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Persistence is a transient and non-inheritable tolerance to antibiotics by a small fraction
of a bacterial population. One of the proposed determinants of bacterial persistence is
toxin–antitoxin systems (TASs) which are also implicated in a wide range of stress-related
phenomena. Maisonneuve E, Castro-Camargo M, Gerdes K. 2013. Cell 154:1140–1150
reported an interesting link between ppGpp mediated stringent response, TAS, and
persistence. It is proposed that accumulation of ppGpp enhances the accumulation
of inorganic polyphosphate which modulates Lon protease to degrade antitoxins. The
decrease in the concentration of antitoxins supposedly activated the toxin to increase
in the number of persisters during antibiotic treatment. In this study, we show that
inorganic polyphosphate is not required for transcriptional activation of yefM/yoeB TAS,
which is an indirect indication of Lon-dependent degradation of YefM antitoxin. The
110 strain, an Escherichia coli MG1655 derivative in which the 10 TAS are deleted, is
more sensitive to ciprofloxacin compared to wild type MG1655. Furthermore, we show
that the 110 strain has relatively lower fitness compared to the wild type and hence,
we argue that the persistence related implications based on 110 strain are void. We
conclude that the transcriptional regulation and endoribonuclease activity of YefM/YoeB
TAS is independent of ppGpp and inorganic polyphosphate. Therefore, we urge for
thorough inspection and debate on the link between chromosomal endoribonuclease
TAS and persistence.

Keywords: ppGpp, inorganic polyphosphate, polar effects, fitness

IMPORTANT INFORMATION

A model connecting stringent response, endoribonuclease encoding Type II TASs and persistence
is widely propagated. It states that “accumulation of ppGpp results in accumulation of inorganic
polyphosphate which modulates Lon protease to degrade antitoxin rendering toxins free to induce
persistence.” This work presents a contradiction to and challenges the current model. Experimental
evidence, literature survey as well as rationale are provided to show that inorganic polyphosphate
is not required for the degradation of YefM, the antitoxin in YefM/YoeB TAS. The 110 strain is
relatively more sensitive to ciprofloxacin and ampicillin as well as has lowered fitness. This is likely
because of the polar effects on the adjacent genes caused by the genetic manipulation of multiple
TAS loci.
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INTRODUCTION

Toxin–antitoxin systems (TASs) are operons consisting of two
or three adjacent genes which code for a toxin, which has
the potential to inhibit one or more cellular processes and
an antitoxin. The antitoxin, a protein or RNA, suppresses
the lethality of the toxin. Database mining of prokaryotic
DNA sequence showed that TAS are abundant in bacterial
and archaeal chromosomes often in surprisingly high numbers
(Anantharaman and Aravind, 2003; Pandey and Gerdes, 2005;
Shao et al., 2011). Based on the antitoxin gene products, either
RNA or protein, TAS are divided into six types (Goeders and
Van Melderen, 2014; Page and Peti, 2016) of which Type
II are the most predominant and well-characterized. Type II
TAS encode two proteins referred to as toxin and antitoxin.
They are the predominant type encoded by bacterial genomes
and plasmids. The toxin has the potential to inactivate vital
cellular targets while the antitoxins sequester toxins off the
cellular targets by forming a toxin–antitoxin complex (Gerdes
et al., 2005; Yamaguchi and Inouye, 2011). Toxin–antitoxin
complexes have the autoregulatory function wherein the TA
complex binds to the operator present upstream of the TA
operon and results in repression (Chan et al., 2015, 2016). The
antitoxin is highly unstable and its relative concentration plays a
critical role in transcriptional autoregulation as well as regulation
of toxin activity (Gerdes et al., 2005; Yamaguchi and Inouye,
2011). The decrease in antitoxin concentration is a prerequisite
for transcriptional activation of TAS. The significance of TAS
multiplicity on prokaryotic genomes and their physiological
role is highly debated (Magnuson, 2007). Many plasmids also
encode TAS whose gene products have the ability to inhibit the
growth of the cells cured of TA-encoding plasmids and thereby
increase the population of plasmid-containing cells (Gerdes et al.,
1986).

Chromosomal TAS were first discovered in studies dealing
with stringent response and later in persistence. Stringent
response, a response elicited in cells under amino acid starvation,
is characterized by accumulation of ppGpp alarmone catalyzed
by RelA upon stimulation by uncharged tRNA at the ribosomal
A site (Lund and Kjeldgaard, 1972; Haseltine and Block, 1973;
Cashel et al., 1996; Wendrich et al., 2002). Accumulation
of ppGpp modulates RNA polymerase resulting in reduction
of rRNA synthesis and thus prevents frivolous anabolism
(Barker et al., 2001; Artsimovitch et al., 2004). Several mutants
deficient/altered in stringent response were shown to be mutants
of relBE (Mosteller and Kwan, 1976; Diderichsen et al., 1977),
a TAS encoding an antitoxin (RelB) and a ribosome dependent
endoribonuclease toxin (RelE) (Gotfredsen and Gerdes, 1998;
Christensen et al., 2001). Persistence, a phenomenon of non-
inheritable antibiotic tolerance, is the second instance in which
genes belonging to the TA family were recognized. Some mutants,
high persister mutants (hip), of Escherichia coli shows higher
persister frequency as compared to wild type strain. These hip
mutations mapped to the hipA locus (Moyed and Bertrand,
1983) which is now recognized as a genuine TAS encoding
HipA toxin and HipB antitoxin (Korch et al., 2003; Germain
et al., 2013; Kaspy et al., 2013). A recent study shows an

