinese
Academy of Sciences (Shanghai, China). HCT116 and
SW480 were cultured in Dulbecco’s Modified Eagle’s
Medium (Gibco, Logan, UT, USA), DLD1 were main-
tained in RPMI 1640 Medium (Gibco) in a thermostatic
incubator at 37 °C with 5% CO2. Medium were added
with 10% fetal bovine serum (Gibco) for regular culture.

Transfection and stable cell lines construction
Cell transfection with small interfering RNA (siRNA) was
performed using Lipofectamine 3000 reagent (Invitrogen,
Carlsbad, CA, USA). Two independent siRNAs for
hnRNPA2B1 and negative control (RiboBio, Guangzhou,
China) were introduced into cells according to the manu-
facturer’s instructions. For construction of stable H19
overexpression and control cell lines, full length H19 (NR-
2196.2) and empty lentiviral vector control were synthe-
sized and cloned into a lentiviral vector pEZ-Lv201 (Gene-
copeia, Guangzhou, China) named pEZ-Lv201-H19 and
pEZ-Lv201-Vector respectively, and transfected into
HCT116 and SW480 cells. After 72 h, 1μg/ml puromycin
was add for 4 weeks to establish stable cell lines. To con-
struct stable H19 knockdown cell lines, two pairs of cDNA
oligonucleotides suppressing H19 were cloned into the
lentiviral vector psi-LVRU6GP (Genecopeia), called sh-
H19–1 and sh-H19–2. A scrambled shRNA was employed
as negative control and named sh-NC. After transfected
sh-H19–1, sh-H19–2 and sh-NC into HCT116 and DLD1
cells lines, cells were selected with 1μg/ml puromycin for
4 weeks to construct stable cell lines. For construction of
overexpressed Raf-1 cell lines, full length Raf-1(NM-
2880.3) was cloned into pEZ-M02 vector and a vector
with eGFP was used as control (Genecopeia). Plasmid was
transfected by using Lipofectamine 3000 reagent (Invitro-
gen). The siRNA and shRNA sequences are listed in
Supplementary Table S1 and S2.

RNA isolation and quantitative real-time PCR (qRT-PCR)
Total RNA was isolated using RNAiso Plus (Takara,
Dalian, China) according to the manufacturer’s instruc-
tion. Separation of nuclear and cytoplasm RNA were by
using PARIS™ Kit (Life Technologies, Gaithersburg, MD,
USA) following the manufacturer’s instruction. Next,
reverse transcription was carried out using the
PrimeScript™ RT Master Mix (Takara) following the
manufacturer’s instruction. Quantitative real-time PCR
(qRT-PCR) assays were performed using TB Green® Pre-
mix Ex Taq™ II (Takara) by ABI 7900HT Fast RealTime
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PCR System (Applied Biosystems, Foster City, CA, USA)
according to the manufacturers’ protocols. GAPDH was
used as an endogenous reference for indicated genes to
normalize. To detect RNA in different cellular fraction-
ation, the expression of β-actin was used as cytoplasmic
control and U6 as nuclear control. Sequences of primers
used for qRT-PCR in this study were shown in Supple-
mentary Table S3.

Western blot analysis
Total proteins were isolated by using RIPA supple-
mented with protease and phosphatase inhibitor re-
agents (Thermo-Fisher Scientific, Waltham, MA, USA).
Nuclear and cytoplasm proteins were isolated by PARIS™
Kit (Life) according to the manufacturer’s instruction.
Protein was separated using sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). After
transferred proteins to PVDF membranes (Merck Milli-
pore, Billerica, MA, USA), membranes were blocked in
5% skim milk for 1 h at room temperature followed by
incubated with primary antibodies overnight at 4 °C.
After three washes with TBST, PVDF membranes were
incubated with HRP-conjugated goat anti-mouse (#7076,
Cell signaling Technology, Danvers, MA, USA) or anti-
rabbit (#7074, CST) secondary antibodies for 1 h at
room temperature. Anti-GAPDH antibody (#5174), anti-
Tubulin antibody (#2146), anti-Lamin B1 antibody
(#13435), anti-Snail antibody (#3879), anti-E-cadherin
antibody (#3195), anti-N-cadherin antibody (#13116),
anti-ERK1/2 antibody (#9102), anti-Phospho-ERK1/2
antibody (#9101), anti-Raf-1 antibody (#9422) were from
Cell Signaling Technology; anti-hnRNPA2B1 antibody
(ab6102) was from Abcam (Cambridge, MA, USA).

