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Visually inferring the elasticity of a bouncing object
poses a challenge to the visual system: The observable
behavior of the object depends on its elasticity but also
on extrinsic factors, such as its initial position and
velocity. Estimating elasticity requires disentangling
these different contributions to the observed motion.
We created 2-second simulations of a cube bouncing in a
room and varied the cube’s elasticity in 10 steps. The
cube’s initial position, orientation, and velocity were
varied randomly to gain three random samples for each
level of elasticity. We systematically limited the visual
information by creating three versions of each stimulus:
(a) a full rendering of the scene, (b) the cube in a
completely black environment, and (c) a rigid version of
the cube following the same trajectories but without
rotating or deforming (also in a completely black
environment). Thirteen observers rated the apparent
elasticity of the cubes and the typicality of their motion.
Generally, stimuli were judged as less typical if they
showed rigid motion without rotations, highly elastic
cubes, or unlikely events. Overall, elasticity judgments
correlated strongly with the true elasticity but did not
show perfect constancy. Yet, importantly, we found
similar results for all three stimulus conditions, despite
significant differences in their apparent typicality. This
suggests that the trajectory alone contains the
information required to make elasticity judgments.

Introduction

In order to interact with objects, we need to
anticipate their mechanical properties and likely future
behavior. For example, to grasp an object, we must
adjust our grip to its weight and surface friction
(Paulun, Gegenfurtner, Goodale, & Fleming, 2016), and
to catch a ball, we adjust the interception strategy to
the ball’s elasticity (Diaz, Cooper, Rothkopf, & Hayhoe,
2013). Because mechanical properties, such as elasticity,
weight, or viscosity, have no optical correlate, the visual

system has to estimate them, much as it has to estimate
depth from the two-dimensional image. Generally,
two different mechanisms come in to play here: an
“associative route” and an “estimation route” (Fleming,
2014; Paulun, Schmidt, van Assen, & Fleming, 2017;
Schmidt, Paulun, van Assen, & Fleming, 2017). First,
for familiar materials, the visual system can identify the
material from its appearance and recall the associated
mechanical properties from memory. For example,
images of fabric are rated soft, whereas images of
metal are rated hard and cold (Fleming, Wiebel, &
Gegenfurtner, 2013; Schmidt et al., 2017). Second, the
visual system can estimate mechanical properties of
even unfamiliar materials through diagnostic visual
cues in the image or motion sequence. For example, the
shape and motion pattern of a fluid are used to estimate
its viscosity (Kawabe, Maruya, Fleming, & Nishida,
2015; Paulun, Kawabe, Nishida, & Fleming, 2015; van
Assen, Barla, & Fleming, 2018), speed and curvature
are cues to stiffness of bending objects (Norman,
Wiesemann, Norman, Taylor, & Craft, 2007), and the
deformation and motion flow are cues to stiffness of
nonrigid objects (Kawabe & Nishida, 2016; Paulun
et al., 2017) and of cloth (Bi & Xiao, 2016). Shape
and motion cues can also interact with optical cues,
for example, in case of nonrigid breaking materials
(Schmid & Doerschner, 2018). Here we investigate the
estimation of elasticity based on the way objects bounce
and interact with their surroundings.