attractive link between TAS, stringent response and persistence;
ppGpp, through inorganic polyphosphate (polyP), activates
TAS resulting in induction of persistence (Maisonneuve et al.,
2011, 2013). The crucial link between ppGpp and TA-mediated
persistence is the essentiality of polyP for the degradation of
antitoxins. During stringent response, polyP accumulates due
to ppGpp-mediated inhibition of exopolyphosphatase (PpX)
(Kuroda et al., 1997). The presence or absence of polyP
determines the substrate specificity of Lon protease (Kuroda
et al., 2001). Maisonneuve et al. (2013) have shown that polyP
is essential for Lon-dependent degradation of YefM and RelB
antitoxins resulting in increased persistence (Figure 1). YefM
is the antitoxin encoded by yefM/yoeB TAS (Grady and Hayes,
2003; Nieto et al., 2007), a well-characterized Type II TAS.
YoeB, the toxin, is a ribosome-dependent endoribonuclease
(Christensen-Dalsgaard and Gerdes, 2008; Feng et al., 2013)
that cleaves mRNA. YefM forms a complex with YoeB
resulting in inhibition of endoribonuclease activity of YoeB
(Cherny et al., 2005; Kamada and Hanaoka, 2005) and also
in mediating transcriptional autorepression (Kedzierska et al.,
2007).

Interestingly, transcriptional activation of relBE (Christensen
et al., 2001) and mazEF (Christensen et al., 2003), upon
translational inhibition, was observed even in a strain deficient
in the production of ppGpp but not in a strain deficient
in Lon protease. It was concluded, in the above references,
that transcriptional regulation of relBE and mazEF TAS
is independent of ppGpp but dependent on Lon protease.
Hence, in this study we analyzed the essentiality of polyP
in degradation of YefM antitoxin by studying the promoter
activity of yefM/yoeB loci and endoribonuclease activity of
chromosomally encoded YoeB. The endoribonuclease encoding
TAS are horizontally transferring genes and most of them in
E. coli are integrated between genes with significance in bacterial
stress physiology (Fiedoruk et al., 2015; Ramisetty and Santhosh,
2016). We speculated that deletion of the 10 TAS could alter
the physiology of the mutant strain. This study is aimed to
evaluate the link between three vital aspects of bacterial stress
physiology; endoribonuclease encoding TAS, stringent response,
and persistence.

MATERIALS AND METHODS

Strains, Plasmids, and Growth
Conditions
Escherichia coli MG1655, 15 (MG1655 derivative with five
TAS deletions 1relBE 1mazF 1dinJyafQ 1yefM/yoeB 1chpB)
(Christensen et al., 2004), MG1655 1yefM/yoeB (SC36)
(Christensen et al., 2004), MG1655 1relA1spoT (Christensen
et al., 2001), MG1655 1ppkppx (Kuroda et al., 1997) and 110
strains (MG1655 derivative with 10 TAS deletions 1relBE,
1chpB, 1mazF, 1dinJ/yafQ, 1yefM/yoeB,1yafNO, 1hicAB,
1higBA, 1prlf/yhaV, and 1mqsRA). pBAD33 (Guzman et al.,
1995) and pBAD-lon (Christensen et al., 2004) (lon gene
cloned downstream of arabinose inducible promoter) were
used for overexpression experiments. The cloning of ppk gene
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FIGURE 1 | Model linking stringent response, TAS and persistence (Maisonneuve et al., 2011, 2013). RelA, when activated stochastically or during amino
acid starvation, synthesizes the ppGpp. Accumulation of ppGpp inhibits Ppx, thereby inhibiting the degradation of polyP into inorganic phosphate. Hence, due to
continual synthesis by Ppk, polyP accumulates in the cell. PolyP then modulates the substrate specificity of Lon protease, specifically targeting antitoxin proteins for
degradation. This is hypothesized to render the toxin free to act on its target RNA and confer persistence.

downstream of arabinose inducible promoter yielded pBAD-ppk.
The cultures in all the experiments were grown in Luria Bertani
broth, at 37◦C, with 180 rpm shaking in a shaker unless specified
otherwise.

Databases
EcoGene 3.0 (Zhou and Rudd, 2013) and RegulonDB (Salgado
et al., 2013) were followed for nucleotide sequences, protein
sequences, and regulatory information wherever required.

Semi-quantitative Primer Extension
Samples of 25 ml experimental cultures were collected at 0,
10, 30, and 60 min and cells were harvested by centrifugation
at 4◦C. Total RNA was isolated using hot phenol method
and quality was analyzed by agarose gel electrophoresis. p32

labeled primers, YefMPE-2 (5′-GGCTTTCATCATTGTTGCCG-
3′) and lpp21 (5′-CTGAACGTCAGAAGACAGCTGATCG-3′),
were used in primer extension experiments involving yefM/yoeB
promoter activity and YoeB-dependent mRNA cleavage site
mapping respectively. Reverse transcription was carried out on
10 µg of total RNA, purified from samples at designated time
points, using AMV-reverse transcriptase. Sequencing reactions
were carried out similarly by Sanger’s dideoxynucleotide method.