Cell migration and invasion assays
The capability of migration and invasion in indicated
cancer cells were evaluated by transwell assays. Briefly,
for invasion assay, 5 × 10^4 cells were suspended in
serum-free medium and seed into the upper chamber
(8-μm pore size, BD Biosciences, San Jose, CA, USA))
with diluted Matrigel (Corning, NY, USA). Medium sup-
plemented plus 20% fetal bovine serum was added to the
lower chambers. After incubation for 48 h, wiped off
cells remained in the upper chamber. Then fixed cells
with 4% paraformaldehyde followed by stained with 0.1%
crystal violet. The cells migrated or invaded to lower
chamber were counted and imaged in three different
fields with a microscope.

Pharmaceuticals
The ERK1/2 inhibitor SCH772984 was purchased from
Selleck Chemicals (S7101, Houston, TX, USA). Expo-
nential growing cells seeded in 6-well plates were treated

with 0.5 uM SCH772984 for 24 h, and total protein was
isolated as described above.

RNA pull-down assay
Full-length H19 and its antisense RNA were transcribed
in vitro using TranscriptAid T7 High Yield Transcrip-
tion Kit (#K0441, Thermo), treated with RNase-free
DNase I (Takara), and purified with GeneJET RNA Puri-
fication Kit (#K0731, Thermo) according to the manu-
facturer’s instruction. Then, RNAs were labeled with
desthiobiotinylate using PierceTM RNA 3′end Desthio-
biotinylation Kit (#20163, Thermo). RNA pull-down
assay was performed using PierceTM Magnetic RNA-
protein Pull Down Kit (#20164, Thermo) according to
the manufacturer’s instruction. Finally, the RNA-binding
proteins were analyzed by liquid chromatography-mass
spectrometry (LC-MS) (Triple TOF 6600 LC-MS, AB
SCIEX, USA) or followed by western blot.

RNA immunoprecipitation (RIP)
EZ-Magna RIP RNA Binding Protein Immunoprecipitation
Kit (17–700, Millipore) was used to perform RIP assays fol-
lowing the protocol. Anti-hnRNPA2B1 (ab6102, Abcam)
antibody and normal mouse Ig (GCS200621, Millipore)
were used to immunoprecipitated with target RNA or as a
negative control. Finally, RNA was subjected to qRT-PCR
analysis as described above to detect the enrichment
between indicated RNA binding to hnRNPA2B1.

Immunofluorescence (IF) assay
Cancer cells were seeded onto sterile slides into 24-well
culture plates. Then, fixed cells with 4% paraformalde-
hyde for 20 min when reached a confluence of 80%.
Following permeabilized membranes with 0.1% Triton
X-100 for 10 min, blocked antigens with 10% goat serum
for 30min in room temperature. Cells were then incu-
bated with anti-hnRNPA2B1 (ab6102, Abcam) at a 1:100
dilution overnight at 4 °C, followed by further incubation
at room temperature for 1 h with AlexaFluor Plus 555
goat anti-mouse IgG secondary antibody (A32727,
Thermo) and then labeled DNA with DAPI for 10 min.

RNA stability
Exponential growing cells were treated with 2.5μg/ml ac-
tinomycin D (Act-D, #A9415, Sigma-Aldrich, St. Louis,
MO, USA) and incubated at the indicated times. Then
RNA was isolated as described above for qRT-PCR.
GAPDH was used for normalization.

Wound healing assay
Cancer cells were seeded into six-well culture plates and
cultured until reach 80–90% confluence. Then scratched
cells off in a straight line by sterile 100-μl pipette tips
and replaced media with serum-free media. Images were

Zhang et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:141 Page 3 of 15



recorded by using microscope 48 h after the initial
scratches and calculated the distance of wound healing
compared to 0 h.

Cell counting Kit-8 (CCK-8) assay
Cell proliferation was detected by CCK-8 reagent (CK04,
Dojindo, Japan). 1000 indicated cells were inoculated
into 96-well plates with complete medium for 0 (when
cells were adhered), 24. 48 and 72 h. Replaced medium
with medium added 10% CCK-8 and incubated for 2 h
at 37 °C. Proliferation of cells were measured by using a
microplate reader (Multiskan FC, Thermo) at a 450 nm
wavelength.

Animal study
To establish lung metastasis model, female BALB/c nude
mice were purchased from Laboratory Animal Center of
Sun Yat-sen University (Guangzhou, China). Mice were
bred and maintained in a pathogen-free facility until the
age of 6-week. 1 × 10^6 H19 overexpressed or control
cells were suspended in 100 μL PBS and injected into
the tail vein. Experiments were terminated and mice
were sacrificed 6 weeks after injection. The lungs from
the two groups were anatomized, fixed in formalin, par-
affin embedded then analyzed with hematoxylin and
eosin (HE) staining to confirm metastatic foci. The
handling of mice was strictly under the approval of
committee on the Ethics of Animal Experiments of The
First Affiliated Hospital, Sun Yat-sen University.

