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Abstract: This study investigated the impact of lime stabilization on the fate and transformation of
AgNPs. It also evaluated the changes in the population and diversity of the five most relevant bacte-
rial phyla in soil after applying lime-stabilized sludge containing AgNPs. The study was performed
by spiking an environmentally relevant concentration of AgNPs (2 mg AgNPs/g TS) in sludge, ap-
plying lime stabilization to increase pH to above 12 for two hours, and applying lime-treated sludge
to soil samples. Transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy
(EDS) were used to investigate the morphological and compositional changes of AgNPs during lime
stabilization. After the application of lime stabilized sludge to the soil, soil samples were periodically
analyzed for total genomic DNA and changes in bacterial phyla diversity using quantitative poly-
merase chain reaction (qPCR). The results showed that lime treatment effectively removed AgNPs
from the aqueous phase, and AgNPs were deposited on the lime molecules. The results revealed
that AgNPs did not significantly impact the presence and diversity of the assessed phyla in the soil.
However, lime stabilized sludge with AgNPs affected the abundance of each phylum over time.
No significant effects on the soil total organic carbon (TOC), heterotrophic plate count (HPC), and
percentage of the live cells were observed.

Keywords: silver nanoparticles; sludge; lime stabilization; land application of biosolids; bacterial phyla

1. Introduction

The nanoparticle industry is growing exponentially, and new nanomaterials and prod-
ucts are being introduced to consumers on an almost daily basis. AgNPs are commonly
used as antimicrobial agents and incorporated in a wide range of merchandise and applica-
tions. Many products such as textiles, antimicrobial coatings, keyboards, wound dressings,
and biomedical devices contain AgNPs that continually release a low level of silver ions [1].
AgNPs can easily bleed out of textiles in just a few washing cycles [2–4]. It also was
reported that just one wash cycle could increase the total amount of silver released from 1%
to 45%, depending on the type of fabric and the manufacturing methods [3]. Thus, a large
portion of the AgNPs ends up in wastewater treatment plants [5,6]. In addition, studies
have shown the toxicity of AgNPs on microorganisms that are necessary for wastewater
treatment [7,8].

The sewer system is considered a primary source for the release of AgNPs into the
environment. AgNPs are involved in a wide range of physical, chemical, and biological
reactions after they are introduced into the sewer system and during wastewater and
sludge treatment [9,10]. Although the dissolution of AgNPs has been observed, association
with solids is reportedly the primary removal mechanism from wastewater [11,12]. More
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than 94% of AgNPs entering wastewater treatment plants are associated with sludge solids
after treatment [12].

Treated sludge, also known as biosolids, is rich in nutrients essential for plant growth,
including carbon, nitrogen, and phosphorous, and they are applied to improve soil prop-
erties such as texture and water holding capacity [13,14]. However, studies have shown
that land application of biosolids can add harmful substances to soil [15]. Some studies
also showed that the antimicrobial activity of AgNPs could have adverse effects on soil
microorganisms and possibly affect the organisms necessary for plant growth [16,17].

Lime stabilization is a widely used sludge treatment method, as it is easy to apply,
inexpensive, and beneficial for agriculture [13,18]. Lime stabilization works by raising
sludge pH to 12 for at least two hours, which terminates microbial activity and allows small
particles to coagulate into larger particles that can easily be separated from the aqueous
phase. In addition to chemical stabilization, lime may also be used as a conditioning
chemical during treatment to achieve coagulation and flocculation [19]. Lime is a harsh
chemical that can impact the physical, chemical, and morphological characteristics of
AgNPs in sludge and thereby change their impact on soil biological activity. It was reported
that Ag2S was the dominant silver compound found after heat and lime treatment of sludge,
with no Ag(0) observed [20]. Properties of AgNPs may be altered after interaction with
sludge constituents or treatment chemicals. For example, the effect of the surface coating
of AgNPs in soil matrices in terms of colloidal stability was annulled when AgNPs were
applied with sewage sludge [21]. Thus, research is needed to better understand the effect of
sludge treatment processes on AgNPs and whether AgNPs in sludge pose significant risks
after land application. The goal of this study was to understand the fate and transformation
of AgNPs during lime treatment of sludge at high pH values, as well as the impact of
lime treated AgNPs on soil biological activity and health after simulated land application
of sludge.

2. Materials and Methods
2.1. Sludge Characteristics

Anaerobically digested sludge was collected from mesophilic anaerobic digesters and
obtained from the wastewater treatment plant in Ottawa, Canada. The plant receives about
390 ML/d of wastewater from residential, commercial, and industrial sources [22]. The
chemical properties of the anaerobically digested sludge are provided in Table 1. After
collection, sludge was stored at 4 ◦C until use.