Growth Curve
Twelve hour old overnight cultures were grown to mid log
phase in tubes containing LB medium at 37◦C. The culture was
rediluted 100-fold in LB medium and 2 µL of the diluted cultures
were inoculated into 200 µL of LB in microtitre plate wells in
triplicates. The microtitre plates were incubated at 37◦C with
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170 rpm shaking. Optical density at 595 nm was measured in a
96 well microtitre plate reader (BioradTM), every 1 h, for 8 h.

Maximal Colony Forming Units
(CFUs/ml) under Optimal Conditions
Overnight cultures were inoculated into tubes containing 3 ml LB
broth and grown at 37◦C with 170 rpm shaking for 12 h. 10 µL of
the culture was diluted appropriately and plated on LB plates and
incubated overnight. Colonies were counted and colony forming
units (CFUs) per ml were determined. The CFU/ml of MG1655
was taken as 100% for LB medium and culture conditions.

Biofilm Assay
Overnight cultures were diluted 100-fold in fresh LB tubes
and normalized to OD600 of approximately 0.05 and used as
inoculum. 2 µL of inoculum was added into each well containing
200 µL of LB broth in 96 well microtitre plates. The plates
were incubated at 37◦C for 16, 24, 48, and 72 h at 37◦C. After
the specified time points the plates were washed with PBS to
remove floating cells (Fletcher, 1977). 125 µL of 1% crystal violet
was added to each well and left for 20 min. The plates were
washed with water twice and the dye was re-dissolved by adding
90% ethanol. The re-dissolved crystal violet was taken into new
wells, to avoid biofilm interference, and readings were taken at
595 nm and readings were represented as the amount of biofilm
formation. Experiments were carried out independently thrice in
quadruplicates.

Antibiotic Sensitivity Test: Disk Diffusion
Method
Conventional disk diffusion method was used to measure relative
sensitivity of the strains (Bonev et al., 2008). 100 µL of diluted
(100-fold) overnight cultures were spread on LB agar (height –
5 mm) contained in plates with diameter 9.5 cm. Premade
antibiotic disks with defined concentrations (purchased from
HiMediaTM) were placed on the agar plates after 20 min.
ERY, erythromycin (15 µg), GEN, gentamycin (10 µg), TET,
tetracycline (30 µg), NA, Nalidixic acid (30 µg), AMP, ampicillin
(10 µg), CLM, chloramphenicol (30 µg), VA, vancomycin
(10 µg), CIP, ciprofloxacin (5 µg). The plates were incubated
overnight at 37◦C. Diameters of the zones of inhibition were
measured and the graph was plotted.

Culture Spotting Assay
Overnight cultures were diluted to approximately 1.25 OD600.
100-fold serial dilutions were made and 5 µl of each dilution
was spotted on to plates containing different concentrations of
ciprofloxacin (0, 2, 4 ng/ml). Plates were incubated at 37◦C for
24 h.

Minimal Inhibitory Concentration Assay
Minimal inhibitory concentration (MIC) assay was performed
using microtitre plate method (Stubbings et al., 2004). Overnight
cultures of MG1655 and 110 strains were diluted to 0.05
OD600. Appropriate dilutions of ciprofloxacin (ranging from 1
to 10 ng/ml, with increments of 1 ng/ml) were made in LB

broth. 200 µl of the ciprofloxacin supplemented media a loaded
on to 96 well microtitre plates. Two microlitres of the diluted
cultures were inoculated into each of the well. The plates were
grown at 37◦C in a shaker incubator for 16 h. OD595 of each
well was measured with a Biorad Microtitre plate reader. These
experiments were done thrice in triplicates.

Persistence Assay
Persistence assay (Maisonneuve et al., 2011) was performed
on exponentially growing cells (OD600 of 0.5), at 37◦C in
LB medium, of MG1655 and 110 by exposing to various
antibiotics at the specified concentrations (ciprofloxacin 1 µg/ml,
ampicillin 100 µg/ml, erythromycin 100 µg/ml, kanamycin
50 µg/ml, and chloramphenicol 100 µg/ml). After 4 h of
antibiotic treatment, cells were harvested, serially diluted and
plated. After 24 h of incubation, the number of viable cells was
counted. Percentage of surviving cells after antibiotic treatment
for 110 strain is compared with the wild type MG1655 strain.
The bars represent averages of three independent experiments
done in triplicates. Error bars indicate standard error. AMP,
ampicillin (100 µg/ml), CIP, ciprofloxacin (1 µg/ml), CLM,
chloramphenicol (100 µg/ml), KAN, kanamycin (50 µg/ml),
ERY, erythromycin (100 µg/ml).