Statistical analysis
Statistical analyses were performed using SPSS Statistics
software version 18.0 software (IBM SPSS Statistics
Company, Armonk, NY, USA). All data are presented as
the mean ± SD. Appropriate statistical methods includ-
ing Student’s t-test, Wilcoxon signed-rank test, Mann-
Whitney test, Pearson chi-square test were used to
calculate differences between groups. Spearman’s correl-
ation analysis was assessed correlation between genes.
The Kaplan–Meier method with the log-rank test was
used to calculate survival rate between groups. P-values
< 0.05 was considered to be statistically significant.

Results
H19 is upregulated in colorectal cancer and associated
with poor survival outcomes
To screen the potential lncRNA crucial for metastasis in
colorectal cancer, we analyzed the public RNA-seq data-
set including 18 colorectal cancer patients with matched
normal colonic epithelium, primary lesion and liver
metastases tissues (GSE50760) [22]. H19 was one of the
most substantially changed lncRNA between normal
colonic epithelium and paired CRC tissues. Further ana-
lysis of expression of lncRNA between primary CRCs

and liver metastasis tissues demonstrated that H19 is
also overexpressed compared with that in primary tu-
mors (Fig. 1a and b). To validate the expression pattern
of H19, we analyzed 60 primary CRC specimens and
corresponding adjacent non-tumor tissues from the tis-
sue bank of the first affiliated hospital of Sun Yat-sen
university by qRT-PCR. Our data suggested that H19 is
also upregulated in primary tumors compared with
paired colonic epithelium tissues (Fig. 1c). To confirmed
the association between H19 and clinicopathologic
features of CRC, these clinical samples were divided into
two group according to the median expression of H19 in
primary lesions. High H19 expression was associated
with more lymph node metastasis and distant metastasis
(Table 1). The expression of H19 in samples with (n =
11) or without (n = 49) metastasis was measured to
elucidate the relationship between H19 and distant me-
tastasis. And H19 was remarkably increased in primary
lesions with metastasis compared to those without
metastasis (Fig. 1d). Furthermore, we collected and eval-
uated the expression of H19 in the matched liver meta-
static tissues. The expression of H19 in liver metastases
was higher than that in matched primary tumors (Fig.
1e). The Kaplan-Meier analysis and log-rank test sug-
gested that CRC patients with high H19 expression was
corelated with decreased overall survival (Fig. 1f). Taken
together, these data concluded that H19 overexpression
was correlated with CRC distance metastasis and poor
prognosis.

H19 promotes CRC migration, invasion and EMT in vitro
and in vivo
To investigate the function of H19 in CRC metastasis,
we transfected LV-H19 and control LV-vector to con-
struct H19 stably overexpression HCT116 and SW480
cells (Fig. S1 and S2a). Meanwhile, two independent
shRNAs against H19 were transfected into HCT116 and
DLD1 cells to establish H19 stably knockdown cells (Fig.
S2b). Transwell assays suggested that H19 overexpres-
sion promote the migration and invasion of HCT116
and SW480 cells (Fig. 2a and b), whereas knockdown of
H19 inhibited migration and invasion of HCT116 and
DLD1 cells (Fig. 2c and d). The wound healing assay also
confirmed that H19 overexpression promoted cell mi-
gration and H19 depletion inhibited cell motility (Fig.
S3a and S3b). To further investigate the role of H19 in
metastases in vivo, stably overexpressed and control
HCT116 cells were injected into BALB/c nude mice
through the tail vein to establish lung metastasis model.
Our results revealed that overexpression of H19 in
HCT116 cells lead to more metastatic tumors in lung
and larger tumor size compared to control group (Fig.
2e-g). In addition, CCK-8 analysis demonstrated upregu-
lated or depleted H19 had no significant effect on cell
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proliferation of CRC cell lines (Fig. S4a and S4b). These
results suggested that H19 can contribute to the dissem-
ination of CRC cells in vitro and in vivo.
To further investigate how H19 regulate metastasis in

colorectal cancer, correlation analysis was performed to
confirm the related genes of H19 in The Cancer Gen-
ome Atlas (TCGA) colorectal adenocarcinoma database.
The result displayed that SNAI1 (Snail), a crucial EMT
transcript factor, was one of the most relevant genes
with H19 (Fig. 3a and S5), suggested H19 may involve in
the progression of EMT in colorectal cancer. In addition,
Gene Set Enrichment Analysis (GSEA) in gene expres-
sion profiles of colorectal cancer patients obtained from
the TCGA database indicated that EMT pathway from
the Molecular Signatures Database [23] and two pub-
lished EMT gene signatures [24, 25] were significantly
enriched in samples with high level of H19, demon-
strated H19 is highly correlated with EMT signaling (Fig.
3b). To validated the association between H19 and EMT
in colorectal cancer, we first confirmed the influence of
H19 on the expression of EMT transcript factors in CRC

