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Abstract: Objective: Survivin is a member of the inhibitor of apoptosis protein family, 

which uniquely promotes mitosis and regulates apoptosis in cancer cells. Recent studies 

have demonstrated that survivin also expresses in several normal adult cells. In the present 

study, we aimed to investigate the function of survivin in the terminally differentiated 

epithelial cells, podocytes. Methods: Survivin expression and location were detected by 

Quantitative Real-Time PCR, western blot and fluorescence confocal microscopy methods 

in normal and injured mouse podocytes. Cyto-protection function of survivin was also 

studied in cultured podocyte injured by puromycin aminonucleoside (PAN), transfected  

with survivin siRNA to down-regulate survivin expression, or with survivin plasmid to 

transiently over-express survivin. Results: In podocytes, PAN stimulated expressions of 

survivin and the apoptosis related molecule caspase 3. Knockdown of survivin expression by 

siRNA increased the activation of caspase 3, induced podocyte apoptosis and remarkable 

rearrangement of actin cytoskeleton. Moreover, over-expression of survivin inhibited 

PAN-induced podocyte apoptosis and cytoskeleton rearrangement. Conclusion: Our data 

provides the evidence that survivin plays an important role in protecting podocytes from 

apoptosis induced by PAN. The mechanism of survivin related anti-apoptosis may, at least 

partially, be through the activation of caspase 3. 
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1. Introduction 

Survivin (gene name Birc5), is a member of inhibitor of apoptosis family, and is the strongest 

inhibitor of apoptosis factor identified so far [1,2]. The expression of survivin is low or absent in the 

terminally differentiated normal tissues/cells [3]. Various studies have demonstrated that survivin is 

over-expressed in cancer tissues/cells [4–9], and the higher expression of survivin plays a significant 

role in the inhibition of apoptosis [10–13]. The mechanism of apoptosis inhibition by survivin is mainly 

through directly or indirectly interfering caspase activities in response to apoptosis stimuli [10–14].  

The discrepancy of survivin expression in cancers versus normal tissues makes survivin as a useful tool 

for cancer diagnosis and a promising molecular therapeutic target [15,16]. Moreover, several studies 

report that survivin expresses during embryonic and fetal development and deletion of survivin gene is 

fatal for embryos [17], suggesting that survivin also has an important function in cell cycle [18,19]. 

Interestingly, recent studies have demonstrated that survivin expresses in some normal adult cells, 

including T lymphocytes [20,21], gastric mucosal epithelial cells [22], kidney epithelial cells [23,24] 

and cardiomyocytes [25,26]. Survivin expression displays a cell specific up-regulation after 

experimental traumatic brain injury in rats [27]. Survivin over-expression inhibited ethanol-induced 

gastric epithelial cells apoptosis [28]. In 2013, Terasaki et al. also reported that survivin inhibited 

apoptosis of human lung epithelial cells in acute lung injury, partly by interfering with effector  

caspases [29]. Disturbing the expression of survivin by anti-sense techniques or generating specific 

survivin-deficient mice leads to more apoptosis and faster disease progression [30,31]. 

However, the significance of survivin expression in glomerular podocytes is yet unknown. Podocytes 

are the highly terminally differentiated epithelial cells critically required for maintenance of glomerular 

filtration barrier [32]. Several experimental and clinical reports demonstrate that podocyte apoptosis is a 

key step in the progression of glomerular injury and progression to sclerosis [33–35]. In our previous 

studies [36], survivin was found to be significantly up-regulated in podocytes of rats with experimental 

puromycin aminonucleoside (PAN) nephropathy. PAN, a podocyte toxin, is widely used to induce 

experimental nephrotic syndrome in rats [37–39], and causes foot process effacement and apoptosis in 

cultured podocytes [40–42]. We hypothesize that survivin has an important role in protecting podocytes 

from apoptosis induced by PAN. In this study, we investigated the role of survivin in the podocytes 

injured by PAN. 