RESULTS AND DISCUSSION

Inorganic Polyphosphate Is Not Required
for Transcriptional Upregulation of
yefM/yoeB Loci
The transcriptional upregulation of yefM/yoeB loci, or any typical
TAS, is inversely proportional to the relative concentration of
YefM. This is because TA proteins regulate their own expression
by binding to their own promoter/operator; transcription of
TA operon is inversely proportional to the concentration of
antitoxin. Hence, any transcriptional activation from yefM/yoeB
operon indicates a decrease in YefM concentration (Kedzierska
et al., 2007; Bailey and Hayes, 2009). Therefore, quantification
of the YefM mRNA is a good indicator of YefM concentration
in the cell. To test the essentiality of polyP in Lon-dependent
degradation of YefM in vivo, we employed semi-quantitative
primer extension (Christensen et al., 2001, 2003) of YefM mRNA.
Although widely used, semi-quantitative primer extension based
quantification of TAS transcriptional activity is an indirect assay
that is indicative of antitoxin degradation. However, this assay
has the advantage of a holistic transcriptional regulatory scenario
of TAS without employing any genetic manipulations within the
TA circuitry, thus avoiding artifacts. To test the role of ppGpp
and polyP in the regulation of yefM/yoeB system, we performed
amino acid starvation experiments using serine hydroxymate
(SHX) and analyzed the transcription of yefM/yoeB loci using
semi-quantitative primer extension using a YefM mRNA-specific
primer. Exponentially growing E. coli strains MG1655 (wild
type), 1lon, 1ppk1ppx, and 1relA1spoT, were treated with
1 mg/ml of SHX to induce serine starvation. 1ppk1ppx and
1relA1spoT strains are deficient in accumulating polyP and
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ppGpp, respectively (Xiao et al., 1991; Crooke et al., 1994). In
the wild type strain, we found a dramatic increase (16-fold)
in the transcription of yefM/yoeB loci while in 1lon strain
there was no change (Figure 2A). Interestingly and importantly,
we found a higher level of transcription of yefM/yoeB loci in
1relA1spoT as well as 1ppk1ppx strains indirectly indicating
that ppGpp or polyP is not required for YefM degradation during
amino acid starvation. To further investigate the essentiality of
polyP we also carried out overexpression of Lon protease in
MG1655 and 1ppk1ppx strains to know the role of polyP in the
regulation of yefM/yoeB system and found that transcription of
yefM/yoeB increased similarly in both MG1655 and 1ppk1ppx
strains (Figure 2B). These observations corroborate the earlier
findings that the transcriptional regulation of relBE (Christensen
et al., 2001) and mazEF systems (Christensen et al., 2003) during
SHX-induced starvation is independent of ppGpp but dependent
on Lon protease. In fact, RelA dependent accumulation of
ppGpp was shown to be inhibited by chloramphenicol treatment
(Svitil et al., 1993; Boutte and Crosson, 2011) and yet
the relBE and mazEF TAS were shown to be upregulated
upon addition of chloramphenicol (Christensen et al., 2001,
2003).

Transcriptional upregulation of yefM/yoeB operon does
not necessarily mean that YoeB is free to cleave its target
mRNA. To date, chromosomal YoeB-dependent mRNA cleavage
has been observed only upon ectopic overproduction of Lon
protease (Christensen et al., 2004). The ectopic overexpression
of Lon degrades YefM, leaving YoeB free to manifest its
endoribonuclease activity. Since, it was reported that Lon-
mediated degradation of YefM is dependent on polyP
(Maisonneuve et al., 2013), it is interesting to see if polyP
is essential to render YoeB free by promoting the degradation of
YefM. First, we overexpressed Lon protease in WT, 1ppk1ppx,
1yefM/yoeB (MG1655 derivate with yefM/yoeB deletion) and
15 (MG1655 derivative with 5 TAS deletions 1relBE 1mazF
1dinJyafQ 1yefM/yoeB 1chpB) strains and mapped for cleavage
sites in Lpp mRNA by primer extension as reported in earlier
studies (Christensen et al., 2004). As per the model proposed
by Maisonneuve et al. (2013), one would expect that YoeB
dependent cleavage of Lpp upon overexpression of Lon is not
observed in a strain deficient in production of polyP (1ppkppx)
but should be observed in wild type strain. In contrast, we found
cleavage of Lpp mRNA (at the second codon of AAA site) in
WT as well as in 1ppkppx strains but not in 1yefM/yoeB and
15 strains (Figure 2C). Further, we overexpressed ppk, which
increases the intracellular polyP (Keasling et al., 1998; Kornberg
et al., 1999), in exponentially growing cultures of wild type, 1lon,
1yefM/yoeB and 15 strains. We could not detect any YoeB-
dependent cleavage of Lpp mRNA upon ectopic overexpression
of ppk in any of the strains (Figure 2C). This implies that
YoeB-specific cleavage is independent of polyP—meaning that
activation of YoeB as a consequence of Lon-dependent YefM
degradation is independent of polyP. This proves the mere
increase in the polyP does not induce YoeB dependent cleavage
of target RNA. Hence, our results establish that polyP is not
required for the transcriptional activation of yefM/yoeB loci and
endoribonuclease activity of YoeB which imply that polyP is not

required for Lon-mediated degradation of YefM. Within the
scope of the experiments, it can be argued that translation and
Lon protease are the only regulators of YefM concentration.

