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A Hindmarsh-Rose model perceptibility phantom containing inserts with various 
in vitro atherosclerotic plaque compositions was constructed and imaged on a 
clinical 64 slice multidetector (MDCT) system using 80 and 120 kVp settings and 
two other cone-beam (CBCT) systems at 80 kVp. Perceptibility of the simulated 
lipid-fibrotic plaque solutions in the images was evaluated by six observers. The 
effective doses of the protocols employed were estimated using phantom CTDI-vol 
measurements placed at identical settings. The CBCT system allowed reduction in 
effective dose in comparison with the conventional MDCT system for imaging of the 
carotid plaque phantoms without degrading image quality. The CBCT dose was less 
than MDCT, with a mean dose of 1.14 ± 0.01 mSv and 1.11 ± 0.02 mSv for MDCT 
using two measuring techniques vs. 0.35 ± 0.01 mSv for CBCT. The image quality 
analysis showed no significant differences in the contrast-detail (C-D) curves of 
the best performing CBCT vs. clinical MDCT (p > 0.05) using a Mann-Whitney U 
test. Results indicate that low-tube–potential CBCT may produce comparable C-D 
resolution for phantom-based representations of soft plaque types with respect to 
MDCT systems. This study suggests that the utility of low kVp CT techniques for 
evaluating carotid vulnerable atherosclerotic plaque merits further study.

PACS numbers: 87.53.Bn, 87.57.N-, 87.57.Q-, 87.57.cj
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I.	 Introduction

The current clinical diagnostic methods for detecting vulnerable atherosclerotic plaque are 
largely based on stenosis angiography and intravascular ultrasound (IVUS).(1,2) These approaches 
have limitations, and neither has the ability to differentiate soft plaque (fibrotic vs. fatty plaque), 
which are rupture-prone and known to induce plaque instability. Plaque composition, rather 
than the degree of arterial stenosis, is thought to be the critical determinant of both risk of 
rupture and subsequent thrombogenicity.(3) An imaging technique capable of noninvasively 
quantifying atherosclerotic plaque composition in addition to stenosis would likely be use-
ful for detecting early atherosclerotic disease and improving the current understanding of the 
pathogenesis of atherosclerosis.

Soft plaque lesions are inherently low-contrast in nature, making their detection an essen-
tial aim in diagnostic imaging. Test phantoms with low-contrast details can be used(4) for the 
purposes of quantitative evaluation of low-contrast detail perceptibility. Several possible mea-
surement methods have been described in the literature. However, to date there have been few 
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studies examining plaque characterization using these phantoms. Most plaque imaging studies 
are either in vivo, animal, or endarterectomy ex vivo. These approaches all have limitations in 
their abilities to fully characterize vulnerable plaque including long scan times, high radiation 
dose loads (which eliminate longitudinal studies), and animal plaque deviation. Furthermore, 
costly and prolonged clinical trials are often required for validating a new or alternative imaging 
technique intended for clinical use, especially when more established methods already exist.(5) 
Phantoms can help circumvent these difficulties by offering a different type of model, which 
has the additional ability to better control the experimental design.

The flexibility in designing experiments that phantoms offer can be employed to demon-
strate the application of computed tomography for differentiation of lipid-rich and fibrotic 
plaque. A Hindmarsh-Rose model-based lesion composition phantom may be used to test the 
contrast relationships between fatty, fibrotic, and calcified components of vulnerable plaque, 
and compare the results between two competing modalities. A C-D technique using such phan-
toms can address the limits of imaging performance in a systematic manner, and is especially 
advantageous for modality system assessments by comparing multiple curves. One curve can 
be produced from each technique (different imaging systems, or same system under different 
operating conditions), and then compared to another.(6)

The aim of this study was to develop a suitable lesion composition phantom and to evaluate 
the application of computed tomography for differentiation of in vitro lipid-rich vs. fibrotic 
plaque samples at clinical interscanner protocols of 120 kVp and 80 kVp. The phantom was 
used to characterize simulated atherosclerotic plaques by comparison of the C-D characteristics 
of conventional MDCT and clinical low-tube–potential CBCT images, based on Hindmarsh-
Rose model predictions.