cells because of their direct functions to induce EMT.
RT-PCR data suggested that H19 overexpression in-
crease the mRNA level of Snail but not Slug, Smuc,
Zeb1, Zeb2, Twist1, Twist2 or E12/E47 in HCT116 and
SW480 cells (Fig. 3c and S6a). Consistently, H19 deple-
tion reduce the expression of Snail but not Slug, Smuc,
Zeb1, Zeb2, Twist1, Twist2 or E12/E47 in HCT116 and
DLD1 cells (Fig. 3d and S6b). Western blot result indi-
cated H19 overexpression increased the expression of
Snail, N-cadherin and inhibited E-cadherin expression
(Fig. 3e), whereas H19 depletion downregulated Snail,
N-cadherin expression and upregulated the expression
of E-cadherin (Fig. 3f). Hence, these results suggested
that H19 promote EMT, migration, invasion and metas-
tasis of CRC cells.

H19 specifically binds to hnRNPA2B1
Since lncRNA can implement their functions through bind-
ing to proteins [26, 27], RNA pull-down assays were per-
formed followed by LC-MS to detect the target of H19
(Figs. 4a, S7 and Table S4). The result demonstrated that

Fig. 1 The expression of H19 is upregulated in metastatic CRC and associated with poor prognosis. a Left. Heat-maps of top 10 lncRNAs
upregulated or downregulated between tumor and matched adjacent normal samples form GSE50760. Right. Heat-maps of lncRNAs changed
most substantially between primary tumors and matched metastatic tissues. b The expression levels of H19 in matched normal colonic
epithelium, primary CRC and metastatic liver lesions from GSE50760. Wilcoxon signed-rank test. c Analysis of H19 expression by qRT-PCR in
tumors and matched adjacent colonic epithelium tissues of 60 CRC patients from the first affiliated hospital of Sun Yat-sen university. The gene
expression is normalized to GAPDH. Student’s t-test. d Analysis of H19 expression in primary tumors between patients with (n = 11) and without
metastasis(n = 49) by qRT-PCR. Student’s t-test. e Analysis of H19 expression between paired primary tumors and liver metastasis tissues (n = 11)
by qRT-PCR. Student’s t-test. f High H19 expression in CRC correlated with decreased overall survival by Kaplan-Meier survival analysis. The
median expression of H19 was used as cut-off. Log-rank test. *P < 0.05, **P < 0.01, ***P < 0.001
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hnRNPA2B1 was one of the most abundant proteins inter-
acting with H19, which has been reported to regulate EMT
and metastasis in tumors [28]. Hence, hnRNPA2B1 were
selected as candidates for subsequent mechanistic experi-
ments. First, western blot followed RNA pull-down assays
confirmed the capability of hnRNPA2B1 binding to H19 in
HCT116 cells (Fig. 4b). Consistently, RNA immunoprecipi-
tation assays suggested that the enrichment of H19 precipi-
tated by antibodies against hnRNPA2B1 increased greatly
compared with those by control IgG in HCT116 and DLD1
cells, which further validated the interactions between H19
and hnRNPA2B1 (Fig. 4c). To further investigate the role
of hnRNPA2B1 in H19-regulated metastasis in colorectal
cancer, we separated the nuclear fractionation and cyto-
plasm fractionation of HCT116 and SW480 cells to investi-
gate the distribution of H19 in subcellular fraction. RT-

PCR demonstrated H19 distributes in cytoplasm as well as
in nucleus (Fig. 4d), suggested H19 could implement its
functions at the transcriptional or post-transcriptional level.
Next, we tried to elucidate whether H19 can regulate the
expression of hnRNPA2B1 through their interactions or
not. Western blot result indicated H19 overexpression did
not influence total protein level of hnRNPA2B1 in HCT116
or SW480 cells (Fig. 4e). It has been reported that some
hnRNPs shuttle between the nucleus and the cytoplasm
[29], and consequently facilitated its binding to the target
RNA [30]. Thus, the distribution of hnRNPA2B1 in H19
overexpression and control colorectal cancer cells were
compared. Our results demonstrated H19 overexpression
enhance the enrichment of hnRNPA2B1 in the cytoplasm
(Fig. 4f), while knockdown of H19 decrease cytoplasmic
hnRNPA2B1 (Fig. 4g). Furthermore, immunofluorescence
also confirmed H19 overexpression increase the protein
level of hnRNPA2B1 in cytoplasm (Fig. 4h) and H19 de-
pleted reduce the enrichment of hnRNPA2B1 in cytoplasm
(Fig. S8). Taken together, these data suggested that H19
specifically binds to hnRNPA2B1 and promote its trans-
location from nucleus to cytoplasm.