Maisonneuve et al. (2013) observed that wild type had
higher persister frequency compared to 110 and 1ppk1ppx
strains upon relA overexpression. Based on this observation,
Maisonneuve et al. (2013) argued that degradation of the other
antitoxins in E. coli (ChpS, DinJ, MazE, MqsA, HicB, PrlF, YafN,
HigA) was also dependent on polyP (Maisonneuve et al., 2013).
This assumption is likely a fallacy because “polyP-dependent TAS
regulation model” (Maisonneuve et al., 2013) fails to explain how
all the 10 significantly divergent antitoxins of E. coli MG1655
could be the substrates of ‘polyP-modulated Lon’ protease.
Firstly, different reports implicate different proteases for the same
antitoxin. For example, MazE was thought to be cleaved by
ClpAP protease (Aizenman et al., 1996) and was contended that
Lon protease, not ClpAP, is responsible for cleavage of MazE
(Christensen et al., 2003). Lon was shown to be involved in the
regulation of HicB (Jorgensen et al., 2009), YefM (Christensen
et al., 2004; Maisonneuve et al., 2011), RelE (Christensen et al.,
2001), DinJ (Prysak et al., 2009), MqsR (Christensen-Dalsgaard
et al., 2010), YafN (Christensen-Dalsgaard et al., 2010), HigA
(Christensen-Dalsgaard et al., 2010), and HicA (Jorgensen et al.,
2009). Clp protease was also shown to be involved in the
regulation of DinJ (Prysak et al., 2009), MqsR (Christensen-
Dalsgaard et al., 2010), YafN (Christensen-Dalsgaard et al.,
2010), and HigA (Christensen-Dalsgaard et al., 2010). It is not
known if these proteases’ cleavage of antitoxins is conditional
or simultaneous. There is no experimental evidence that polyP
is required to degrade any of the 10 antitoxins in any of the
prior studies. Secondly, the molecular determinants of polyP
modulation of Lon substrate specificity are not known. It is
to be noted that YefM is degraded even in MC4100 strain
(relA1 mutant strain) (Cherny et al., 2005) which is deficient
in accumulating ppGpp during amino acid starvation (Metzger
et al., 1989). It may also be noted that antitoxins like YafN,
HigA, and MqsA (YgiT) were shown to be degraded by both
Lon and Clp proteases (Christensen-Dalsgaard et al., 2010).
Furthermore, based on studies on “delayed relaxed response”
(Christensen and Gerdes, 2004), the half-life of RelB in MC1000
strain is approximately 15 min and RelB101 (A39T mutant
of RelB) is less than 5 min. It is interesting to notice that
RelB101 is degraded even in a 1lon strain, indicating that
some other proteases may also cleave RelB101 (Christensen
and Gerdes, 2004). These literature evidences indicate that
changes in primary structures of antitoxins could drastically
alter their protease susceptibility and specificities. Recently, it
was reported that a few TAS could induce persistence even in
the absence of ppGpp (Chowdhury et al., 2016). PolyP was
shown to inhibit Lon protease in vitro (Osbourne et al., 2014)
and is reported to act as a chaperone for unfolded proteins
(Kampinga, 2014) which may have significant implications in
bacterial stress physiology, however, is not essential for the
degradation of YefM. Contrary to earlier reports, polyP is
suggested to be a molecular reservoir of energy (Nikel et al.,
2013) and probably also phosphate to endure prolonged stress. To
our rationale, since endoribonuclease encoding TAS propagate
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FIGURE 2 | (A) Transcriptional activation of yefM/yoeB loci during amino acid starvation. Exponentially growing (0.45 of OD450) cultures of MG1655, 1lon, 1ppkppx,
and 1relA1spoT were treated with 1 mg/ml of serine hydroxymate. Total RNA was isolated at 0, 10, 30, and 60 min and semi-quantitative primer extension was
performed using YefM mRNA-specific primer (YefMPE-2). (B) yefM/yoeB transcriptional activation during overexpression of Lon protease. MG1655 and 1ppkppx
strains were transformed with pBAD33 vectro or its derivative carrying lon gene. Overnight cultures were diluted and grown to 0.45 OD450 in LB medium
supplemented with glycerol as carbon source at 37◦C. Lon overexpression was induced by addition of 0.2% arabinose. Samples were collected at indicated time
intervals and semi-quantitative primer extension performed as described in Materials and methods. (C) YoeB-dependent cleavage upon overexpression of lon is
independent of polyP. MG1655, 1ppk1ppx (1ppkx), 1yefM/yoeB, and 15 strains were transformed with pBAD-lon and pBAD-ppk was transformed into MG1655,
1lon, 1yefM/yoeB and 15. The transformants were grown in LB media supplemented with 2% glycerol to mid-exponential phase (0.45 of OD450). 0.2% arabinose
was added to induce expression of lon or ppk. Samples were collected at 0, 10, 30, and 60 min and primer extension was carried out using Lpp mRNA-specific
primer (lpp21) for cleavage site mapping. YoeB-dependent cleavage, indicated by an arrow, is in accordance with results from Christensen et al. (2004).

through horizontal gene transfer mechanisms (Ramisetty and
Santhosh, 2016), minimal dependence on host genetic elements
maybe preferable for TAS regulation. Within the scope of our
experiments conducted in this study and based on literature, it is
appropriate to state that polyP is not essential for Lon-mediated
proteolysis of YefM. It should be noted that YefM-YoeB was used
as a model TAS, by Maisonneuve et al. (2013), for single-cell-level
assays to show the role of ppGpp and polyP in the regulation of
YefM-YoeB TAS and concomitant persistence. Although, we do
not have a ready explanation for this fundamental contradiction,

we do not rule out His-tag interference in the proteolysis assays
performed by Maisonneuve et al. (2013).