 
II.	 Materials and Methods

A. 	T he phantom
C-D phantoms (also known as Hindmarsh-Rose model phantoms) have been used as test objects 
and analysis tools in various diagnostic imaging modalities.(6-10) These perceptibility phantoms 
are quantitative tools with designs that take into account the physics of attenuating transmission 
beams. That is to say they generate a range of image contrasts determined by phantom thickness 
(e.g., cavity hole depth or water column height). In the current study, a phantom was designed 
and constructed in which contrast depends, not on the traditional attenuating properties of the 
phantom (i.e., hole thickness or water column height), but on its differing contents such as 
varying plaque composition mixture. This approach enables a comparison of the low-contrast 
performance of different scanners.  

The lesion composition phantom was designed to assess the visible detectability of vulner-
able atherosclerotic plaque in this study. The design was performed and evaluated using formZ 
CAD software (AutoDesSys, Columbus OH) and the phantom was constructed of cast acrylic 
block (McMaster-Carr, Elmhurst, IL) with a mean CT attenuation value approximating typi-
cal fibrotic atherosclerotic tissue. A total of 27 cylindrical inserts (9 rows × 3 inserts) of 0.4, 
0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 mm in diameter and a reference cavity of 12 mm were 
drilled perpendicularly into the plastic block, as shown in Fig. 1. The dimensions of each disk 
was 50.8 mm in diameter and 12.7 mm in thickness, with total volume allocated for injecting 
plaque in each phantom at 1068.77 mm3 per composition. There were five phantom segments 
(for five different compositions) overall, connected via a stabilizing shaft (Fig. 2) to prevent 
rotation while submerged in a scattering medium such as water. 

The sizes of the phantom cavities were chosen with the resolution limits of conventional CT 
systems in mind and in accordance with published data from subjects with acute atherosclerotic 
arterial events, whose typical lipid core dimensions range from 1–5 mm2, with the consideration 
that at least 80% of plaques have core areas exceeding 1.0 mm2.(11,12) 
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B. 	 Plaque lesion composition
Emulsions with varying concentrations of lipid and fiber were injected into the phantoms to 
simulate regions of atherosclerotic lipid core and surrounding fibrotic tissue, with each vary-
ing composition emulsified within a 2 mL solution of 5% acetic acid and ethanol, in varying 
proportions of lipid and fiber, to produce different lesion compositions consisting of five lesion 
compositions of lipid-fiber with mass ratios of 82:18, 71:29, 60:40, 49:51, and 37:63, respec-
tively, all totaling 100 mgr each.

Fig. 1.  The phantom consisted of five plastic cylinders with holes containing the simulated plaques, which were positioned 
on a coaxial support rod and housed in a water-filled container. In this view, the phantom structure was disassembled into 
its constituent parts.

Fig. 2.  View of plaque composition phantom assembly: (1) phantom assembly positioned for scanning; (2) disassembled to 
reveal how central phantom shaft and alignment rod support cylindrical phantom inserts; (3) phantom structure assembled 
without water; (4) support structure with both ends on.
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The lipid solution used was a by-weight composition of 25% free cholesterol (Product 
Number C8503, Sigma-Aldrich, St. Louis, MI), 19% cholesteryl palmitate (Product Number 
C6072, Sigma-Aldrich), 36% cholesteryl oleate and 20% triglycerid, as per the distribution 
values reported by McArthur(13) for atheroma in human lesions. The corresponding fibrotic 
solution was 20% elastin (Product Number E1625, Sigma-Aldrich) and 80% Type I Collagen 
(BD Biosciences, Bedford MA), as per reported values for fibrotic plaque content in human 
atherosclerosis lesions.(14-16) Each composition occupied a total of 1.07 mL of the 27 inserts 
in each phantom.