Table 1. Anaerobically digested sludge characteristics.

TP
(Total Phosphorus)

TN
(Total Nitrogen)

TS
(Total Solids)

TVS
(Total Volatile Solids) pH

122 ± 8 mg/L 1043.3 ± 33 mg/L 17,720 ± 95 mg/L 9803.3 ± 45 mg/L 7.4 ± 0.1
Values are the mean of three replicate measurements ± standard deviation.

2.2. AgNPs Characteristics

A stock suspension of pristine AgNPs in water with a purity of 99.9% was purchased
from nanoComposix Inc. (San Diego, CA, USA). The properties of the AgNPs are provided
in Table 2. The particle size distribution of AgNPs was examined and confirmed by TEM
analysis. The AgNPs suspension stock solution was maintained at 4 ◦C until use.

Table 2. AgNPs characteristics.

Diameter (TEM) Coefficient of
Variation

Surface Area
(TEM)

Particle
(Concentration)

Hydrodynamic
Diameter

Zeta
Potential

pH of
the Solution

Particle
Surface Coating Solvent

23.1 ± 6.9 nm 29.8% 21.5 m2/g 7.2 × 1013 particles/mL 49.6 nm −30.6 mV 6.3 Polyvinylpyrrolidone
(PVP)

Milli-Q
water
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2.3. Lime Treatment

Quicklime (CaO) with a molecular weight of 56.08 g/mol was purchased from Sigma-
Aldrich. A lime slurry was prepared by mixing powdered lime with water at a concentra-
tion of 150 mg/mL (15%). The lime slurry was then mixed with anaerobically digested
sludge at a concentration that maintained the pH above 12 for 2 h.

2.4. Soil Characteristics

Loamy topsoil was used in this study; it was free from additions such as compost or
chemical fertilizer and was obtained from Artistic Landscape Designs Ltd. The soil was
processed through a sieve with 2 mm mesh, air-dried and stored at 4 ◦C until use. Initial
soil analysis included total organic carbon (TOC), total nitrogen (TN), phosphorus, pH,
and cation exchange capacity (CEC) and are shown in Table 3.

Table 3. Soil characteristics.

TOC TN TP pH CEC

4248 ± 12 mg/kg 184 ± 7 mg/kg 13 ± 2 mg/kg 6.6 ± 0.7 30.8 ± 2 meq/100 g
Values are the mean of three replicate measurements ± standard deviation.

2.5. Experimental Design

This study involved two stages. The first stage investigated the effect of lime treatment
on the fate and behavior of AgNPs in sludge and the second stage investigated the effect
of lime treated AgNPs on soil after simulated biosolids application. The concentration of
AgNPs in sludge used in the first stage was more than twice as much compared to the
second stage to enable the detection and visual observation of the AgNPs by TEM. Lime
treatment was applied on two different test matrices; nanopure water and anaerobically
digested sludge. Nanopure water was used as a control matrix to observe the interaction
between AgNPs and lime in the absence of other contaminants. There were two test reactors
for both nanopure water and sludge; one was the control, which had no lime treatment,
and the other reactor was subjected to lime treatment. Each reactor contained 5 mL of
water or sludge with two replicates each (experiment replicates). AgNPs were added to
each reactor at a concentration of 0.1 mg/mL (corresponding to 5.64 ± 1.05 mg AgNPs/g
sludge (dry weight) for the sludge reactor) and vortexed for 30 s. Lime stabilization was
performed by adding lime to each reactor while continuously measuring the pH until a pH
of 12 was reached and maintained for two hours, as shown in Supplementary Materials,
Table S1. After lime treatment, water and sludge test reactor samples were prepared for
TEM analysis by placing approximately 5 µL of the water and treated sludge on separate
3.05 mm, 200 mesh (grid hole size ≈ 97 nm) formvar/carbon-coated support copper grid
film from Ted Pella Inc. Three sample replicates were obtained for each sample, and after
preparation, the samples were analyzed using an FEI Tecnai G2 F20 TEM at the Nano
Imaging Facility (NIF), Carleton University. In addition to morphological analyses, the
elemental composition of the samples was analyzed using EDS coupled to TEM. This
combination allows EDS to provide an elemental composition of an area that is only a few
nanometers in diameter. The results are shown as a plot of the emitted X-rays versus their
energy in keV; the different peaks correspond to specific elements.