Persistence of MG1655 and 110 Strains
to Ampicillin, Ciprofloxacin,
Erythromycin, Chloramphenicol, and
Kanamycin
The induction of persistence (Korch and Hill, 2006; Butt et al.,
2014) by over expression of toxins was challenged and shown
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that even proteins unrelated to toxins, during controlled over
expression, induced persistence (Vazquez-Laslop et al., 2006).
Maisonneuve et al. (2011) reported that 110 strain (E. coli
MG1655 derivative in which 10 endoribunuclease TAS were
deleted) had lesser persister frequency compared to wild type
strain when challenged with ciprofloxacin and ampicillin. Since
there were no reports (during the time these experiments were
carried out) on the TAS mediated persistence during treatment
with other antibiotics, we performed similar experiments to
determine persistence to treatment of logarithmically growing
cultures of MG1655 and 110 strains to ciprofloxacin (1 µg/ml),
ampicillin (100 µg/ml), erythromycin (100 µg/ml), kanamycin
(50 µg/ml), and chloramphenicol (100 µg/ml). We found that
with ampicillin and ciprofloxacin, 110 strain had significantly
lesser persister frequency compared to the wild type MG1655
(≈65-fold) (Figure 3A). However, we could not find significant
difference in the number of persisters formed by 110 and
MG1655 with chloramphenicol, erythromycin, and kanamycin.
If toxin induced dormancy or metabolic regression results in
bacterial persistence, similar persistence should be observed
with other antibiotics (inhibitors of translation) especially
because all the toxins in the study are translational inhibitors.
Several inhibitors of translation were shown to activate TAS
(Christensen et al., 2001) and hence, in principle, confer more
persistence. At least with kanamycin, since it is a bactericidal
antibiotic, we expected persistence conferred by TAS. However,
wild type and 110 strains formed equal number of persisters
upon treatment with kanamycin. Similar observation (Shan
et al., 2015) with gentamycin, another aminoglycoside antibiotic,
wherein significant persistence was not observed (Wood, 2016)
corroborates our findings.

Relative Hypersensitivity of MG1655 and
110 Strains to Ciprofloxacin and
Ampicillin
In light of our observations, we were curious about the degree of
sensitivity to various antibiotics. We determined the sensitivity
of the MG1655 and 110 strains to various antibiotics by disk
diffusion method, as it is highly sensitive and quantifiable. We
observed that zone of inhibition of MG1655 with ciprofloxacin
(10 µg) was 3.6 cm (averages) while that of 110 strain was 3 cm
(Figure 3B). With ampicillin (10 µg), the zones of inhibition
for MG1655 and 110 strain were 2.45 and 2.1 cm, respectively.
With nalidixic acid, the zones of inhibition for MG1655 and
110 strain were 1.98 and 1.78 cm, respectively. We did not
find any significant difference with the other antibiotics at the
concentrations used (Figures 3B,C). We also spotted cultures
(Figure 3D) of MG1655 and 110 strains on Luria-Bertani Agar
plates without and with ciprofloxacin (2, 4, or 6 ng/ml). There was
no growth of either of strains on plates supplemented with 4 and
6 ng/ml of ciprofloxacin. However, we noted that while MG1655
strain formed colonies in least dilutions spotted, 110 strain failed
to form colonies in 24 h of growth. We also performed liquid
broth based MIC assay in microtitre plates. We could not find
significant difference using twofold dilution method. Hence, we
performed MIC of ciprofloxacin with increments of 1 ng/ml

within a range of 1–10 ng/ml. We found that MG1655 had a
MIC of 6 ± 0.15 ng/ml. 110 strain had significantly reduced
growth at a concentration of 3 ng/ml and completely inhibited
at 4 ± 0.005 ng/ml. This indicates that 110 strain is more
sensitive to ciprofloxacin and ampicillin relative to MG1655. Our
observation could also mean that TAS confers a certain degree
of ‘resistance’ to antibiotics like ciprofloxacin and ampicillin.
However, so far there are no reports that TAS confer antibiotic
resistance. In light of current understanding of the role of TAS in
persistence (Maisonneuve et al., 2011, 2013), this is an important
observation. We noticed a difference in sensitivities of these
strains to ciprofloxacin and ampicillin but not to transcription
and translation inhibitors.

In fact, it was reported that the 110 strain has lower MIC
for ciprofloxacin (5.0 ± 0.35 ng/ml) compared to wild type
(ciprofloxacin 5.3 ± 0.45 ng/ml). Similarly, MIC of ampicillin
for 110 strains was reported as 3.2 ± 0.27 µg/ml relative to
MG1655 3.4 ± 0.42 µg/ml (Maisonneuve et al., 2011). Our
results contradict the above reported observations made by
Maisonneuve et al. (2011). At least with ciprofloxacin, through
multiple assays, we show that 110 strain is significantly more
sensitive than MG1655 strain. In our view, it is irrational to infer
persistence of two strains with marked difference in antibiotic
sensitivities (Brauner et al., 2016). Conclusions drawn from
strains with different MICs could be misleading. Although it is
difficult to explain this observed sensitivity at this point of time,
we do not rule out the possibility of artifacts due to genetic
manipulations during the construction of 110 strain.