2. Results 

2.1. Survivin Expression Was Increased in Podocytes after PAN Treatment 

We investigated survivin expression in cultured podocytes treated with puromycin aminonucleoside 

(PAN). Survivin expression was up-regulated in a dose dependent manner. Survivin mRNA level was 

increased after normalization by GAPDH (Figure 1A), and survivin protein level reached 1.4, 1.9 and 

2.2 folds of the control level in a PAN dose dependent manner (Figure 1B,C). At the same time, in the 

normal podocytes, survivin fluorescence was weak and evenly distributed in the cytoplasm and nucleus, 

whereas their fluorescence intensity in PAN treated podocytes increased remarkably in PAN-treated 

podocytes, further confirming the fact that survivin was up-regulated in the injured podocytes. 
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Figure 1. Survivin expression increased in podocytes after puromycin aminonucleoside 

(PAN) treatment for 24 h. (A) The RNA level of survivin was evaluated by the  

Quantitative Real-Time PCR; (B) The protein level of survivin was performed by western 

blot; (C) The amounts of protein were quantified and calibrated with the expression of 

GAPDH. Data are presented as mean ± SD. n = 3. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

2.2. PAN Induced Podocyte Apoptosis with Significant Rearrangement of F-Actin 

Caspases are a family of cysteine proteases involving in the crucial processes of apoptosis.  

We observed the changes of activated caspase 3 in podocytes treated with 25, 50, and 100 μg/mL PAN 

for 24 h. Activated caspase 3 increased in a PAN dose dependent manner (Figure 2A,B). In addition,  
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we used Hoechst stain analysis to detect nuclear changes in apoptotic cells, which were significantly 

increased in podocytes after treatment with PAN 50 μg/mL for 24 h (Figure 2C,D). The distribution of 

F-actin had an obvious rearrangement in those cells by fluorescence confocal microscopy (Figure 2E). 

We then used 50 μg/mL PAN as the following experiments. 

Figure 2. Injury of podocyte after PAN treatment 24 h. (A) Cell lysates were analyzed via 

western blot with antibodies against caspase 3, cleaved caspase 3 and GAPDH, respectively; 

(B) The amounts of protein were quantified and calibrated with the expression of GAPDH; 

(C) Images of podocytes stained with Hoechst (400×, original magnification). Hoechst 

staining demonstrates nuclei of apoptosis cells and living cells. Red arrows represent 

apoptotic cells. Bar = 40 μm; (D) Quantitative analysis of apoptosis cells presents as apoptosis 

cells/total cells; (E) F-actin staining with the fluorescence study (red color). Bar = 40 μm. 

Data are presented as mean ± SD. n = 3. * p < 0.05, ** p < 0.01. 

 

2.3. Knockdown of Survivin Expression Exacerbated PAN-Induced Injury of Podocytes 

To explore the role of survivin in PAN induced podocyte injury, we down-regulated survivin 

expression in podocytes by using siRNA and then analyzed caspase 3 expression in these cells by 

western blot. The down-regulation of survivin mRNA by siRNA was examined by Quantitative 

Real-Time PCR and western blot. Survivin siRNA #1, #2, and #3 down-regulated survivin mRNA by 



Int. J. Mol. Sci. 2014, 15 6661 

 

55%, 28% and 75%, respectively (Figure 3A), and decreased survivin protein by 75%, 61% and 85%, 

respectively (Figure 3B,C). Therefore, survivin siRNA 3# was used for the following experiments. 

Up-regulation and activation of caspase 3 were found in podocytes treated with survivin siRNA,  

and were significantly enhanced in podocytes treated with PAN + survivin siRNA (Figure 4A,C). 

Consistent with the increase of activated caspase 3 after down-regulation of survivin, Hoechst staining of 

cell nuclei (Figure 4D,E) and TUNEL assay (Figure 4F,G) also demonstrated a significant increase of 

apoptotic cells number. To further observe the cell viability in down-regulation of survivin, we detected the 

rate of podocyte viability by MTS and the viability was significantly decreased (Figure 4H). In addition, 

the integrity of the cytoskeleton is important to maintain the function and morphology of podocytes. 

Rearrangement of F-actin was found in those cells by fluorescence confocal microscopy. In podocytes 

transfected with negative control siRNA, the F-actin was distributed as stress fiber-like bundles along 

the axis of podocytes (Figure 4I1). Survivin knockdown podocyte showed rearrangement of F-actin 

(Figure 4I9), which was more severe in podocytes treated with PAN + survivin siRNA (Figure 4I13). 

Figure 3. Screening of high effective survivin siRNA. The total RNA (A) and protein (B,C) 

expression of survivin decreased significantly after transfection with survivin siRNA  

100 pmols compared to negative control siRNA, especially survivin siRNA#3 group.  

Data are presented as mean ± SD. n = 3. * p < 0.05, ** p < 0.01. 
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Figure 4. The effect of knocked down survivin on PAN-induced injury of poodcytes.  