H19 regulates EMT through hnRNPA2B1 dependent ERK
pathway
Next the effect of hnRNPA2B1 in metastases were ex-
plored to test whether it is a downstream mechanism of
H19. Knockdown of hnRNPA2B1 inhibited the migra-
tion and invasion of HCT116 and SW480 cells (Fig. 5a
and b) as well as inhibited EMT (Fig. 5c), suggested a
positive role, similar as H19, in regulating EMT. Next,
we investigate whether H19 promote EMT and metasta-
sis depending on hnRNPA2B1 in CRC. Silencing of
hnRNPA2B1 in HCT116-H19 or SW480-H19 cells at-
tenuated H19-induced migration and invasion (Fig. 5d
and e). These results suggested that hnRNPA2B1 con-
tribute to the invasiveness of colorectal cancer cells in-
duced by H19. Emerging evidence demonstrated that
hnRNPA2B1 promotes tumor metastasis through extra-
cellular regulated protein kinases (ERK) pathway [31].
We therefore investigated the functions of H19 and
hnRNPA2B1 in ERK pathway. Western blot analysis
demonstrated that H19 overexpression elevate the phos-
phorylation of ERK (Fig. 5f), while H19 knockdown lead
to decreased phosphorylation of ERK (Fig. 5g). In
addition, SCH772984, an ERK pathway inhibitor, attenu-
ated the upregulation of Snail in HCT116-H19 and
SW480-H19 cells (Fig. 5h). These results indicated that
H19 regulate the expression of Snail through the activa-
tion of ERK signaling. Furthermore, knockdown of
hnRNPA2B1 reversed the phosphorylation of ERK and
upregulation of Snail in colorectal cancer cells with
stable H19 overexpression (Fig. 5i). Collectively, our re-
sults demonstrated that H19 overexpression can lead to

Table 1 Correlation between H19 expression and
clinicopathologic features of CRC

Features N of
cases

H19 p-value

Low High

Total 60 30 30

Age (years) 0.795

> 65 34 18 16

≤ 65 26 12 14

Gender 0.438

Male 32 14 18

Female 28 16 12

Tumor size (cm) 0.119

> 3 33 13 20

≤ 3 27 17 10

Depth of invasion 0.613

T1 3 1 2

T2 7 4 3

T3 30 17 13

T4 20 8 12

Lymph node metastasis 0.010

N0 33 19 14

N1 16 10 6

N2 11 1 10

Distant metastasis 0.042

M0 49 28 21

M1 11 2 9

AJCC stage 0.127

I 8 4 4

II 25 15 10

III 16 9 7

IV 11 2 9

The median expression level of H19 was used as cut-off
P-value was acquired by Pearson chi-square tests
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activation of ERK signaling through hnRNPA2B1, and
eventually induced EMT and metastasis in CRC.

H19 actives ERK signaling by upregulating Raf-1
expression
We next sought to determine the underlying mechanism
how H19 activate ERK signaling through hnRNPA2B1. It
has been reported that hnRNPA2B1 regulates the expres-
sion and splicing of A-Raf [32], a member of Raf kinase
family, which are main activators of ERK signaling [33].
Therefor we explored the function of H19 in regulating
the expression of Raf kinase family. Knockdown
hnRNPA2B1with siRNA reduced the mRNA level of Raf-
1 (C-Raf) and A-Raf, but not B-Raf in HCT116 and
SW480 cells (Fig. 6a), whereas the overexpression or silen-
cing of H19 only altered the mRNA level of Raf-1(Fig. 6b
and c), suggested Raf-1 may play a critical role in H19-
mediated activation of ERK signaling. Furthermore, we
found that overexpression of H19 upregulated the protein
levels of Raf-1 in HCT116 and SW480 cells (Fig. 6d). Sim-
ultaneously, hnRNPA2B1 knockdown reduced expression
of Raf-1 (Fig. 6e). These results indicated that H19 and

hnRNPA2B1 regulated expression of Raf-1 at RNA level.
To further confirmed the association between H19,
hnrnpA2B1 and Raf-1, we analyzed the expression of H19,
hnrnpA2B1 and Raf-1 in the primary colorectal cancer tis-
sues and demonstrated the expression of H19 is positive
correlated with Raf-1 (Figs. 6f, S9a and S9b). The recuse
experiment revealed that overexpressed Raf-1 in H19-
depleted HCT116 cells upregulated the migration, inva-
sion (Fig. 6g) and EMT (Fig. 6h) of HCT116 cells. Because
hnRNPA2B1 stabilizes a variety of its target RNA [34], we
suppose H19 upregulates the expression of Raf-1 through
the interaction between hnRNPA2B1 and Raf-1 mRNA.
To further validate this, RIP assays were performed, and
indicated a possible binding between hnRNPA2B1 and
Raf-1 mRNA in HCT116 and SW480 cells (Fig. 6i).
Next, we investigated the influence of H19 on the
interaction between hnRNPA2B1 and Raf-1. RIP as-
says followed by qRT-PCR suggested that the enrich-
ment of Raf-1 precipitated by antibodies against
hnRNPA2B1 in H19 stable overexpression cells were
increased significantly compared to that in control
cells, revealing H19 facilitates the binding between