Deletions of 10 TAS, as in 110 Strain,
Causes Loss of Fitness
Recently we have shown that TAS are horizontally transferring
genes and are integrated within the intergenic regions between
important ‘core’ genomic regions (Ramisetty and Santhosh,
2016). Maisonneuve et al. (2011) reported that 110 strain formed
lesser persisters compared to wild type strain when challenged
with ciprofloxacin and Ampicillin. Hence, we speculated that
deletion of 10 TAS could compromise the expression of flanking
genes due to polar effects resulting in decreased fitness of the 110
strain. We analyzed the differences in between E. coli MG1655
and 110 strains (Maisonneuve et al., 2011) fitness by growth
curve, maximal CFU per ml in stationary phase and biofilm
formation. We observed that the maximum growth rate (change
in OD/hour) of MG1655 was 0.35 while that of 110 strain was
0.27 (Figure 4A). During the 8 h growth curve study in 96 well
microtitre plates, the maximum absorbance at 595 nm was 1.05
for MG1655 while it was 0.95 for 110 strain (Figure 4A). We
also noticed that the optical density of the overnight cultures
of 110 strain grown in tubes was consistently lower than that
of MG1655. These observations indicated that the 110 strain
may have metabolic deficiencies. To confirm this further we
determined the CFU/ml of both the strains after 12 h of growth in
tube containing LB medium at 37◦C with 170 rpm. We observed
that MG1655 yielded 7.99 × 1012 CFU/ml while the 110 strain
yielded 4.92 × 1012 CFU/ml which is ≈40% lesser than the
CFU/ml of wild type (Figure 4B). In a given set of conditions,
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FIGURE 3 | (A) Persister cell assay with different antibiotics with mid-log phase culture. Exponentially, growing cells of MG1655 and 110 were exposed to various
antibiotics. After 4 h of antibiotic treatment, cells were harvested, serially diluted and plated. After 24 h of incubation number of viable cells was counted. Percentage
of survival after antibiotic treatment for 110 strain (gray bars) is compared with the wild type MG1655 strain (solid bars). The bars represent averages of three
independent experiments done in triplicates. Error bars indicate standard error. AMP, Ampicillin (100 µg/ml), CIP, Ciprofloxacin (1 µg/ml), CLM, Chloramphenicol
(100 µg/ml), KAN, Kanamycin (50 µg/ml), ERY, Erythromycin (100 µg/ml). (Two tailed ∗∗P < 0.001). (B) Zone of inhibition of MG1655 and 110 strains by
Ciprofloxacin. Overnight cultures were spread-plated on LB agar plates and antibiotic disks were placed on LA plates and incubated at 37◦C for 24 h.

(Continued)
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FIGURE 3 | Continued
Representative zones of inhibition obtained for ciprofloxacin in MG1655 (left) and 110 (right) strains. (C) Average diameters of the zones of inhibition, in MG1655
(black bars) and 110 (gray bars), around each disk loaded with premade antibiotic disks. Shown is the average of three independent experiments done in triplicates
and error bars indicate Standard Deviation (SD). (∗∗P < 0.001, ∗P < 0.01). (D) Sensitivity of 110 strain relative to MG1655 strain. Overnight cultures were diluted to
approximately 1.25 OD600. 100-fold serial dilutions were made and 5 µl of each dilution was spotted on to plates containing LA (on the left) or LA+2 ng/ml
ciprofloxacin (on the right). Plates were incubated at 37◦C for 24 h.

FIGURE 4 | (A) Growth curve of MG1655 and 110 strains. 2 µL of the diluted cultures were inoculated into 200 µL of LB in microtitre plate wells in triplicates. The
microtitre plates were incubated at 37◦C with 170 rpm shaking. Optical density at 595 nm was measured in a microtitre plate reader (BioradTM). The closed
triangles and closed squares represent the OD of MG1655 and the 110 strains respectively. The open triangles and open squares represent the growth rates
(change in OD per hour) of MG1655 and the 110 strain respectively. (B) Percent CFU in optimal conditions in 12 h. Overnight cultures were incoculated into tubes
containing 3 ml LB broth and grown at 37◦C with 170 rpm shaking for 12 h. 10 µL of the culture was diluted appropriately and plated on LB plates and incubated
overnight. (C) Biofilm assay for prolonged duration. 2 µL of inoculum was added into 200 µL of LB broth in 96-well microtitre plate. The plates were incubated at
37◦C for 16, 24, 48, and 72 h. The plates were washed and stained with 1% crystal violet. Then washed thrice and the bound crystal violet was redissolved using
ethanol and OD was measured at 595 nm. Experiments were carried out independently thrice in quadruplicates. Error bars indicate standard error. (Two tailed
∗∗P < 0.001, ∗P < 0.01).

the difference in the CFU/ml of two strains of a species is an
indication of difference in their respective fitness.

We then performed biofilm assay for a prolonged period to
determine any differences between these strains in their ability
to form biofilms. We found that MG1655 formed consistently
more biofilm, represented as absorbance of redissolved crystal
violet, compared to the 110 strain at all the time intervals
analyzed (16, 24, 48, and 72 h). At 16 h, 110 strain formed
66% lesser biofilm compared to MG1655 strain. Upon prolonged
incubation, after 72 h, 110 strain formed 35% lesser biofilm