(A) Total cell lysates were prepared and analyzed via western blot with antibodies against 

survivin, cleaved caspase 3 and GAPDH respectively; (B,C) The amounts of each protein 

were quantified and calibrated with the expression of GAPDH; (D) Images of podocytes 

stained with Hoechst (200×, original magnification). Hoechst staining shows nuclei of 

apoptosis and living cells, Bar = 50 μm. Red arrows indicate apoptotic cells; (E) Quantitative 

analysis of apoptosis cells presents as apoptosis cells/total cells; (F) Images of podocytes 

stained with TUNEL. Bar = 100 μm. The green color is indicative of TUNEL-positive cells 

(indicated with red arrows), and the blue color marks the presence of all cells; (G) The 

percentage of apoptotic cells is reported. For each group in a given experiment, at least 300 

randomly chosen cells were analyzed; (H) MTS analysis of the rate of podocytes viability; 

(I) F-actin and survivin staining with the fluorescence study demonstrates in red and green, 

respectively. The double-labelled assays showed that survivin co-localized with F-actin.  

Bar = 40 μm. Data are presented as mean ± SD. n = 3. * p < 0.05, ** p < 0.01, NS means  

no significance. 
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Figure 4. Cont. 

 

2.4. Over-Expression of Survivin Expression Ameliorated PAN-Induced Injury of Podocyte 

To further explore the protective effect of survivin in PAN-induced injury of podocytes, podocytes 

were transfected with pCMV6-Kan/Neo-survivin plasmids (survivin plasmid) to over-express survivin. 

The over-expression efficiency was analyzed by western blot (Figure 5A,B). Survivin over-expression 

by transfection of survivin plasmid induced the decrease of activated caspase 3 in podocytes and also in 

podocyte treated with PAN (Figure 5A,C). Consistent with the decrease of activated of caspase 3 after 

survivin over-expression, Hoechst stain assay (Figure 5D,E) and TUNEL assay (Figure 5F,G) also 

demonstrated a significantly lower number of apoptotic cells compared with PAN + empty vector group. 

To further confirm the reduced apoptosis in survivin over-expression group, we detected the rate of 

podocytes viability by MTS assay, and the viability was significantly increased in the podocyte 

over-expression group comparison with the Empty vector group injured by PAN (Figure 5H).  

In addition, the F-actin had an obvious recovered arrangement by fluorescence confocal microscopy.  

In the empty vector group, F-actin was characterized by the presence of highly ordered parallel, 

contractile actin filament bundles (Figure 5I1). F-Actin was present as disordered manner, showing 

reorganized, short, branched actin filaments filled in cytoplasm in podocytes treated with PAN (Figure 5I5), 

while PAN + survivin plasmid group partly recovered the normal arrangement F-actin (Figure 5I13). 

3. Discussion 

In this study, survivin expression was up-regulated both in mRNA and protein levels in a dose 

dependent manner induced by PAN. The increase of survivin was also reported in our previous study.  
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In our previous study, survivin expression was significantly increased, both in rat PAN nephropathy and 

in patients with proteinuric renal diseases including minimal change nephrotic syndrome (MCNS),  

focal segmental glomerulosclerosis (FSGS) and membranous nephropathy (MN) [36]. All of these 

results indicated that survivin was involved in the processes of podocyte injury. Podocyte are the key 

target cells of injury in a variety of renal diseases, especially proteinuric renal diseases, such as MCNS, 

FSGS and MN, etc. Podocyte apoptosis is one of the major and important phenomena of podocyte 

injury. The expression of survivin in podocyte was also observed in a previous study [24], in which 

survivin expression was detected in normal kidney tissues of adult rats. Cells expressing survivin 

co-localized with synaptopodin in consecutive sections, which implies that survivin expresses in 

podocytes. However, the significance of increased expression of survivin in injured podocyte and the 

role of survivin in podocyte apoptosis were unknown. 

Figure 5. The effect of over-expressed survivin on PAN-induced injury of poodcytes.  

(A) Total cell lysates were analyzed via western blot with antibodies against survivin, 

cleaved caspase 3 and GAPDH; (B,C) The amounts of each protein were quantified and 

calibrated with the expression of GAPDH; (D) Images of podocytes stained with Hoechst 

(200×, original magnification), Bar = 50 μm. Hoechst staining shows nuclei of apoptosis and 

living cells. Red arrows indicate apoptotic cells; (E) Quantitative analysis of apoptosis cells 

was shown as apoptosis cells/total cells; (F) Images of podocytes stained by TUNEL.  