C. 	 Imaging protocols and settings
The MDCT protocol used was that of a clinically used 64 slice Angio Neck (Brilliance 64, Philips 
Medical Systems, Cleveland, OH) at 80 kVp and 120 kVp for all lesions, followed by two dif-
ferent cone-beam fixed geometry (rotating gantry) clinical CBCT units (Morita 3D Accuitomo 
80 XYZ Slice View Tomograph, J. Morita MFG. Corp., Kyoto, Japan) and (Planmeca Promax 
3D, Planmeca USA, Roselle, IL).  

The phantoms were positioned at isocenter and oriented parallel to the axis of the gantry so 
that they would be exposed radially inward (Fig. 2). Table 1 summarizes the protocols used 
for scanning the plaque phantom.

D. 	D ose measurements
Six optically stimulated luminescence (OSL) detectors (Landauer, Glenwood, IL; serial# 
DN093015717) with sensitivity of 0.93 were placed on the phantom at 90° interval pairs during 
measurements in each of the MDCT 120 kVp and CBCT 80 kVp scans, and were then read 6 
hours postexposure by an InLight microStar Reader (Landauer). These measurements provided 
a crude estimate for comparing the relative dose of the two imaging techniques. Another, more 
quantitative assessment used, was the measurement of the CTDI-vol of both modalities using an 
adult head 100 mm pencil chamber phantom composed of polymethyl methacrylate (PMMA), 
as per ACR guidelines. In this protocol the CTDI dose was measured in the CTDI phantom at 
the isocenter and at the 12-o’clock position in the periphery, three times each. Values of CTDI-
vol were then calculated, as per the definitions of two published standards: IEC60601-2-44(17) 
and ICRP87.(18) This procedure allowed effective dose calculations based on the anatomy of 
the neck area. The detectors used were an Unfors Xi 1 (Unfors RaySafe AB, Billdal, Sweden), 
and Triad 3 Electrometer model 35050A (Keithley Instruments, Inc., Cleveland, OH).

Table 1.  Scan protocols.

		  Philips Brilliance	 Planmeca Promax 3D	 Morita 3D Accuitomo 

	 kVp	 80/120	 80	 80
	 Filter	 Standard	 ---	 ---
	 Collimation	 64×0.625	 ---	 ---
	 Pitch	 1.2	 ---	 ---
	Rotation Time	 0.75 sec	 ---	 17 sec
	 DFOV	 80 mm	 80 mm	 80 mm
	 Matrix	 512	 250	 507
	 Thickness	 1.0	 ---	 1.28a

	Exposure Time	 0.624 sec	 12.25 sec	 17 sec
	 mA	 321	 14	 10
	 X-Y res.	 0.4 mm	 0.32 mm	 0.16 mm

a	 Postacquisition processing when exporting into DICOM.
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Effective dose provides a method for comparing biological effects of radiation between 
diagnostic procedures of different types. A reasonable estimate, independent of scanner type, 
was obtained by employing the proper weighting factor, k, which is only dependent on the 
body region being exposed:(19)  

	 Effective Dose = k × DLP	 (1)

where k is the weighting factor in mSv.mGy-1.cm-1, and DLP is the dose length product  
in mGy.cm. The weighting factor used in this study to estimate the effective dose was  
0.0059 mSv.mGy-1.cm-1 for the neck region, as per the values reported in AAPM Report 96.(20) 

To attain a comparison between the measured beams, the half-value layer (HVL) of the 
Philips and Morita units were measured at their respective isocenters, using an Unfors Solo 
(Unfors RaySafe AB) detector. The measurement setup for measuring HVL (right) and CTDI 
(left) in the Morita unit is shown in Fig. 3.