The second stage of the study investigated the effect of AgNPs on the relative popula-
tion of selected bacterial phyla in soil reactors after simulated land application. Test reactors
were prepared in 250 mL clean glass beakers filled with 100 g dry soil. Each soil-filled
reactor received sludge that was previously mixed with AgNPs and mixed thoroughly
with a spatula. There were three reactors and two replicates for each reactor. There were
two control reactors: control 1 received untreated anaerobically digested sludge without
AgNPs, while control 2 received the same sludge previously mixed with AgNPs. The other
reactor received sludge mixed with AgNPs and subjected to lime treatment. The final
soil moisture content was 60% at the start of the experiment. The sludge/soil ratio was
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0.01 g/g (dry weight), and it was selected based on the biosolids land application guide-
lines at a rate of 8 tons/ha every 5 years [23]. Additionally, other studies were considered
in choosing the sludge application ratio [21,24,25]. The applied sludge was previously
spiked with AgNPs suspension to obtain a final concentration of 2 mg AgNPs/g sludge
(dry weight) corresponding to 20 mg AgNPs/kg soil when sludge was combined with
soil. The AgNPs concentration used is an environmentally relevant concentration and
represents the higher range published values of the recorded and predicted concentrations
in wastewater sludge [5,6,26,27]. The reactors were incubated with day/night cycles of
8/16 h at a constant temperature of 22 ± 1 ◦C. This study was carried out for 105 d, with
soil chemical and biological analyses conducted every 15 d, with the exception of mois-
ture content, which was monitored every three days. Chemical analyses included cation
exchange capacity (CEC), pH, total solids (TS), moisture content (MC), and total organic
carbon (TOC). Biological analyses consisted of heterotrophic plate count (HPC), live/dead
bacterial viability staining, and DNA analyses using quantitative polymerase chain reaction
(qPCR). Similar concentrations of AgNPs were used in previous studies [7,28].

2.6. Chemical Analysis

The chemical analysis included the initial analysis of soil and sludge samples in
addition to the analyses that were carried out every 15 d from the start of the study to
its completion. All chemical analyses were completed in triplicate following Standard
Methods [29]. The soil was analyzed for CEC at the beginning of the experiment using
the standard method employed by the Natural Resources Conservation Service [30]. The
analysis method involved the use of 1 M ammonium acetate (NH4OAc) at pH 7 (neutral
NH4OAc). Soil samples were prepared for pH analysis by first suspending 5 g of soil in
5 mL of water (1 g:1 mL ratio) followed by a 30 s vortex of the suspension. The pH was
measured using the Orion Star TM A326 pH/DO portable meter. The percentages of TS
and MC were determined by drying 5 g of the soil sample in an oven at 105◦C for 24 h.
TS% represented the sample weight after drying divided by sample weight before drying
and multiplying by 100. MC was calculated by taking the difference in the sample weight
before and after drying divided by the weight of the dried sample and multiplying by
100%. MC was monitored every 2–3 days and maintained at 45% by the addition of sterile
distilled water. TOC analysis was conducted using TOC-VCPH/CPN and TOC-control V
software. Each TOC measurement run included one blank and a set of standard solution
concentrations that were used to construct a calibration curve. Three replicates were taken
for each TOC measurement. Soil samples were prepared by suspending 1 g of soil in
10 mL of CaCl2 solution (1:10 w/v, 0.01 M). The suspension was put in a shaker for 2 h and
centrifuged at 1800× g for 12 min. The supernatant was then used for the TOC analysis;
these results represent soluble TOC.

2.7. Microbiological Analyses
2.7.1. Heterotrophic Bacteria

The viability of heterotrophic bacteria in the soil samples was investigated every
15 days using the spread plate method. Tryptic soy agar (TSA) was used as the growth
medium. TSA was prepared by adding 30 g of the powdered medium to 1 L of distilled
water, dissolved by boiling and autoclave sterilized. After the TSA had cooled to approxi-
mately 50 ◦C, a volume of 22 mL was then poured into each Petri plate and stored at 4 ◦C
for a maximum of one week. Soil samples were prepared by suspending 0.1 g of the soil
sample in 0.9 mL PBS (with 0.1% Tween80) and vortexed for 30 s. Serial dilutions were
made, and three replicates of 0.1 mL of 10−4, 10−5, and 10−6 dilutions were inoculated
onto the TSA plates and incubated in the dark at 34 ± 1 ◦C. Colony-forming units (CFU)
were calculated after a 24 h incubation time.
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2.7.2. Live/Dead Bacterial Viability Staining Assay