Fig. 2 H19 promotes the metastasis of colorectal cancer cells in vitro and in vivo. a & b Overexpressed H19 promoted the migration and invasion
of HCT116 and SW480 cells. c & d Knockdown of H19 inhibited the migration and invasion of HCT116 and DLD1 cells. e The Representative
images of metastatic lung tumors after injection of HCT116-H19 and HCT116-Vector cells via tail vein in nude mice. Arrows represent metastatic
tumors. f HE staining of metastatic lung tumors. g The number of metastatic tumors in the lungs of nude mice after injection of HCT116-H19 and
HCT116-Vector cells. Scales bars = 100um. Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001
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hnRNPA2B1 and Raf-1 (Fig. 6j). Consistently, H19
knockdown decreased the binding between
hnRNPA2B1 and Raf-1 (Fig. S10), suggested the bind-
ing between hnRNPA2B1 and Raf-1 mRNA is H19
dependent. Furthermore, by treating cancer cells with
Act-D to terminate transcription, our results demon-
strated that silencing of hnRNPA2B1 significantly de-
crease the stability of Raf-1 in HCT116 and SW480
cells (Fig. 6k). Moreover, overexpression of H19 stabi-
lized Raf-1 mRNA (Fig. 6l) while knockdown
hnRNPA2B1 in HCT116-H19 and SW480-H19 atten-
uated the effect of H19 on the stability of Raf-1 (Fig.
6m), indicated H19 regulated Raf-1 expression via
hnRNPA2B1 at post-transcript level. All together,
these results suggested H19 enhanced the stability of
Raf-1 mRNA via hnRNPA2B1, subsequently activated
Raf-ERK signaling.

Discussion
Metastasis causes most cancer-related deaths in pa-
tients with colorectal cancer [2]. However, the critical

molecules regulating tumor metastasis are still largely
unknown. Among the complex process of metastasis
development, long non-coding RNAs were identified
to play important roles in regulating cancers metasta-
sis [21]. In the present study, we demonstrate H19
promotes the migration, invasion and metastasis of
colorectal cancer cells in vitro and in vivo. By binding
to hnRNPA2B1, H19 leads to EMT via Raf-ERK
dependent signaling, and finally promotes the dissem-
ination of CRC.
LncRNA has been reported to exert crucial influence

on the development of cancers [35]. Regarding the
metastasis of CRC, few lncRNA have been functionally
elucidated. To identified lncRNA related to metastasis in
CRC, the expression profile of CRC between primary tu-
mors and metastases in public database were analyzed.
H19 was supposed to be one of the top overexpressed
lncRNA both in primary tumor and metastatic tissues
compared with adjacent normal tissues. Some studies
have demonstrated that the overexpression of H19 is as-
sociated with increased risk for several malignancies [36,

Fig. 3 Overexpression of H19 promotes EMT in colorectal cancer cells. a Correlation analysis of H19 and Snail expression in TCGA database. b GSEA of
EMT gene signatures in colorectal cancer samples with high H19 expression versus those with low H19 expression in TCGA database. The median
expression of H19 was used as cut-off. c Effect of forced expression of H19 on the mRNA level of Snail in HCT116 and SW480 cells were measured by
qRT-PCR. d Effect of H19 knockdown on the mRNA level of Snail in HCT116 or DLD1 H19 cells were quantified by qRT-PCR. e Western blot analysis of
EMT markers by ectopic expression of H19 in HCT116 and SW480 cells. f Western blot analysis of EMT markers in H19 knockdown or control cells.
Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001
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37]. Among that, H19 was reported to be potential prog-
nostic biomarker to predict liver metastases in CRC pa-
tients [38], but the exact mechanism remained unclear.
To further confirm the role of H19 in the regulation of
CRC metastasis, we analyzed the expression pattern of
H19 in clinical specimens. Our results revealed that H19
is upregulated in liver metastases and primary tumors
compared with adjacent non-cancerous tissues. In
addition, high H19 was associated with more positive
lymph node and distance metastasis, and worse survival

outcomes, suggesting H19 to be a potential predictor for
CRC metastasis and prognosis.
Considering the increased expression and a potential

pro-metastasis role of H19 in colorectal cancer, the effect
of H19 on the invasiveness of CRC cells were evaluated
in vitro. Overexpression of H19 markedly enhanced,
whereas H19 silencing reduced the migration and invasion
of HCT116 and SW480 cells. On the contrary, the CCK-8
assays found that H19 have no significant effect on the
viability of HCT116 and SW480 cells because H19 may