E. 	 Effective energy
The effective energies were determined using an eight-material reference phantom (Fig. 4) with 
known physical properties, as previously described by Mah et al.(21) The mass attenuation coef-
ficients used were derived from National Institute of Standards and Technology (NIST) Tables 
of X-ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients from 1 keV 
to 20 MeV for elements Z = 1 to 92 (NISTIR 5632 Version) from JH Hubbell and SM Seltzer 
in the Ionizing Radiation Division of the Physics Laboratory National Institute of Standards 
and Technology in Gaithersburg, MD, USA. 

The eight-material phantom was scanned using clinical protocol of 80 kVp and 7 mA on the 
Morita Accuitomo 80 and 80 kVp and 12 mA on the Planmeca ProMax 3D. The CBCT data 
were then exported as a raw DICOM dataset and transferred to Cybermed’s On Demand 3D 
software (Cybermed Inc., Irvine, CA) for analysis. The average gray levels for seven of the 
eight standard materials were determined and fitted against the linear attenuation coefficients 
for the respective reference materials at various photon energies using a regression analysis. The 
energy resulting in the best linear fit or an R value closest to one was selected as the “effective 
energy” of the beam. The gray levels for air were not utilized in the regression analysis as it 

Fig. 3.  Setup for measuring HVL at isocenter for the Morita 3D Accuitomo cone-beam CT unit using an Unfors dosimeter 
(right), and CTDI on same cone-beam unit (left).
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appeared that the gray levels on some CBCT devices are artificially set to register at -1000 or 
very close to it. 

In a previous paper, Mah et al.(21) reported that the average gray levels were linearly related 
to the Hounsfield units of each material, as given by the equation: 

	 HU = (μmaterial - μwater)/(μwater) × 1000	 (2)

Hence the gray levels could be plotted against the linear attenuation coefficients of each 
material to establish an effective energy. 

F. 	 Analytical methods
Six independent observers (three diagnostic imaging physicists, two clinical radiologists, and 
one optometrist) evaluated visibility thresholds of the phantoms without prior knowledge of 
the phantom characteristics and blinded to the results. The MDCT and CBCT images were 
marked and ordered into stacks of cross-sectional images, and displayed with fixed level/
window settings through all observations, for a total of 240 images. These images were pre-
sented in random order to the readers who were asked to identify the smallest size, of which 
all three cavities were simultaneously visible, per each composition, excluding bubbles, and 
allowing frame toggling. Internal noise was minimized(7,22) by using ambient light levels and 
fixed conditions. An observation distance of 50 cm was maintained throughout, with small 
variations in observation distance allowed, as no major impact in observer response was to be  
expected.(7,23) The boundary of the detected cavity was then delineated with an ROI marker tool 
in order to correctly measure the CT number Si of the ith simulated lesion. The definition(24) 
used to compute the corresponding CNR was: 

		  (3)
	

where Sb is the average of the corresponding measured background signal of the image pixel 
values for that specific ith ROI, with σ denoting the standard deviation. This value was assigned 
to the ordinate(25) of the C-D curve, with a similar procedure performed for each C-D data 
point extracted.

Fig. 4.  A photograph of the reference phantom used for measuring effective energy of modalities is shown (left). The 
diagram depicts how a phantom can be attached to one or multiple lesion composition phantoms (right).
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The accumulated data were then exported and a nonlinear regression computation was per-
formed using Mathematica 6.0 (Wolfram Research Inc., Champaign, IL). The Hindmarsh-Rose 
model equation used to fit the data was a customized derivation(26) of the form,

		  (4)
	

where d0 is the resolution limit of the system, k is the fitting parameter, d is the abscissa vari-
able (insert size), and C is the contrast relative to background. The Mathematica program 
computed the fitting parameter, k, by using the Levenberg-Marquardt method for nonlinear 
least-squares, which finds numerical values of the parameter k that enable the customized 
Hindmarsh-Rose model equation(4) to yield a best fit to the CNR values as a function of the 
observed phantom detail.