The distribution of live/dead bacterial cells in the soil reactors was investigated by
staining with fluorescent dyes and observed with a Nikon Eclipse Ti-E Microscope. The soil
samples were stained with a BacLight staining reagent kit that was prepared by dissolving
SYTO 9 stain and propidium iodide stain in 5 mL sterilized deionized water. The soil
samples were prepared for live/dead analysis by suspending 0.1 g of soil in a 0.9 mL of
PBS solution with 0.1% Tween80. The mixture was then vortexed for 30 s at high speed
and allowed to settle for 30 min thereafter. A known volume of the supernatant was mixed
with an equal amount of the staining reagent, and the mixture was incubated in the dark
for 15 min. Then, a 17 µL of the mixture was applied to a standard microscope slide and
covered with a 22 mm square coverslip. The samples were then ready for observation
under the fluorescence microscope, where the ratio of live/dead bacterial cells could be
quantified. Three tests were undertaken for each soil sample, and three random fields
of views (FOV) were chosen on each slide where images were taken. The images were
taken at each FOV using 3 UV filters, GFP-1, Cy-3, and GFPHQ to capture live, dead, and a
combination of live and dead microbial cells, respectively. The three sets of images were
assessed, and the most representative was chosen to report, and the live cell percentage
was estimated by dividing the number of live cells by the total number of cells in the image.

2.7.3. Bacterial Population Analysis
Bacterial Phyla

The five most prevalent bacterial phyla found in soil and sludge were selected for
investigations: Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria.
Each soil reactor was analyzed for the presence and relative population of each phylum
every 15 d throughout the 105-d experiment. Three replicate DNA extractions were taken
for each soil reactor using the PowerSoil DNA Isolation Kit from MO BIO Laboratories
Inc. (QIAGEN Online Shop). The concentration of extracted DNA was measured using
the Qubit® 2.0 Fluorometer with the dsDNA HS Assay Kits (Molecular Probes, Life tech-
nology). The extracted DNA was then used as template DNA for the phylum-specific
qPCR protocols. Each phylum was amplified individually using phylum-specific qPCR
primer sets.

Primers

Primers were purchased from Life Technologies (Burlington, ON, Canada). The
primers were selected based on recently published studies. Primer references and proper-
ties are shown in Table 4.

qPCR Protocols and Annealing Temperature Optimization

Phylum analysis was conducted using individual qPCR protocols for each sludge/soil
mixture every 15 d throughout the experiment. In each qPCR run, there were three
replicate qPCR reactions per genomic DNA sample for each phylum with three non-
template controls (NTC) in each run. Reactions were performed using CFX96 Touch
Real-Time PCR Detection System (BioRad) and analyzed with the CFX Manager Software.
The qPCR protocol was the same for all phyla except for the annealing temperature, which
was different for each phylum. The qPCR protocol consisted of 95 ◦C for 5 min as an initial
denaturation step, followed by 40 cycles of a 95 ◦C denaturation for 10 s, annealing for
20 s (Table 4), and an extension of 72 ◦C for 15 s, and a melt curve analysis from 65 to
95 ◦C with a 0.5 ◦C increase every 5 s. Every qPCR reaction consisted of 12.5 µL qPCR
buffer, 0.5 µL (200 nM) forward primer, 0.5 µL (200 nM) reverse primer, DNA template
equilibrated to 30 ng concentration, and water to 25 µL as the final reaction volume. The
qPCR reaction/buffer solution was SsoFast EvaGreen Supermix (purchased from Bio-
Rad Laboratories Ltd., Canada) and contained dNTPs, Sso7d fusion polymerase, MgCl2,
EvaGreen dye, and stabilizers. Preliminary experiments were conducted to optimize
the annealing temperature for each phylum protocol. The annealing temperature that
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maximized amplification was determined with extracted soil DNA template in a thermal
gradient qPCR reaction with a different annealing temperature range for each phylum.

Table 4. Phyla primer pairs used in qPCR assay.