In physics, elasticity is the ability of a body to return
to its original shape and size after a distorting force
is removed. This can be on a macroscopic level but
also—invisible to the naked eye—on a microscopic
or even atomic level. A sponge, for example, is elastic
and bounces back to its original shape when released.
Playdoh, on the other hand, is not elastic and stays in
a new shape after being deformed. Elasticity is not to
be confused with the elastic modulus. In engineering,
elastic materials are described by two measures: an
elastic modulus and an elastic limit. The elastic modulus
describes how much a material deforms as a function of
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the applied force (slope of the material’s stress-strain
curve). The elastic limit is the amount of force that,
when exceeded, leads to a permanent deformation.
Thus, the elastic modulus is related to how soft or
compliant a material appears. This is not what we
investigate in the present study but has been studied
before (Kawabe & Nishida, 2016; Masuda et al., 2013;
Norman et al., 2007; Paulun et al., 2017; Schmidt et
al., 2017). Here, we investigate bouncing or colliding
objects, which may have high elasticity even when
they are seemingly rigid (e.g., in Newton’s cradle).
A collision is perfectly elastic when the total kinetic
energy between the two bodies (e.g., a ball and the
floor) remains constant. In this ideal case, a ball would
infinitely bounce to the same height (assuming no air
resistance). In an ideal inelastic collision, on the other
hand, the total kinetic energy is converted into other
forms, such as heat, vibration, or noise. In this case, the
ball would not bounce back at all but land dead on the
floor. In the real world, partially elastic collisions are the
most common forms of collisions (i.e., part of the total
kinetic energy remains), whereas the rest is converted
into other forms of energy. This results in a series of
bounces that decay over time, where the ratio of heights
between bounces is determined by the elasticity. In
this study, we vary the amount of energy that remains
after a collision (i.e., how elastic the collisions are), also
known as the coefficient of restitution. The more energy
is retained, the higher an object will bounce. This is
what we refer to as elasticity in this article.

A number of previous studies have considered
how the visual system infers the elasticity of objects
from observations of object motion. For example,
Warren, Kim, and Husney (1987) pointed out that
spatiotemporal “events” are necessary to visually
estimate elasticity; it cannot be perceived in static
images. This makes intuitive sense, especially in the case
of objects for which we have no expectations. Observing
a ball flying through the air does not reveal information
about its elasticity; only when the ball bounces off the
floor can we infer its internal properties. This example
illustrates another important fact about such “bounce
events”: The exact behavior of the object depends not
only on its elasticity but also on other, external factors.
For example, how high a ball bounces depends on its
elasticity but also its velocity and the elasticity of the
floor it is bouncing off. If the ball lands in sand, it will
not bounce back, even if it is highly elastic. Thus, the
computational challenge for the brain is to disentangle
the different causal contributions of internal material
properties and external forces. How does the visual
system solve this task?

Warren and colleagues (1987) investigated this
question by asking observers to rate the apparent
elasticity of bouncing balls shown in a reduced display,
consisting of white circles starting from varying heights
and bouncing vertically off the ground (represented

as a line). The amount of visual information was
systematically varied by occluding different parts of the
display. They identified several possible visual cues to
elasticity. The strongest cue was the relative height of
consecutive bounces. When this information was not
available, observers relied on the duration of bounces
instead. Velocity information alone, however, was
only a weak cue to elasticity. Nusseck and colleagues
(2007) confirmed these results in an experiment in
which observers passively judged the elasticity of
simulated and rendered balls bouncing from one side
of the screen to another. Interestingly, in two different
experiments, the same authors showed that relative
height (and estimated elasticity) were not sufficient to
make predictions about the balls trajectory in order to
intercept it. Participants either had to observe larger
portions of the trajectory to intercept the ball or would
simply pursue a follow-catch strategy.

Twardy and Bingham (2002) investigated scenes of
bouncing balls with regard to their naturalness. Their
computer-generated stimuli varied in naturalness with
regard to the ball’s elasticity, which could be higher
than natural (i.e., with an increase in energy following
a bounce), and with regard to gravity, which could
be higher or lower than on earth. They found that
although only hyperelasticity and hypogravity scenes
were judged to look unnatural, observers were actually
able to discriminate differences within all three types
of manipulation. These results suggest that human
observers are sensitive to changes in the spatiotemporal
pattern (i.e., the trajectory) of bouncing balls. It is
unclear how this relates to estimates of elasticity.