Differences between the resulting C-D curves were tested for significance using nonpara-
metric statistics. The two-tailed Mann-Whitney U test was used for pair comparisons, while the 
Kruskal-Wallis H test was used for an overall group comparison. Critical values representing a 
probability, p ≤ 0.05, were considered adequate for rejecting the null hypothesis. Calculations 
were performed using a computational statistics package (PASW Statistics 18 for Windows, 
IBM, Armonk, NY).

The inverse image quality figure, denoted IQFinv, was then used as a further quantitative 
comparison tool for evaluating the C-D phantom images. The IQFinv, a measure for the ranking 
and differentiation of imaging systems or techniques, is defined(8,27) as:

		  (5)
	

where Ci represents the contrast of the ith plaque cavity at the threshold of visibility, and Di 
denotes the corresponding diameter. This figure can serve as a measure for the threshold of 
visibility contrasts and details, and can be directly employed to compare similar radiological 
imaging systems or to describe the effects of a change in technique.(28) Thus the higher the 
IQFinv, the lower the threshold of visibility. The IQFinv was calculated for all analyzed lipid-
fibrotic plaque phantom images, resulting in an IQFinv value for each technique (plotted as a 
function of effective energy.

 
III.	Res ults 

The measured effective energies were 58 KeV (80 kVp) and 69 KeV (120 kVp) for the Philips 
MDCT, 50 KeV (80 kVp) for the Morita, and 50 KeV (80 kVp) for the Planmeca, respectively, 
using the reference phantom method previously described. The HVL of the Philips unit at 
120 kVp beam was measured to be 9.31 mmAl, and that of the Morita 3D Accuitomo unit 
3.34 mmAl using an Unfors Solo detector. The HVL for the Promax at 80 kv was measured 
to be 2.5 mmAl.

One set of images obtained using each imaging modality for the set of phantoms are presented 
in Fig. 5 showing axial views of a lipid-fibrotic plaque mixture using a Philips MDCT system 
at both 80 kVp, 120 kVp, and CBCT images from Morita and Planmeca at 80 kVp. While cast 
acrylic used in many phantom designs have been reported to be in the 120 ± 4 HU range,(29) 
the cast acrylic device used in the current experiments were measured to have a mean CT 
attenuation value of 94.8 ± 2.3 HU, selected for its proximity to that of fibrotic atherosclerotic 
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tissue.(30-35) The window/levels used for each modality were 345/174, 1498/620, and 700/216 
for the Morita, Planmeca, and Philips, respectively. These were kept constant throughout the 
observation trial for each modality.

C-D curves were constructed to depict the mutual interdependency and trade-offs of the 
observable image noise, resolution, contrast, and patient dose. These curves indicate the levels 
of contrast required for the detection of lesions of different sizes and inherent contrasts, as in the 
low- and high-density lipid mixtures. Figure 6 shows the resulting C-D curves for 80 and 120 
kVp vs. the Morita and Planmeca CBCT units. These curves represent model-predicted C-D 
diagrams for the same plaque mixtures, resulting from the evaluations of six different observers 
in the same low-light viewing conditions. As expected, less contrast was required for larger 
lesion sizes and lower noise levels. Whereas the Planmeca unit yielded a much lower contrast 
resolution performance among all three scanners, the Morita Accuitomo unit at 80 kVp was 
visibly sufficient to render distinction between adipose and nonadipose tissues on par with the 

Fig. 5.  Axial views of lesion composition phantom as seen from (top-left going clockwise): Planmeca Promax3D (80 kVp), 
Morita Accuitomo (80 kVp), and Philips MDCT system at 120 kVp and at 80 kVp.