Phylum Amplicon
Size (bp)

Primer
Name Primer Sequence (5′–> 3′) Annealing

Temperature (◦C) References

Acidobacteria 500 fAcid31 GAT CCT GGC TCA GAA TC 55.9 [31]rEub518 ATT ACC GCG GCT GG

Actinobacteria 166 fActi GRD ACY CCG GGG TYA ACT 57.2 [32]rActi TCW GCG ATT ACT AGC GAC

Bacteroidetes 181 fBdet GCA CGG GTG MGT AAC RCG TAC CCT 61 [32]rBdet GTR TCT CAG TDC CAR TGT GGG

Firmicutes 156 fFirm CAG TAG GGA ATC TTC 55.3 [32]rFirm ACC TAC GTA TTA CCG CGG

Proteobacteria 140 767fProt AAG CGT GGG GAG CAA ACA 54.8 [33]907rProt CCG TCA ATT CMT TTR AGT TT
16S

(any bacteria) 180 338F ACT CCT ACG GGA GGC AGC AG 61.9 [34]518R ATT ACC GCG GCT GG

qPCR Data Analysis

Universal 16S ribosomal RNA primers were used to amplify an ~180 bp sequence
which was used to calculate the baseline 16S gene copy number and was compared to
each of the five phyla-specific calculated gene copy numbers. The data generated relative
population trends for each phylum over time. The data analysis was based on three main
fundamental assumptions:

1. Cq is equivalent to 3.33 log10 (target amplicon concentration).

Many studies have used a control curve to relate the number (concentration) of DNA
in the qPCR product to the corresponding Cq. A study has mentioned that constructing
a control curve with Log10 of DNA number versus Cq (resulted from the qPCR run of
serial concentrations of DNA) will be linear with a slope of 3.33 when the qPCR efficiency
is 100% [35].

2. Every bacterium has 1~ fg of DNA.

The concentration of the DNA template used in the qPCR reaction was 30 ng. The
qPCR analysis in this study relies on a relative estimation of the bacterial population. If it
is assumed that every bacterium has 1~ fg of DNA, then 30 ng of DNA equal to 3 × 107

bacteria. This is just a relative estimation because the soil extracted DNA belongs to many
other living things besides bacteria, such as plants and eukaryotes.

3. Every phylum has a specific copy number of 16S rRNA.

Based on a study by Větrovský and Baldrian (2013), each phylum has a specific copy
number of 16S rRNA, as illustrated in Table 5 [36].

Table 5. Copy number of 16S rRNA in each bacterial genome [36].

Phylum 16S rRNA/Genome Mean 16S rRNA/Genome

Acidobacteria 1 1
Actinobacteria 3.3 ± 1.7 3.3
Bacteroidetes 3.5 ± 1.5 3.5

Firmicutes 5.8 ± 2.8 5.8
Proteobacteria 3.96 ± 1.7 4.0

2.8. Statistical Analyses

Most results are reported as the average of three replicates ± standard deviation.
Comparisons and significant differences between different soil reactors over time (control
1 versus control 2 and control 2 versus the lime reactor) were performed using a one-
way analysis of variation (ANOVA) at 95% confidence level. Significant differences are
indicated by a p-value < 0.05. If the ANOVA-test indicated a significant effect, a t-test was
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performed between each of the two data sets. In addition, the coefficient of variance (CV)
was estimated for each data set, and significant differences are those with a CV >0.05 (i.e.,
the level of confidence ≥95%).

3. Results and Discussion
3.1. Characterization of AgNPs

The AgNPs suspension was examined for particle size and morphology using TEM
analysis after dilution of the stock solution with nanopure water; the TEM images revealed
that the AgNPs suspension was extremely pure. The images were examined with EDS to
determine the elemental composition of the sample, and other than carbon and copper,
which were components of the supportive grid, only silver was found (Figure 1). During
TEM imaging, the AgNPs were well dispersed within the water, and agglomeration or
aggregation of particles was not detected. This is likely due to the PVP coating that helped
the particles resist clustering and deposition. PVP coated AgNPs were employed in this
study, since they are very widely used in the industry and are present in sludge.
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Figure 1. TEM image of AgNPs suspended in water with its EDS profile.

3.2. Lime Stabilization

During the first stage of the study, AgNPs were added to sludge at a concentration
of 0.1 mg AgNPs/mL sludge, then lime treatment was applied. The treated sludge was
then examined for morphological and structural changes of AgNPs using TEM. The visual
observation revealed the formation of larger, less mobile particle clusters due to coagulation
caused by lime particles. TEM images showed that lime removed AgNPs effectively from
the aqueous phase and that AgNPs were deposited to the surface of lime molecules, as
shown in Figures 2 and 3. The images also showed that AgNPs were still in the nanoparticle
form after lime treatment. More AgNPs were attached to the surface of lime molecules in
water (Figure 2) than in sludge (Figure 3). This is likely because there were more competing
reactions among AgNPs, lime, and sludge constituents, thereby decreasing the availability
of AgNPs for surface attachment. Using EDS, several elements were detected, including
Ag and Ca in water (Figure 2), and Ag, Ca, Fe, Al, and S in sludge (Figure 3). Lime works
by raising the pH of the sludge and increasing its porosity. Lime also causes hydrogen
sulfide to revert to sulfide and bisulfate ions, which are not volatile at elevated pH levels
and hence reduce sludge odor [19]. A study showed that Ag2S is the dominant silver
compound found after sludge undergoes lime and heat treatment [20].
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3.3. Simulated Land Application of Lime Stabilized AgNPs
3.3.1. TOC and pH