In the present study, we aimed better to understand
visual elasticity perception in bouncing objects. Like
the previous studies, we used computer simulations
to create our stimuli as this allows maximal control
over the parameter space. Unlike previous work,
the simulated objects did not only bounce along one
dimension (Warren et al., 1987) or two dimensions
(Nusseck et al., 2007) but in a three-dimensional cubical
room. Consequently, the objects could move in depth
toward or away from the observer and could bounce off
any of the walls or the ceiling, leading to more complex
trajectories. We simulated a bouncing cube rather than a
sphere, which expands the space of possible trajectories
even further because the direction in which the cube
travels after a bounce depends on its orientation (e.g.,
whether it hits the floor with an edge, a corner, or a
side). Furthermore, the orientation of the cube during
a bounce also influences how it continues to rotate, its
rotational and translational velocity. We systematically
varied the elasticity of the cube and, in addition,
randomly varied its initial position, orientation, and
velocity. In doing so, we were able to create several
different trajectories for the same level of elasticity and
thus effectively eliminated a direct mapping between
elasticity and trajectory. Moreover, the initial speed and
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interactions with the surrounding walls also eliminate
the direct mapping between elasticity and the relative
height of consecutive bounces, the most important cue
to elasticity suggested by previous literature. Here, we
tested whether observers were still able to judge the
elasticity of the cubes. Furthermore, to investigate which
visual information was required to estimate elasticity, we
systematically varied the amount of visual information.
We either showed observers the full renderings of the
scenes or only the cubes without the background. In the
latter case, we also varied whether observers could see
the cubes original motion (i.e., including deformations
and rotations) or whether they saw a rigid, nonrotating
cube following the same trajectory. This manipulation
lets us investigate how much of the consequences of the
bounce events observers have to see in order to make
their elasticity judgments. In addition to the cube’s
elasticity, we asked observers to rate the typicality of
the motion they observed. In doing so, we aimed to
gain some insights about the canonical representations
our observers have about bouncing objects and thus the
information they use.

Methods

Participants

Thirteen students of the University of Gießen
participated in the study, nine women and four men.
Their average age was 26 years (SD = 5 years). All
observers were naive with regard to the aims of the
study and gave written informed consent prior to the
experiment. The experiment took a maximum of 45
minutes and observers were compensated for their time
with 6€ (i.e., 8€/hour). The experiment was approved
by the local ethics committee (LEK FB06) and in
accordance with the Declaration of Helsinki.

Stimuli

Ninety computer renderings of a cubical object
bouncing in a room served as stimuli. We chose
a cubical object for two reasons: (a) Rotations of
cubes are visible (unlike rotations of spheres) and (b)
trajectories of cubes are more complex than those of
spheres in the sense that the angle of reflection depends
not only on the angle of incidence but also on the
cube’ s orientation at the moment of collision. Thus,
the space of possible trajectories is larger for cubical
objects. In order to create the stimuli, we first simulated
the physical behavior of the bouncy cubes and then
rendered different versions of the same trajectory,
systematically limiting the visual information present in
each stimulus.

Figure 1. Sketch of the scene. A nonrigid cube (0.1 m edge
length) was placed in a cubical room (1.0 m edge length) at a
random position and orientation. The cube had a random initial
velocity and additionally was subjected to gravitational force
throughout the 2-s animation. The camera was positioned
fronto-parallel to one side of the room. The “look-at” point
(cross) was in the center of the room. The rendered images had
a resolution of 800 × 800 pixels.

Simulation
Stimuli were created with RealFlow 2014

(V.8.1.2.0192; Next Limit Technologies, Madrid,
Spain), a dynamics simulation tool for three-
dimensional computer graphics. The basic scene
consisted of a cubical room with rigid walls of 1 m edge
length (see Figure 1). Inside the room was a cubical
target object with 0.1 m edge length. The cube was
nonrigid (i.e., it could deform in a collision) because
its internal stiffness parameters (volume stiffness and
length stiffness) were both set to 0.5 (on a scale of
0.0 to 1,000.0). All other internal parameters (except
elasticity) were kept constant at the default values
(mass: 1.0 kg, friction: 0.3, air friction: 0.3, internal
damping: 0.01). Gravity (9.81 m/s2), caused the cube
to accelerate toward the floor. The elasticity of the
cube was varied in 10 equal steps from 0.0 to 0.9 (on a
scale from 0.0 to 1.0), describing the amount of energy
that the cube retains when it collides. Basic tests of the
behavior of simulated elastic objects can be found in the
Appendix. For each level of elasticity, we created three
different trajectories by randomly varying its initial
position, orientation, and velocity. More specifically,
the cube was randomly placed within the room so that
its center of mass (CoM) was at least 0.2 m away from
each wall. The initial orientation of the cube was set
by rotating it three times, once about each axis x, y,
and z. Each rotation angle was randomly set to a value
between zero and π /2 (where an orientation of {0.0,
0.0, 0.0} describes a cube with the same orientation
as the room). The initial velocity in each dimension
was randomly set to a value between ±10 m/s. With
these settings, we simulated the cube’s trajectory for
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Figure 2. Stimuli of the three different conditions (Full Rendering, No Context, and Trajectory Only) for one example trajectory. Here,
different time frames were made transparent and overlaid for visualization purposes. In the experiment, frames were presented at
30 fps to our participants. The same stimuli are shown in Supplementary Movie S1.