Fig. 6.  Interscanner comparison for simulated fibrotic-lipid lesions using Planmeca (blue) at 80 kVp, Morita (green) at 
80 kVp, and Philips at 120 kVp (black) and 80 kVp (orange). Each curve relates the size of the minimally perceptible 
lesion as a function of contrast for different levels of SNR.
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clinical 120 kVp Philips protocol images. To quantify this observation, tests of normality were 
conducted on the observed data which verified that they did not conform to a Gaussian distri-
bution. As a result, the nonparametric Kruskal-Wallis test was used to evaluate all techniques. 
A significant difference was found for the simulated plaque images of all four techniques (p = 
0.037 < 0.05 for Philips at 80 kVp and p = 0.018 < 0.05 for Philips at 120 kVp), indicating that 
there is a significant difference between the corresponding C-D curves. The Mann-Whitney U 
test was used to further examine the pair-wise differences between MDCT images obtained at a 
tube voltage of 80 kVp and those obtained at 120 kVp vs. each CBCT technique. A statistically 
significant difference was found (p = 0.038 < 0.05 at 80 kVp and p = 0.015 < 0.05 at 120 kVp) 
between MDCT at 80 kVp and 120 kVp vs. Planmeca C-D curves, while a statistically significant 
difference was not found between MDCT at 80 kVp and 120 kVp vs. Morita C-D curves (p = 
0.878 > 0.05 for Philips 80 kVp and p = 0.382 > 0.05 for Philips at 120 kVp, respectively).

Figure 7 further illustrates the comparison of the four different techniques with a plot of 
IQFinv as a function of measured effective energy, for each of the six observers. The averaged 
IQFinv, ordered from highest to lowest, with interobserver variations expressed as standard 
deviations were 62.63 (± 4.50 SD) for Philips at 120 kVp, 52.28 (± 4.45 SD) for Morita CBCT, 
29.60 (± 4.95 SD) for Philips at 80 kVp, and 21.21 (± 2.27 SD) for the Planmeca Promax, 
respectively.

The phantom CTDI-vol measurements, DLP, as well as estimated effective dose from two 
detector types are tabulated in Table 2. The CBCT manufacturer displayed a CTDI-vol of 
7.9 mGy, which was in close agreement with our measurements. Such was not the case, however, 
for the MDCT Philips scanner. For example, the manufacturer’s displayed CTDI-vol for the 
120 kVp protocol on the Philips Brilliance used in this study was 12.9 mGy, which is roughly 
half the measured value we obtained, indicating that the manufacturer used a 32 cm adult body 
PMMA phantom to calculate the CTDI-vol. For our protocol, a 16 cm phantom was used as it 
was more appropriate for determining dose in the neck region. In addition, the effective dose 
for the Promax model had to be calculated differently, due to an observed asymmetric field. 
Similar to the method described by Lofthag-Hansen et al.,(36) we calculated the effective dose 
as the product of the dose area product (DAP) and a conversion factor of 0.08 mSv per Gy cm2 
to arrive at the effective dose of 0.082 mSv for our protocol, which is a lower dose than the 
other models we examined.  

Fig. 7.  Individual inverse image quality figure (IQFinv), as described in text, for simulated fibrotic-lipid lesions for all six 
observers as a function of effective photon energy of the used technique. Planmeca is Promax 3D, Morita is 3D Accuitomo 
80 XYZ slice view tomograph, MDCT80 is the Philips Brilliance 64 operating at 80 kVp, and MDCT120 is the Philips 
Brilliance 64 operating at 120 kVp.
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Relative dose measurements obtained from the plaque imaging protocols using OSL detec-
tors for 80 kVp CBCT vs. 120 kVp MDCT also demonstrated a 65% drop in average dose 
from MDCT to CBCT measurements, which confirmed the drop in effective dose calculated 
from CTDI measurements.

 
IV.	D ISCUSSION

An in vitro phantom investigation into soft plaque characterization in which atherosclerotic 
plaques are simulated with varying size and composition is presented in this study. Scans of the 
phantoms were obtained using 80 kVp and 120 kVp clinical imaging protocols on an MDCT 
scanner and a 80 kVp protocol on two CBCT systems. Observer performance C-D curves were 
computed for five combinations of plaque composition per scan protocol.