Fig. 4 H19 binds to hnRNPA2B1 specially. a Coomassie blue staining of gel after SDS-PAGE separated the proteins which were immunoprecipitated
with full length of H19 and its antisense RNA in HCT116 cells by RNA pull-down assays. The arrow shows the position of hnRNPA2B1. b Western blot
analyses following RNA pull-down assays in HCT116 cells confirmed the interaction between H19 and hnRNPA2B1. Input, total proteins. Pull down,
proteins immunoprecipitated by RNA. c RIP assay followed by qRT-PCR suggested H19 binds to hnRNPAA2B1. d qRT-PCR to analyze the subcellular
distribution of H19 after compartmentalization of cytoplasmic and nuclear fractions in HCT116 and DLD1 cells. β-actin and U6 act as cytoplasmic and
nuclear controls, respectively. e Western blot to analyze total level of hnRNPA2B1 between H19 overexpressed and control cells. f Western blot
analyzed the effect of H19 on the protein level of hnRNPA2B1 in nuclear and cytoplasm. g Western blot analyzed the protein level of hnRNPA2B1 in
nuclear and cytoplasm of H19 depleted and control cells. h Immunofluorescence were performed to investigate the subcellular localization of
hnRNPA2B1 of H19 overexpression and control cells. Scales bars = 10um Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001
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mainly influence the cell motility but not viability of
colorectal cancer, and further study on the influence
of H19 on cell cycle should be carried out to ensure
the underlying mechanism of H19. Further analysis
in vivo demonstrated that overexpression of H19

leads to more metastases and larger tumor size in
lung compared with control cells. Taken together,
these results suggested that H19 promoted colorectal
cancer metastases in vitro and in vivo, but exerted no
influence on cell viability.

Fig. 5 H19 induced migration and invasion in colorectal cancer through hnRNPA2B1 a HnRNPA2B1 knockdown blocked the migration
and invasion of HCT116 cells. b HnRNPA2B1 knockdown decreased the migration and invasion of SW480 cells. c Western blot analyses of
EMT markers (Snail, E-cadherin and N-cadherin) after silencing of hnRNPA2B1in HCT116 and SW480 cells. d Knockdown of hnRNPA2B1
inhibited H19-induced migration and invasion in HCT116 cells. e Silencing of hnRNPA2B1 decreased H19-induced migration and invasion
in SW480 cells. f Ectopic expression of H19 elevated the phosphorylation of ERK in colorectal cancer cells. g Western blot showed altered
levels of p-ERK after H19 knockdown in HCT116 and DLD1 cells. h SCH772984 decreased the phosphorylation level of p-ERK, and the
expression of Snail in HCT116-H19 and SW480-H19 cells. i HnRNPA2B1 knockdown reversed H19-induced p-ERK and Snail expression.
Scales bars = 100um. Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001
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Nevertheless, the molecular mechanism of H19 to up-
regulate the metastatic capability of tumor cells in colorec-
tal cancer were not clear. It is well established that EMT, a
transition of cancer cells from epithelial phenotype to gain
mesenchymal properties, is a prominent process for can-
cer metastases [39]. It has been reported that H19 affect
EMT by functioning as miRNA sponges in breast cancer
[18]. To further investigate the underlying mechanisms
for H19 promoting migration and invasion of CRC cells,
correlation analysis was performed according to the data
in TCGA, and revealed that the expression of H19 is posi-
tively correlated with Snail, an EMT- transcription factor,
which induce EMT by transcriptionally represses E-
cadherin [40]. Our data suggested that ectopic expression
of H19 increase the RNA and protein level of Snail, as well
as N-cadherin, and decreased the level of E-cadherin.
Consistently, H19 knockdown downregulated the expres-
sion of Snail and N-cadherin, but increased the level of E-
cadherin. Collectively, our study demonstrated that H19
can upregulate Snail expression, which subsequently in-
duced EMT, and eventually promoted CRC metastasis
in vitro and in vivo.