61 frames at 30 fps (i.e., for 2.03 s). A given trajectory
was not only determined by the level of elasticity of the
cube but by nine external parameters: initial position (x,
y, z), orientation (x, y, z), and velocity (x, y, z). Thus,
we created 30 unique trajectories, three for each level of
elasticity.

Rendering
We rendered the scenes using RealFlow’s built-in

Maxwell renderer. The camera was positioned at central
height in the scene, looking straight forward into the
room (see Figure 1). The scene was illuminated with
a high dynamic range illumination map of a beach
scene (from the Maxwell Resource Library by Dosch
Design, Marktheidenfeld, Germany). We rendered
61 PNG images (800 × 800 pixels) with a sampling
level of 15. The cube was rendered with an opaque
blue material. Each trajectory was rendered in three
versions, controlling the amount of information present
in each scene, that is, 90 stimuli in total (30 trajectories
× 3 cue conditions); see Figure 2 and Supplementary
Movie S1. In the Full Rendering condition, the walls of
the room were rendered with a white matte material,
except the ceiling (for illumination purposes) and the
front wall (through which the camera looked), which
were rendered completely transparent. Thus, in the Full
Rendering condition, the target object and the room
with which it was interacting were well visible to the
observer (except the transparent ceiling). Additionally,
the cube’s cast shadow was visible in the Full Rendering
condition, which probably helped observers interpret
the three-dimensional position and motion of the
cube (Kersten, Mamassian, & Knill, 1997). In the No
Context condition, we did not render any of the walls
and set the background intensity to 0.0, which made the
background completely black. Thus, the No Context
condition showed the exact same cube and trajectory

as the full cube condition but on a completely black
background i.e., all information about the room, the
position of the walls, and the floor came only from the
way the cube bounced. Finally, the Trajectory Only
condition was rendered in the same way (i.e., with a
black background), but instead of rendering the cube
of the original simulation, we rendered a cube with
the same dimensions and material that followed the
simulated trajectory without rotating or deforming.
Thus, in this condition, the information about where
and how the cube bounced off the walls was even more
reduced. It is important to note that even in the Full
Rendering and No Context conditions, participants
might not have been able to detect the cube’s
deformation because it occurred very briefly for only
a single frame, just as one cannot see the deformation
of a bouncing tennis ball. It is therefore possible that
the deformation was not visible in any condition.
All images used in the experiment are available for
download at https://doi.org/10.5281/zenodo.3275880.

Setup and procedure

Stimuli were presented on a Dell LCD monitor
(model U2412M; resolution 1,920 × 1,080 pixels;
refresh rate 60 Hz). Participants were seated in
front of the monitor, approximately 60 cm away;
the stimuli were roughly 20 degrees of visual angle.
Participants viewed the stimuli binocularly. Although
this introduces potential cue conflicts (between the
monocular information of a three-dimensional room
and the binocular information of a flat surface), this
would—if at all—have an unsystematic effect on our
results. Participants were instructed that they would
rate the elasticity of objects presented to them in short
animations, as well as the typicality of their motion.
Elasticity was defined to them as the property that