Bar = 100 μm. The green color is indicative of TUNEL-positive cells (indicated with red 

arrows), and the blue color marks the presence of all cells; (G) The percentage of apoptotic 

cells is reported. For each group in a given experiment, at least 300 randomly chosen cells 

were analyzed; (H) MTS analysis of the rate of podocytes viability; (I) F-actin and survivin 

staining with the fluorescence study demonstrates in red and green, respectively.  

The double-labelled assays showed that survivin co-localized with F-actin. Bar = 40 μm. 

Data are presented as mean ± SD. n = 3. * p < 0.05, ** p < 0.01, *** p < 0.001, NS means  

no significance. 
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Figure 5. Cont. 

 

Survivin is a member of the inhibitor of apoptosis protein (IAP) family. A series of studies have 

identified that survivin is the strongest inhibitor of apoptosis [1,2]. In the present study, we detected that 

survivin expression was increased in injured podocytes. In addition, Hoechst stain demonstrated the 

increase of apoptosis in PAN treated podocyte (Figure 2C,D). Podocyte apoptosis was also detected and 

reported by several other studies [43–47]. In present study, significant apoptosis was found in podocytes 

treated with PAN and survivin siRNA (Figure 4C,E,G). However, several studies demonstrated that 
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higher level of apoptosis was detected in cancer cells after drug treatment [48]. The possible reason is 

that podocytes are relatively not sensitive to drug treatment compared to cancer cells. We performed 

knockdown and over-expression of survivin in normal and PAN injured podocytes to disclose the role of 

survivin in the processes of podocyte apoptosis. Knockdown survivin rendered podocytes susceptible to 

PAN induced injury, increased the number of apoptotic cells (Figure 4D–G), decreased the viability of 

podocytes (Figure 4H), and induced obvious rearrangement of F-actin. Over-expression of survivin by 

transfection survivin plasmid ameliorated PAN induced podocytes injury, showing lower numbers of 

apoptotic cells (figure 5D–G), better viability of podocytes (Figure 5H), and nearly normal arrangement 

of F-actin. These results indicate that knockdown the expression of survivin in podocytes leads to greater 

susceptible to injury factors. Several other studies also found the similar results in other cell types.  

For example, knockdown survivin with small interfering RNA rendered human lung epithelial cells 

susceptible to bleomycin-induced cell damage [29], and led to a significant decrease in the number of 

viable ectopic ESCs following staurosporine treatment in human endometriotic stromal cells [49]. 

Specific deletion of survivin markedly delayed recovery of the kidney ischemia-reperfusion (I/R)  

injury in mouse renal proximal tubule cells [50]. On the other hand, the over-expression survivin in 

podocytes increased the resistance to PAN induced injury. In 2008, over-expression of survivin in 

cardiomyocytes by adenovirus mediated method inhibited doxorubicin-induced apoptosis [31]. And in 

2013, Terasaki et al. demonstrated that over-expression of survivin decreased bleomycin-induced 

damage in human lung epithelial cells [29]. Our results suggested that survivin could protect podocytes 

from apoptosis induced by PAN, and survivin in podocytes may play an anti-apoptosis role. 

The anti-apoptosis mechanism of survivin has not been completely understood [51]. Our results 

showed that down-regulation of survivin resulted in the increase of activated of caspase 3,  

and over-expression of survivin had an anti-apoptotic role by inhibiting the activation of caspases 3 

(Figures 4A,C and 5A,C). Thus, caspases may be involved in the mechanism of survivin related 

anti-apoptosis. Several studies by other groups suggested that survivin inhibited cell apoptosis mainly 

through interfering with caspase dependent manner [10–12]. Survivin may specifically bind to the 

terminal effector cell death proteases, caspase 3 and 7 and inhibited caspase activity in cancer  

cells [10]. In recent years, studies demonstrated that survivin may also play a role in inhibiting the 

caspase-independent apoptosis in cancer cells [52,53], and that down-regulated survivin induced the 

translocation of apoptosis inducing factor (AIF) from the cytoplasm to the nucleus in cancer cells,  

while caspase 3 activity showed no change. 

In the present study we have detected the increase survivin expression in podocytes after PAN 

treatment but the role of survivin in podocytes is not completely understood. However, our study indeed 

demonstrates for the first time that down-regulation of survivin expression exacerbated podocyte 

apoptosis and the over-expression of survivin ameliorated the PAN induced apoptosis. 