While commercial aqueous lipid suspensions in varying proportions have previously been 
used to produce different lesion compositions for phantoms in similar studies,(37) our plaque 
composition was based on contents previously reported in the literature to better approximate 
physiological plaque. Collagen is a major component of the fibrotic cap in advanced lesions, 
comprising 30% of the dry weight and up to 60%(15) or even 80% of the total protein content 
of advanced human lesions, with the rest being largely composed of elastin.(16,38) The major 
collagen type of advanced lesions is the fibrillar collagen type I, accounting for roughly 70% 
of the total collagen.(15) The percentage composition of phospholipid-free lipids in atheroma 
have long been identified with the major constituents being free cholesterol (24.3%), free acid 
glycerides (17.9%), and cholesteryl esters (57.8%) such as oleate, palmitate, and other fatty 
acid mixtures.(13) Comparison with previously reported CT numbers in lipid-rich(39,40) and 
fiber-rich(34,39) lesions illustrates that the emulsions used in the present study had attenuation 
values in the range associated with physiological tissue measurements. While cast acrylic used 
in CT phantoms has been reported to be in the 120 ± 4 HU range,(29) the cast acrylic used in 
the current phantom was measured to have a mean CT value of 94.8 ± 2.3 HU, similar to that 
of fibrotic atherosclerotic tissue.(30-35) Aside from the phantoms and materials used, this study 
also differs from its predecessors in terms of the analysis method. This study examined extant 
conventional protocols and their default parameters for imaging soft plaque, such as the Philips 
Angio neck protocol, rather than seeking to compare the optimal performance capabilities of 
each system. This approach was used to attain a more realistic comparison of the imaging 
modalities, and the latter line of inquiry would require a completely different experimental 
design. Thus the phantoms were imaged with standard clinical imaging scanners using basic 
conventional protocols (e.g., 120 kVp) rather than a ‘best of scanner’ customized protocol, in 
order to determine the observer performance metrics applied to clinical soft plaque imaging.

Another point of distinction was the use of C-D analysis for subjective assessment of image 
quality, which can be utilized for comparing the diagnostic capabilities of different modalities 
or one modality under different settings. C-D curves are a well-accepted graphical description 
of the Hindmarsh-Rose model that describes the threshold contrast for perceiving a target in 
an image as a function of object (e.g., lesion) detail.(26) Consequently, the relative positions 

Table 2.  Dose estimates and measurements.

		  Morita 3D Accuitomo	 Philips Brilliance	 Philips Brilliance

	 Type	 CBCT	 MDCT	 MDCT
	 Tube Potential	 80 kVp	 120 kVp	 120 kVp
	Measuring Instrument	 Unfors	 Unfors	 Triad
	 CTDI-VOL (mGy)	 7.49±0.02	 24.13±0.11	 23.49±0.41
	 DLP (mGy.cm)	 59.94±0.15	 193.03±0.84	 187.88±3.24
	 Deff (mSv)	 0.35±0.01	 1.14±0.01	 1.11±0.02
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of the C-D curves would reveal which technique is preferable for generating images that can 
detect noise-limited targets under poor contrast conditions.(26)

The C-D analysis results in this study highlight the trade-offs in employing clinical CBCT 
for the case of soft plaque solutions. For example, the Morita C-D curve in Fig. 6 is positioned 
to the right and adjacent to the MDCT curves. Hence, a lesion of 0.8 mm in diameter would 
require less contrast to be observed in using the cone-beam unit compared to the MDCT system 
(assuming that the protocol used in this study was employed). Or, from another perspective, if 
one is to consider the definition of vulnerable plaque as that of having a large lipid core with 
at least 40% of its composition being free cholesterol crystals, esters, and other lipids,(41) then 
according to this same curve for that given percentage (and hence contrast) one can approxi-
mate the minimum detectable lesion size for each system. In our specific case, the threshold 
of visibility for soft plaque solutions is smaller for the Morita cone-beam scanner, given the 
same level of contrast, and compared with the MDCT protocol, particularly in the submillimeter 
range. These results are all due to the inherent differences between CBCT and MDCT scanner 
design. Each manufacturer employs different engineering trade-offs to obtain different desired 
effects. The reproduced volume, exposure parameters, radiation dose, and distribution vary from 
CBCT vendor to vendor.(36) For example, the Planmeca Promax unit differs in the method of 
image acquisition from its Morita counterpart both in terms of beam angle geometry and arc of 
rotation. The former acquires its images via a 220° arc of rotation and approximately a 15° to 
20° projection trajectory, whereas the Morita protocol that we used made a full 360° rotation 
during exposure and a zero° projection trajectory. 