https://doi.org/10.5281/zenodo.3275880
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distinguishes, for instance, a hacky sack (not elastic)
from a bouncy ball (very elastic). They were further
instructed that objects can move in many ways, some of
which are more common in reality than others; they
are typical rather than atypical. If they were unsure
about what that meant, we further instructed them
that this refers to whether they can imagine seeing
this motion in reality and how frequent it would be.
Additionally, participants were told that they could
throw a ball in many different ways and each time it
would move slightly differently; some of the motions
would appear more typical. Following the instructions,
participants were presented with six animations in
a familiarization phase. The six stimuli covered the
lowest and highest elasticity levels in all three viewing
conditions. Observers could go through the randomized
animations at a self-chosen pace; no response was
required. The purpose of the familiarization was to
show participants the range of stimuli used in the
experiment and to anchor their response range. If the
observer had no further questions, the main experiment
began. After the familiarization phase, all participants
were confident that they could complete the task. On
each trial, the observer was presented with one stimulus.
The animation was displayed at 30 fps centrally on the
screen in a loop until the response was given. Thus,
observers could sample as much information as they
needed to give a response. One frame with a mask
of pixelated grayscale noise followed each animation
cycle so that the beginning of a new cycle was clearly
separable from the end of the current cycle. Two rating
bars were presented underneath the animation, one
to rate the elasticity (“not elastic” to “elastic”) and
one to rate the typicality of the motion (“typical”
to “atypical”). Observers had to adjust a randomly
positioned dot on the bar with the mouse to give their
rating. They first rated elasticity and then typicality.
Observers could take as much time as needed to give
their responses and complete a trial. Each trial was
repeated three times for each observer (i.e., 270 trials in
total). Trials were presented in a pseudorandom order,
so that the specific trajectory shown in trial n could
not be presented in a different version in trial n + 1
(e.g., first as Full Rendering, then as Trajectory Only).
The entire experiment was run in MATLAB (The
MathWorks, Inc.) using the Psychophysics toolbox
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

Data analysis

Ratings were saved on a scale between 0.0
(not elastic/atypical) and 1.0 (very elastic/typical).
Raw data from the experiment are available at
https://doi.org/10.5281/zenodo.3275880. We tested
the influence of physical elasticity and visual cues
on the elasticity and typicality ratings with Bayesian

model comparison (or Bayesian analysis of variance
[ANOVA]) using the JASP software (JASP Team). We
additionally tested whether the intraobserver variability
of elasticity ratings (as an indicator of certainty) varies
between cue conditions by calculating the standard
deviation of ratings of the same stimulus by the same
observer and then averaged across stimuli and across
observers. We compared the three cue conditions
with Bayesian paired samples t tests. In addition to
Bayesian statistics, we report the corresponding results
of standard null hypothesis testing in the Appendix
because some readers might be more familiar with
interpreting frequentist statistics. Importantly, standard
and Bayesian hypothesis testing lead to the same
conclusions.

Results

Elasticity ratings

We analyzed both the elasticity and the typicality
ratings with a Bayesian repeated-measures ANOVA.
For that purpose, we compared four competing models
to the null model (that no variable influences the rating)
and evaluated the corresponding Bayes factors (BF):
(1) a simple main effect model of cue condition, (2)
a simple main effect model of elasticity, (3) a model
with two main effects (cue + elasticity), and (4) a
model with two main effects and an interaction. The
results are summarized in Table 1. We found that
Model 3 (i.e., two main effects and no interaction)
could best explain the elasticity ratings. Specifically,
BFCue + Elasticity = 7.67 * 1073, that is, the data are
7.67 * 1073 more likely under the hypothesis of two
main effects than under H0, which is considered
extreme evidence for H1 (Wagenmakers et al., 2018). For
comparison, the BF for either of the individual main
effect models compared to the null model was lower
(BFElasticity = 1.58 * 1066; BFCue = 95.62). Additionally,
we found that the data were 73.61 times more
likely under the model with two main effects than
a model including main and interaction effects
(BFCue + Elasticity / BFCue + Elasticity + Interaction = 73.61),
which is considered very strong evidence (Wagenmakers
et al., 2018). Thus, physical elasticity and cue condition
independently influenced the elasticity ratings.
Regardless of the cue condition, cubes that are more
elastic were on average perceived to be higher in
elasticity (see Figure 3A). This figure also indicates
the equations of a linear fit between simulated and
perceived elasticity for all trajectories. As can be
expected (given that we did not find an interaction of
the factors), a similar slope was found for the three cue
conditions. Importantly, the pattern of ratings was the
same in all three cue conditions; for example, if a specific