4. Experimental Section 

4.1. Podocyte Culture 

Immortalized mouse podocytes (MPC5, gift from Peter Mundel, Boston, MA, USA) were cultured 

under growth-permissive conditions on rat tail collagen type I-coated plastic dishes (BD Bioscience, 
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Franklin Lakes, NJ, USA), at 33 °C in RPMI 1640 medium (Invitrogen, Carlsbad, CA, USA) 

supplemented with 10% fetal bovine serum (Gibco BRL, Gaithersburg, MD, USA), 10 U/mL mouse 

recombinant γ-interferon (Sigma, St. Louis, MO, USA), and 100 U/mL penicillin plus 0.1 mg/mL 

streptomycin (Gibco BRL, Gaithersburg, MD, USA). To induce differentiation, podocytes were 

maintained in non-permissive conditions at 37 °C without γ-interferon for 14 days, and used for the 

experiments. PAN is widely used to study renal diseases by inducing nephrotic syndrome in vivo and 

podocyte injury in vitro [54,55]. Therefore, different concentrations of PAN (25, 50, 100 μg/mL, Sigma) 

were used to cause podocyte injury. Both mRNA and protein were collected after 24 h stimulation. All 

experiments were performed in triplicates. 

4.2. Quantitative Real-Time PCR 

Total RNA was isolated from cultured podocytes by using the Trizol reagent (Invitrogen). Two 

micrograms of RNA were reversely transcribed using the high capacity cDNA Reverse Transriptase kit 

(Invitrogen) following the manufacture’s protocol. Primers used in Quantitative Real-Time PCR 

included: 5'-CGGAGTCAACGGATTTGGTCGTAT-3' (sense) and 5'-AGCCTTCTCCATGGTGGT 

GAAGAC-3' (antisense) for GAPDH cDNA, and 5'-ATCGCCACCTTCAAGAACTG-3' (sense) and 

5'-CAGGGGAGTGCTTTCTATGC-3' (antisense) for survivin cDNA. Real-time PCR amplification 

was performed using the SYBR Green PCR Master Mix Kit (Invitrogen, Carlsbad, CA, USA). Cycling 

conditions included denature at 95 °C for 10 min followed by annealing at 40 repeats of 95 °C for 15 s 

and extension at 58 °C for 1 min. Relative quantity of mRNA were normalized by GAPDH and 

calculated using the delta-delta method from threshold cycle numbers. On the basis of exponential 

amplification of target gene as well as calibrator, the amount of amplified molecules at the threshold 

cycle is given by 2−∆∆Ct. 

4.3. Western Blot 

Podocytes were lysed with a RIPA buffer containing protein inhibitors (1 mM phenylmethylsulfonyl 

fluoride, 1 μg/mL leupeptin and pepstatin). Thirty micrograms of the total protein were subjected to 

8%–15% SDS-PAGE and transferred to nitrocellulose membranes (Amersham biosciences, Piscataway, 

NJ, USA). After blocking with PBS containing 5% nonfat dry milk for 1 h at room temperature,  

then incubated overnight at 4 °C with the following primary antibodies, rabbit anti-survivin (1:2000, 

Abcam, Cambridge, MA, USA), rabbit Anti-cleaved caspase 3 (1:750, Cell Signaling Technology, 

Beverly, MA, USA) and mouse Anti-GAPDH (1:5000, Chemicon, Temecula, CA, USA) antibody at  

4 °C over night (14–16 h). Subsequently, the membranes were rinsed three times, each time for 10 min 

in PBS buffer with 0.05% Tween-20 and incubated with horseradish peroxidase-conjugated anti-rabbit 

or mouse IgG (Santa Cruz Biotechnology, Santa Cruz, CA, USA). After a final washing, the membranes 

were developed using an enhanced chemiluminescence reagent (Millipore, Bedford, MA, USA),  

and the specific protein bands were scanned and quantitated in relation to GAPDH. The densitometric 

analysis of images was performed using Image J software (National Institute of Mental Health, 

Bethesda, MD, USA). 
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4.4. Small Interfering RNA (siRNA) Experiment 

Synthetic siRNA targeting mouse survivin and non-targeting control siRNA were obtained from 

RiboBio. The target sequences of double-stranded nucleotides used for siRNA knockdown are 

5'-CGATAGAGGAGCATAGAAA-3' for survivin (#1), 5'-CCGAGAACGAGCCTGATTT-3' for survivin 

(2#), 5'-CCGTCAGTGAATTCTTGAA-3' for survivin (#3) (RIBOBIO, Guanzhou, China). Transfection 

was performed with Lipofectamine RNAi MAX reagent (Invitrogen), according to the manufacturer’s 

protocol. Forty-eight hours after transfection, cells were treated with PAN for 24 h. The total protein 

extracts from the cells were used for western blot analysis. 