The data presented here suggest that there may be an advantage in terms of contrast reso-
lution to image soft plaque in the carotids at subclinical and clinical kVp using a cone-beam 
CT. The Morita unit provides an example, producing similar, if not equal, contrast resolution 
capabilities for viewing plaque solutions compared to a conventional MDCT unit operating at 
120 kVp protocol. 

The results of this study indicate that additional investigation is required in order to establish 
the role for plaque detection and characterization using CBCT scanners. In particular, future 
studies should address the limits of CBCT plaque detection while considering the full range of 
operating characteristics of these systems. 

The present study also identified several issues involved with simulating plaque constituents. 
These include minimizing sources of variability within the artificial plaque samples including 
ameliorating partial volume effects inherent in ROI measurements. In addition, it is important 
to reduce the inhomogeneity of the composed materials (such as the collagen), which cause 
large fluctuations in the attenuation densities of the in vitro plaque. In a similar study performed 
by Ferencik et al.,(37) gray level densities displayed were affected by the lesion size, as well as 
composition, which further raises questions for quantifying plaques in a phantom model. Fatty 
substances are, furthermore, notoriously difficult to manage in submillimeter spaces, especially 
when mixed with fiber in solution form, which can lead to extensive clumping and regional air 
bubbles. In addition, a standardized method of performing radiation dose measurements for 
different CT techniques for purposes of comparison is still lacking.(36)

Nakayama et al.(42) have been able to decrease intrascanner tube voltage and reduce radiation 
dose at the same time, without any significant image quality degradation. Similarly, Hamann 
et al.(43) have evaluated and compared the performance of an Infinia Hawkeye 4 SPECT-CT 
system to a 16 slice diagnostic GE Discovery PET-CT scanner (GE Healthcare, Waukesha, 
WI), showing a diagnostic advantage of the former in terms of low-contrast detail detection. 
Although several reports in the literature claim CBCT scanners to emit lower doses of radia-
tion compared to their conventional MDCT counterparts,(36,44,45) a more thorough inquiry into 
protocol dosimetry must be taken into consideration to better clarify the range of protocols over 
which these claims are valid. Hence, further study is still required to compare an optimized 
plaque imaging protocol to conventional MDCT methods. 
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The current study demonstrated the concept of viewing an atherosclerotic plaque mixture 
using clinical-grade CBCT systems, operating at tube potentials that are lower than  that used 
for conventional MDCT clinical studies. The relative slight increase in the CT number of the 
nonadipose soft plaque vs. adipose plaque at lower tube-potential settings might find utility 
in rendering higher contrast between atheromatous adipose and nonadipose plaques.(26) If 
one is to attain noise levels comparable to that of standard CT imaging systems, it stands to 
reason that higher doses would be required.(24) On the other hand, lower energy photons are 
beneficial in that they should allow for an improved discrimination of soft tissue targets,(46) 
particularly fat.(24)

 
V.	 Conclusions

In this study, the design and construction of C-D detectability phantoms for the assessment 
of the imaging performance of computed tomography for imaging in vitro soft plaque solu-
tions are described. These phantoms were used for a series of observer-based measurements 
on clinical-grade, cone-beam and multiple-row detector CT units, with the results expressed 
in terms of CNR and Inverted Image Quality Figure. The evidence to the results presented 
from the CBCT systems studied suggest that a more detailed examination is warranted which 
would investigate the merits and deficiencies for detecting carotid atherosclerotic plaque with 
clinical CBCT systems.
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