https://doi.org/10.5281/zenodo.3275880
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Models P(M) P(M|data) BFM BF10 Error %

Elasticity ratings
Null model (including subject) 0.200 1.286e –74 5.146e –74 1.000
Cues 0.200 1.230e –72 4.920e –72 95.617 0.781
Elasticity 0.200 2.033e –8 8.131e –8 1.580e+66 0.470
Cues + elasticity 0.200 0.987 294.454 7.670e+73 1.185
Cues + elasticity + cues * elasticity 0.200 0.013 0.054 1.042e+72 1.614
Typicality ratings
Null model (including subject) 0.200 6.701e –63 2.681e –62 1.000
Cues 0.200 1.998e –5 7.991e –5 2.981e+57 0.808
Elasticity 0.200 1.226e –62 4.902e –62 1.829 0.327
Cues + elasticity 0.200 0.995 862.588 1.485e+62 1.551
Cues + elasticity + cues * elasticity 0.200 0.005 0.018 6.858e+59 0.740

Table 1. Results of Bayesian repeated-measures ANOVAs. Note: All models include subject.

Figure 3. Results of the elasticity ratings. (A) Lines show average elasticity rating across trajectories and observers for each level of
elasticity. Symbols show average across observers for different trajectories (i.e., three per level of elasticity). At each elasticity level,
there are three symbols of each color: The same symbol represents the same trajectory, and the color represents the cue condition.
Error bars show± 1 SEM across participants. Markers of different conditions were slightly jittered along the x-axis to increase visibility.
(B) Average intraobserver variability for different viewing conditions. We calculated the standard deviation of ratings of the same
stimulus by the same observer and then averaged across stimuli and across observers. Error bars show ± 1 SEM across participants.

trajectory was rated as much lower in elasticity than it
actually was, then that trajectory was rated much lower
in elasticity in all cue conditions (see, e.g., dip of all three
lines at elasticity 0.6). Overall, however, the elasticity
ratings were slightly lower in the Trajectory Only
condition compared to the other two viewing conditions
(BFFull �= Rigid = 4.38 * 104; BFNo Context �= Rigid = 6.41
* 105). The rotations and deformations of the cube
seemed to have enhanced the impression of elasticity
in the other two conditions. To quantify this effect, we
can compare the average ratings in the three conditions
(averaged across elasticities). The Trajectory Only
already accounts for 82.30% of the average rating in
the Full Rendering condition. Adding rotations and
deformations to the trajectory accounts for another

16.69% of the Full Rendering rating (i.e., average rating
in No Context condition is 98.98% of the rating in the
Full Rendering condition). The context information
(i.e., the background in the full renderings) added only
0.02% to the average Full Rendering rating.

Because we systematically limited the information
available to the observers in the No Context and
Trajectory Only conditions, we hypothesized that
the corresponding ratings would be noisier and that
observers would be less confident in rating these
stimuli. Thus, we tested whether there was a difference
in the variability of responses from the same observer
to repetitions of the same stimulus (intraobserver
variability). We found no clear evidence for or against
that in the Bayesian repeated-measures ANOVA (BFCue
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Figure 4. Results of the typicality ratings. Lines show average
across trajectories and observers for each level of elasticity.
Markers show average across observers for different
trajectories (i.e., three per level of elasticity). At each elasticity
level, there are three symbols of each color: The same symbol
represents the same trajectory, and the color represents the
cue condition (same as in Figure 3). Error bars show ± 1 SEM
across participants. Markers of different conditions were
slightly jittered along the x-axis to increase visibility.