4.5. Survivin Over-Expression Experiment 

The plasmid-encoding mouse survivin pCMV6-Kan/Neo-survivin and the empty vector 

pCMV6-Kan/Neo were purchase from Origene (Origene, Rockville, MD, USA). Podocytes were 

transiently transfected with a survivin expression plasmid pCMV6-Kan/Neo-survivin and the empty 

vector pCMV6-Kan/Neo using lipofectamine 2000 Transfection Reagent (Invitrogen) according to the 

manufacturer’s instructions. Meanwhile, 48 h after transfection, cells were exposed to PAN for 24 h. 

Transfection efficiency was controlled by western blot. 

4.6. Cell Viability Assay 

The cell viability was measured by MTS reduction activity. Briefly, cells transfected with siRNA and 

the negative control siRNA or survivin plasmid and empty vector were seeded in a 96-well plate, 

incubated with 50 μg/mL PAN for 24 h, and then with 38 μg/mL MTS (Promega, Madison, WI, USA) 

for 3 h at 37 °C. The absorbance at 490 nm was read using a microplate reader (BioTek, Winooski,  

VT, USA). 

4.7. Hoechst 33258 Staining 

After treatment, cells were washed three times with phosphate buffered saline (PBS) and stained with 

a DNA specific dye, Hoechst 33258 (Sigma). The cells were viewed under a fluorescence microscope 

(Olympus, Tokyo, Japan). Characteristic apoptotic morphology such as, chromatin condensation and 

DNA fragmentation was observed after Hoechst staining, while nuclei of non-apoptotic cells stained 

homogenous blue color due to the evenly spread and mono-granulated chromatin. 

4.8. Terminal Deoxynucleotidyl Transferase dUTP Nick-End Labeling (TUNEL) 

The TUNEL assay was performed using a commercial fluorometric TUNEL system kit (Promega) 

according to the manufacturer’s instructions. Podocytes were plated at a density of 1.5 × 104 cells per 

dish with coverslips bottoms. Cells were transfected with siRNA and negative control siRNA or survivin 

plasmid and empty vector, and then treated with 50 μg/mL PAN for 24 h. Nuclear with Hoechst staining 

(Sigma) and TUNEL staining was examined under fluorescence microscope (Olympus). For each group 

in a given experiment, at least 300 randomly chosen cells were analyzed. 
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4.9. Fluorescence Confocal Microscopy 

On the coverslip’s podocytes were fixed with 4% paraformaldehyde, followed by permeabilization 

and blocking with 0.3% Triton X-100 and 10% goat serum. Rabbit anti-survivin (1:200, Abcam) was 

used as the primary antibody. For F-actin staining, fixed and permeabilized cells were incubated with 

Alexa-phalloidin (1:200, Invitrogen). After three washes with PBS, the slides were incubated with  

Alexa Fluor® 488 Goat Anti-Rabbit IgG (1:200, Invitrogen). Hoechst nuclear dye was applied.  

The slides were mounted with 15% Mowiol (Sigma). Stained images for each antibody at the same light 

exposure were obtained by confocal laser-scanning microscopy (Zeiss Lsm510 Meta, Jena, Germany). 

Photographs of podocytes stained with each antibody were selected randomly and analyzed by a person 

who was blinded to the study groups. 

4.10. Statistical Analysis 

The statistically significant difference among means of four groups was determined by one-way 

analysis of variance. An unpaired, two-tailed Student’s t-test was used to determine significant 

differences between the two groups, p < 0.05. 

5. Conclusions 

Our data provides evidence that survivin plays an important role in protecting podocytes from 

apoptosis in PAN-induced injury. The potential anti-apoptosis mechanism of survivin may relate to 

caspase 3. Survivin may be an essential mediator of cyto-protection in podocytes injury. Furthermore, 

whether survivin could be a potentially molecular target for treating proteinuric diseases still  

needs investigation. 
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