After land application of lime stabilized sludge, TOC decreased over 105 days at
a similar rate in all soil reactors, as shown in Figure 4a. TOC of the two controls and
lime soil reactors were similar, with no significant differences observed. t-test, p-values
between controls 1 and 2 and between control 2 and the lime reactors were 0.96 and 0.94,
respectively. TOC for all reactors decreased significantly during the first month, with an
overall reduction of 44%, 40%, and 44.4% for controls 1 and 2, and lime reactors, respectively.
Organic soil carbon plays a major role in overall soil health, as it is the food source for soil
microorganisms and helps fixate soil nutrients such as nitrogen, phosphorus, and sulfur.
Several factors can affect the TOC levels in soil, including pH, temperature, soil aeration,
and microbial population of the soil. The observed decrease in TOC was likely due to the
acclimatization time, as well as the decomposition and consumption of organic matter by
microorganisms. Microorganisms compete with each other to survive in a limited carbon
environment, and no carbon source was added during the experiment.
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Figure 4. Total organic carbon concentration (a) and pH (b), over time. Control 1 is the soil reactor
that received untreated sludge with no nanoparticles, control 2 is the soil reactor that received
untreated sludge with 2 mg AgNPs/g TS sludge, and lime is the soil reactor that received lime treated
sludge with 2 mg AgNPs/g TS sludge.

Soil pH, a parameter with a major influence on the availability of nutrients such as
nitrogen and phosphorus in the soil, is essential for soil microbial population and diversity,
and several studies have shown the impact of pH on AgNPs [37]. The soil pH levels
were not affected by the presence of AgNPs and decreased during the first 15 days for
all soil reactors, as seen in Figure 4b. This is normal and due to chemical reactions and
acclimation to the new environment by the microorganisms. The pH readings were stable
over the remaining period, and after day 15, the pH control reactor dropped from neutral
(an approximate pH value of 7) at the beginning of the experiment to somewhat acidic at
the end. The pH of the lime reactor was alkaline (pH = 8.3) on day 0 and decreased to near
neutral (pH = 7.2) at the end of the experiment.

3.3.2. Impact of AgNPs on Heterotrophic Bacteria and Cell Viability

Under lime treatment, heterotrophic bacteria showed slightly different trends over
time compared to controls 1 and 2. On day 0, as seen in Figure 5a, HPC for a lime soil reactor
was lower by ~1 Log10 CFU/mL, most likely due to the effect of high pH. However, CFU
under lime treatment showed the highest increase over time (16.6% increase), compared to
controls 1 (11.4% decrease) and 2 (9.8% decrease), as shown in Figure 5a. This is likely due
to the solubilization of substrates after lime treatment, which makes them readily available
for microorganisms. The t-test showed no significant difference between controls 1 and 2
(p-value≈ 0.58). Thus, the presence of AgNPs at this concentration had no significant effect
on the heterotrophic bacteria in the soil. This finding is supported by other studies that
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showed no effect of AgNPs on heterotrophic bacteria [7], even though it was reported that
lime seemed to enhance CFU. HPC results showed significant differences in the number
of heterotrophic colonies between control 2 and the lime reactor (p-value ≈ 0.02), which
indicates that lime treatment of sludge significantly impacted the heterotrophic bacteria in
the soil.
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Figure 5. HPC, represented by CFU (a) and the percentage of live cells in soil reactors (b) over time.
Control 1 is the soil reactor that received untreated sludge with no nanoparticles, control 2 is the soil
reactor that received untreated sludge with 2 mg AgNPs/g TS sludge, and lime is the soil reactor
that received lime treated sludge with 2 mg AgNPs/g TS sludge.