Mounting evidence showed that lncRNA act as key
regulators by binding to RNA binding proteins (RBP).
To explore the potential RBPs that H19 binds to,
RNA pull-down assays and LC-MS were performed,
and found that H19 binds to hnRNPA2B1 directly.
HnRNPA2B1, a member of heterogeneous nuclear ri-
bonucleoproteins mainly located in the nucleus, are of
crucial importance for the stabilization of its target
transcripts [34]. It has been reported that lncRNA
can regulate the translocation of hnRNPs from nu-
clear to cytoplasm [30], leading to subsequent bio-
logical process in cancer [29]. Several studies have
demonstrated cytoplasmic localization of hnRNPA2B1
is associated with oncogenesis [41, 42]. In present
study, we found overexpression of H19 triggers the
translocation of hnRNPA2B1 from nuclear to cyto-
plasm. Knockdown of hnRNPA2B1 alleviated the en-
hanced capability of migration and invasion caused by
H19, as well as the expression of Snail, indicated a
pivotal role of hnRNPA2B1 in H19-mediated EMT
and metastasis. Ras/Raf/MEK/ERK signaling is always
aberrantly activated and upregulate the expression of

(See figure on previous page.)
Fig. 6 H19 stabilize RAF1 by interacting with hnRNPA2B1. a The effect of hnRNPA2B1 knockdown on the mRNA level of Raf kinase family was
measured by qRT-PCR. b The influence of H19 overexpression on the mRNA level of Raf kinase family were measured by qRT-PCR in colorectal cancer
cells. c The impact of H19 knockdown on the mRNA level of Raf kinase family were measured by qRT-PCR in colorectal cancer cells. d Western blot
analysis of Raf-1 in H19 stable overexpression or control cells. e Western blot analysis of Raf-1 after hnRNPA2B1 knockdown in HCT116 and SW480
cells. f Correlation analysis of H19 and Raf-1 in primary colorectal cancer tissues. g Overexpression of Raf-1 rescued the migration and invasion of H19-
depleted HCT116 cells. h Western blot analyses of EMT markers after overexpression of Raf-1 in H19-depleted HCT116 cells. i RIP assay followed by
qRT-PCR explored the enrichment of Raf-1 mRNA binding to hnRNPAA2B1. j RIP experiment showed that H19 overexpression increased the
enrichment between Raf-1 mRNA and hnrnpA2B1. k Knockdown of hnRNPA2B1 disrupted the stability of Raf-1 mRNA compared with the control
group. l Overexpression of H19 increased the stability of Raf-1 mRNA compared with the control group.m Knockdown of hnRNPA2B1 reversed H19-
induced Raf-1 mRNA stabilization. Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001

Fig. 7 Model of H19 interaction with hnRNPA2B1 and the signaling pathways involved in colorectal cancer metastasis. H19 interacts with
hnRNPA2B1, promoting the translocation of hnRNPA2B1 from nucleus to cytoplasm, facilitating the binding between hnRNPA2B1 and Raf-1
mRNA, thereby stabilizing Raf-1 mRNA. Upregulation of Raf-1 activate ERK signaling pathways, thereby promoting the transcription of Snail and
inducing EMT
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EMT transcript factors, consequently resulting in
EMT and metastases in various types of cancers [33,
43, 44]. Our data demonstrated that the overexpres-
sion of H19 elevate the phosphorylation of ERK.
Meanwhile, ERK signaling inhibitor blocked the up-
regulation of Snail caused by H19 overexpression,
suggested H19 regulates the expression of Snail via
ERK pathway. In addition, knockdown of hnRNPA2B1
attenuated the activation of ERK signaling induced by
H19, which further confirmed hnRNPA2B1 work as
downstream mechanism of H19 to promote EMT. To
further elucidate the mechanism of ERK signaling ac-
tivation, we found overexpression of H19 facilitates
the binding between hnRNPA2B1 and the mRNA of
Raf-1 and consequently stabilizes Raf-1. Ectopic H19
expression upregulated the expression of Raf-1, subse-
quently activated Raf-ERK signaling. Overexpressed
Raf-1 rescued the migration, invasion and EMT in
H19-depleted cells. In addition, hnRNPA2B1 knock-
down reversed the effect of H19 on the stability of
Raf-1, suggested H19 exert its functions dependent on
hnRNPA2B1. Collectively, our study demonstrated the
overexpression of H19 triggers the translocation of
hnRNPA2B1 from nuclear to cytoplasm and increases
the enrichment between hnRNPA2B1 and Raf-1
mRNA, consequently stabilizes and upregulates the
expression of Raf-1, eventually leads to activation of
Raf-ERK signaling and EMT (Fig. 7).

Conclusions
In conclusion, our finding reveals that lncRNA H19 is up-
regulated in colorectal cancer, and correlated with poor
outcomes in CRC patients. By directly binding to
hnRNPA2B1, H19 activates Raf-ERK signaling, resulting
in the induction of EMT, and eventually promotes migra-
tion, invasion and metastasis of colorectal cancer cells.
Our study discovers the critical role of H19 in mediating
the pro-metastatic potential of CRC and highlight the po-
tential of H19 acting as a prognostic predictor and thera-
peutic target for colorectal cancer.
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