relative to wild type (Figure 4C). These observations reinforce
the notion that the 110 strain is not as healthy as the wild type.
In this case, 110 strain has significantly lower fitness compared
to the wild type likely due to the effects of deletions. The loss of
fitness could be attributed to two aspects; (i) to the loss of TAS
function and (ii) the polar effects on the adjacent genes due to
deletion of TAS. One could argue that TAS are responsible for
higher growth rate, higher CFU/ml in 12 h as well as higher
biofilm formation. However, a qualified counter argument is
that the polar effects due to deletion of the 10 TAS, and not
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FIGURE 5 | Possible polar effects on downstream gene expression due to manipulation of TAS operon. (A) TAS operons are negatively autoregulated
operons which do not encode a terminator. In the wild type, the downstream gene is cotranscribed with TA genes and its expression is considered optimal. (B) If
TAS along with promoter are deleted, there is no expression of the downstream gene due to lack of a promoter. (C) If the toxin also is deleted, there could be over
expression of the downstream gene due to missing corepressor, the toxin. (D) If the toxin and antitoxin are deleted but not the promoter, there could be high
overexpression of the downstream gene due to lack of repression. (E) If a mutation is induced in the toxin gene such that its product is not toxic but can act as a
corepressor (Overgaard et al., 2008), the expression of the downstream gene is likely to be identical to that of the wild type, an ideal case to study the function of
TAS.

necessarily the loss of TAS function, might have caused the
metabolic deficiency. This is due to inadvertent interference with
coding and/or regulatory sequences of the bordering regions. In
our view, it is most likely that the expression of the bordering
genes is compromised resulting in decreased fitness of 110 strain.
It should be noted that TAS are horizontally transferring genes
(Ramisetty and Santhosh, 2016) and are integrated within the
bacterial core genome adjacent, and/or in close proximity, to
important genes. As summarized in the Table 1, most of the genes
that are immediately downstream of TA genes have important
functions in bacterial physiology as enzymes (yafP, fadH) or
transcriptional factors (ydcR, agaR) or in nucleotide metabolism
(mazG, yeeZ, ppa) or in membrane metabolism (yafK, hokD, ygiS)
(Table 1). It must be noted that the minimal composition of
a horizontally transferring TAS consists of a promoter/operator
and TA ORFs but is not composed of a terminator (Ramisetty and
Santhosh, 2016). Hence, the downstream gene is cotranscribed
with the TA genes because there is no promoter or terminator in
the intergenic region between TA operon and the downstream
gene, e.g., relBEF (Gotfredsen and Gerdes, 1998) and mazEFG
(Gross et al., 2006) (Table 1). The spacers between the adjacent
genes range from 9 to 218 bp, which is inclusive of the
operator/promoter regions if any. Hence, the TA genes are
highly linked to the downstream genes physically as well as
transcriptionally. It is highly plausible that the artificial deletion
of TA genes could cause polar effect on the expression of one or
more of these bordering genes which is likely to result in loss of
fitness (summarized in Figure 5). Therefore, confirmation that

there are no polar effects on the expression and/or the reading
frames of the adjacent genes due to deletion of TA genes is
essential. Attribution of the observed phenotypes solely to TAS
may result in faulty interpretations and mislead the research
community.

In the past reverse genetic studies on TAS, several deletion
strains have compromised the general bacterial physiology (Gross
et al., 2006; Tsilibaris et al., 2007) resulting in misleading
interpretations. Construction of MC41001mazEF (Aizenman
et al., 1996; Tsilibaris et al., 2007; Ramisetty et al., 2016) and 15
strain (Tsilibaris et al., 2007) strains have resulted in inadvertent
interference in the coding regions of bordering genes. In a Tn-
seq based genetic screen to find the molecular determinants of
persisters during treatment with gentamycin, no TAS has been
found. Furthermore, in spite of having several Tn inserts in
lon gene, lon mutations did not affect the persister formation
frequency (Shan et al., 2015).

Toxins can induce metabolic stasis and hence we do
think that TAS have the potential to induce persistence.
However, more systemic studies should be carried out to
definitively prove the function of TAS in persistence. As of now,
with the current knowledge, we contend that chromosomal
endoribonuclease encoding TAS, under their canonical
autoregulatory mechanisms, may not be directly involved
in persistence. We disregard ectopic overexpression of toxins’
role in persistence because it is not necessarily specific as
controlled over expression of non-toxin proteins can also induce
such persistence (Vazquez-Laslop et al., 2006). Similarly, we
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disregard the implications derived by using deletion strains such
as 110 strain with lower fitness.

CONCLUSION

This study contends the model that links stringent response,
TAS and persistence is debatable (Maisonneuve et al., 2013;
Maisonneuve and Gerdes, 2014). PolyP dependent Lon mediated
degradation of RelB and YefM was the key link between
stringent response, TAS and persistence. In this report it was
shown, indirectly using semi-quantitative primer extension, that
polyP is not required for degradation of YefM and is an
unlikely requirement for degradation of other antitoxins as
well. The results presented in this report and the exhaustive
literature survey conclusively refute the essentiality of ppGpp
and polyP in the regulation of yefM/yoeB and likely other
similarly working TAS. There is no evidence to claim that
“Polyphosphate activated Lon to degrade all known type II
antitoxins of E. coli” (Germain et al., 2015). 110 strain is
relatively hypersensitive to ciprofloxacin and ampicillin which
is probably the cause for decreased persister formation upon
treatment with ciprofloxacin and ampicillin. 110 strain has
lower metabolic fitness compared to wild type which also
strengthens this notion. Hence, the role of endoribonuclease
encoding chromosomal TAS in persistence is inconclusive.
Hence, we refute the model presented by Maisonneuve et al.
(2013). Extreme caution and evaluation should be exercised
during deletion of horizontally transferring genes like TAS
and evaluated for the polar effects on the downstream
genes.
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