In addition to the enumeration of the heterotrophic bacteria, live/dead viability stain-
ing was also evaluated using two fluorescent dyes, CYTO 9 and propidium iodide. Bacterial
cells with intact membranes are stained green, while those with damaged membranes are
stained red. The percentage of live cells for both control reactors fluctuated over time,
and they followed similar trends (increasing mode), and ANOVA analysis showed no
significant differences between the controls. However, as shown in Figure 5b there were
small increases in the percentage of live cells in all the soil reactors, indicating that neither
the AgNPs nor the sludge lime treatment caused significant toxicity to soil bacteria at
the concentrations applied. The bacterial live/dead staining images are presented in the
Supplementary Materials, Figures S2–S4.

3.3.3. Impact of AgNPs on Selected Soil Microorganisms

After extraction of the genomic DNA from the soil reactors, genomic was analyzed
for the presence and concentration of five selected bacterial phyla using qPCR. DNA
concentrations measured in the reactors over time are shown in Supplementary Materials,
Figure S1. The Cq (quantitation cycle) values from the qPCR results were converted to
calculated CFU equivalents (CCE) based on the assumptions discussed in the material and
methods. CCE was used to estimate the mean abundance of each phylum in all reactors.
Of the five phyla, Acidobacteria was the most highly abundant in all soil reactors, with 29%
relative abundance, Proteobacteria was the next, with 26% abundance, and Bacteroidetes
had 3% relative abundance, which was the least, while Firmicutes and Actinobacteria,
both, had 21% relative abundance, and, thus, were similar in terms of having medium
abundance compared to the other assessed phyla. These findings correspond with those of
other researchers who have studied soil bacterial diversity and abundance [31,38].

All the studied phyla showed similar Cq values in controls 1 and 2 throughout the
experiment with very little variance in their CCEs. t-test p-values were 0.04, 0.6, 0.52, 0.43
and 0.84 for Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Firmicutes,
respectively. The phyla relative abundance for the controls throughout the experiment was
very similar, with variations between them of less than one Log10 CCE. Thus, AgNPs at a
concentration of 20 mg AgNPs/g soil had minimal impact on the diversity and presence of
these five phyla in soil.
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Assessment of phyla abundance in the soil reactors that received lime-treated sludge
showed a higher degree of variation in Cq values (leading to dissimilar CCE profiles)
compared to the controls (Figure 6). Under lime treatment, all studied phyla showed an
increase in abundance except Bacteroidetes.
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Figure 6. Relative change in CCE for Acidobacteria (a), Actinobacteria (b), Bacteroidetes (c), Firmi-
cutes (d) and Proteobacteria (e). Control 1 is the soil reactor that received untreated sludge with no
nanoparticles, control 2 is the soil reactor that received untreated sludge with 2 mg AgNPs/g TS
sludge, and lime is the soil reactor that received lime treated sludge with 2 mg AgNPs/g TS sludge.

The CCE trends over time for Acidobacteria were similar in control 2 and lime re-
actors, and ANOVA showed no major differences in the CCE of Acidobacteria in all soil
reactors (p-value >0.05). This indicates that Acidobacteria was not adversely affected by
the presence of AgNPs or the sludge lime treatment; CCE increased by 10%, 6% and 5% for
control 1, control 2 and lime soil reactors, respectively. This is likely due to the potential
of Acidobacteria to tolerate various pollutants and heavy metals [39–41]. Acidobacteria is
also responsible for several beneficial soil fertility functions, including nitrate and nitrite
reduction [42].
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Actinobacteria also showed similar CCE trends over time for control 2 and lime
reactors, as seen in Figure 6. Analysis with ANOVA showed no major differences
(p-value = 0.95) between control 2 and the lime reactor in relative CCE trends. How-
ever, lime treatments seemed to promote Actinobacteria abundance with a 9% increase in
CCE throughout the experiment. Actinobacteria is one of the most abundant and important
bacterial phyla in soil and helps with carbon degradation, including cellulose, CO2 fixation,
nitrogen fixation, and phosphorus uptake [43]. Thus, Actinobacteria is an important factor
to consider when studying the impact of nanoparticles on the soil. The relative CCE of
Bacteroidetes also showed no significant differences between control 2 and the lime re-
actors, and ANOVA results showed a p-value of 0.16. However, Bacteroidetes CCE was
virtually unchanged in controls 1 and 2, and it decreased by 6% under the lime treatment.
Bacteroidetes have several important roles in soil, including solubilization of minerals such
as phosphate, production of siderophores, and synthesis of growth-stimulating phytohor-
mones [44]. The results of the relative CCE of Firmicutes showed a significant difference
between control 2 and the lime reactor (p-value = 0.0034), although this was due to the
variation in the CCE at the start of the experiment, where the lime soil reactor had a higher
CCE value, likely due to the effect of lime.

Firmicutes is an important soil bacterial phylum, as it includes a number of gen-
era, such as Bacillus and Paenibacillus that are key to soil fertility, including atmospheric
nitrogen-fixation, solubilization of minerals, suppression of plant pathogens, production of
siderophores, synthesis of growth-stimulating phytohormones and bioremediation [45–47].
Thus, the results showed no significant impact of AgNPs on the abundance of Firmicutes,
but sludge lime treatment enhanced their abundance.

The trends over time of Proteobacteria CCE exhibited no major differences between
control 2 and the lime reactor (p-value = 0.5). There was no significant impact of AgNPs at
20 mg/kg soil, or with sludge lime treatment, on the abundance of Proteobacteria in the
soil. Proteobacteria are common in soil and play an important role in soil fertility functions,
including carbon degradation such as aromatic compounds, CO2 fixation, nitrogen fixation,
oxidation of iron, sulfur, and methane, phosphorus uptake and suppression of plant
pathogens [43,48]. Given the diversity of its important roles in soil, the inclusion of
Proteobacteria is required when assessing the potential toxicity of nanoparticles.

The stability, transformation, and subsequent toxicity of AgNPs after release into
the environment depend on several factors, such as the complexity of the media, the
forms of the nanoparticles, surface chemistry, concentration, and exposure time. In this
study, interaction with sludge constituents and lime affected the physical and chemical
characteristics of AgNPs. For example, organic matter present in sludge and soil could
coat the surface of AgNPs, thereby stabilizing them and reducing their aggregation and
toxicity [49,50]. Moreover, lime treatment affects the chemical and physical characteristics of
sludge through several reactions, such as hydrolysis, saponification, and acid neutralization,
which can affect the surface chemistry of AgNPs and alter their behavior and interaction.
Soil bacteria are the microbial community responsible for several soil ecosystem functions,
including recycling of organic matter and nutrients, degradation of toxins such as heavy
metals, and suppression of pathogens [51–53]. Several studies have reported the negative
impact of AgNPs on soil microbial activities [54], and it is important to investigate the
effect of lime-treated AgNPs.

Overall, this study found no significant variations between the controls with and
without AgNPs for the five assessed phyla. These findings were supported by no signif-
icant differences in HPC and the percentage of live cells. This indicates that AgNPs at a
concentration of 20 mg AgNPs/kg soil did not show a significant impact on soil biological
activities based on the assessed parameters. This could be due to several factors, such as
the AgNPs concentration used in this study, which was environmentally relevant but might
not have been high enough to exhibit toxicity. Another factor could be the interaction of
AgNPs with sludge constituents that results in physicochemical transformations before
soil application. This could alter AgNPs behavior and affect bioavailability and toxicity
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and could include mechanisms such as reduction, oxidation, aggregation, and dissolu-
tion [11,24,55–57]. For example, AgNPs interact strongly with sulfur and produce silver
sulfide (Ag2S) when they are discharged into the sewer system and during wastewater
treatment [56,57]. The interaction of AgNPs with sulfur and the subsequent production of
silver sulfide results in a significant reduction in the toxicity of AgNPs due to the lower
solubility of silver sulfide and limits potential short-term environmental impact [58].

4. Conclusions

This study investigated how lime stabilization affects the fate and transformation of
AgNPs, and its impact on soil bacterial activity and health after simulated land application
of the lime stabilized sludge. Lime treatment effectively removed AgNPs from the liquid
phase and concentrated them in sludge solids. AgNPs were well incorporated in lime and
were also deposited on the surface of lime molecules. The presence of AgNPs at 2 mg
AgNPs/g TS of sludge (20 mg AgNPs/kg soil) did not have a significant impact on the
population or abundance of Acidobacteria, Actinobacteria, Bacteroidetes, Firmicute, and
Proteobacteria, which are important for soil health. Furthermore, no significant effects on
the soil TOC, HPC, and the percentage of the live cells were observed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11092330/s1. Table S1. Lime doses and corresponding pH levels. Figure S1. DNA
concentration for the controls and lime reactors over time. Figure S2. live/dead images of control
1 (the soil reactor that received untreated sludge with no nanoparticles). Figure S3. live/dead
images of control 2 (the soil reactor that received untreated sludge with 2 mg AgNPs/g TS sludge).
Figure S4. live/dead images of lime reactor (the soil reactor that received lime treated sludge with
2 mg AgNPs/g TS sludge.
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