= 0.62, anecdotal evidence for H0). This suggests that we
cannot make strong conclusions about the intraobserver
variability between conditions. Presumably, more data
are required in order to do so.

Typicality ratings

Results of the typicality analysis are summarized
in Table 1. We found extreme evidence for two
independent main effects of cue and elasticity on
the typicality ratings (i.e., BFCue + Elasticity = 1.45 *
1062). Less evidence was found for the individual main
effects (BFElasticity = 1.83; BFCue = 2.98 * 1057). We
found no evidence for an interaction effect of the two
factors; that is, the data were 213.75 times more likely
under the model with two main effects than a model
including main and interaction effects (BFCue + Elasticity /
BFCue + Elasticity + Interaction = 213.75). Thus, cue condition
and elasticity had independent effects on the typicality
ratings. Unsurprisingly, participants rated stimuli in
which the cube rigidly followed the trajectory much
less typical than stimuli in the other two cue conditions
(see Figure 4). There was a smaller difference between
the Full Rendering and No Context conditions (with
and without background; BFFull �= No Context = 900.2).
Interestingly, we also found a mild effect of elasticity
on the perceived typicality of the motion: Objects that
are more elastic were perceived to be less typical. This
observation is confirmed by the negative slopes that
we found for a linear fit between physical elasticity
and perceived typicality in all cue conditions. These

results might suggest that highly elastic objects are less
common in our environment; therefore, trajectories of
objects low in elasticity were rated more typical. Highly
elastic objects, on the other hand, might have appeared
as comic-like exaggerations.

Beside the overall effects of cue condition and
elasticity on typicality, these ratings provide some
additional insights when we consider individual
stimuli. Figure 5 shows the stimuli rank ordered by
their average typicality. Again, Trajectory Only stimuli
were consistently rated much lower in typicality,
whereas stimuli of the other two cue conditions were
intermixed. It is now possible to identify the most
typical (D) and the most atypical stimulus (A) over all
conditions. Unsurprisingly, the least typical stimulus is
highly elastic (elasticity 0.9) and of the Trajectory Only
condition. Inspection of the actual stimulus shown in
SupplementaryMovie S2A reveals that this stimulus has
a lot of movement in depth and along the line of sight
of the observer. Without the walls visible, this increases
the “floating” appearance of the cube in this specific
exemplar, which might have added to the stimulus
looking very atypical. The most typical stimulus, on
the other hand, was a low elastic cube (elasticity 0.0)
in the Full Rendering condition (see Supplementary
Movie S3D). Figure 5 also shows that all stimuli of the
Trajectory Only condition cluster at the lower end of
typicality, except for one stimulus that was rated much
more typical (B). Inspection of Supplementary Movie
S2B demonstrates why this might be the case: The
missing rotation does not stand out in this particular
stimulus, because there was almost no rotation in the
original trajectory. Furthermore, the cube does not
bounce off any of the walls and quickly lands exactly
on one of its sides, which gives a realistic impression
of a flat floor. Besides the most typical stimulus of the
Full Rendering condition, Supplementary Movie S3
also shows the most atypical stimulus of that condition
(C): It is very elastic (elasticity 0.8) and bounces a lot.
To understand better the effect that elasticity has on
typicality, it is worth looking at outliers (i.e., typical
elastic and atypical inelastic stimuli): Supplementary
Movie S4 shows the highly elastic stimulus (elasticity
0.9) that was rated most typical (F) and the low elastic
(elasticity 0.1) stimulus that was rated most atypical
(E). There are at least two interesting facts to notice
here. (a) The atypical low elasticity stimulus (E) indeed
shows a statistically rare occurrence: The cube starts
from a low position, moves upward and downward
along exactly one arc, then lands exactly on one of its
edges and topples over exactly once. From all possible
positions the cube could land on, only six are exactly on
one side; therefore, this case is statistically rare or not
representative. In our set of 30 simulations, this case
occurred only one time. (b) The highly elastic cube that
was rated most typical in the Full Rendering condition
was rated least typical (of all stimuli) in the Trajectory
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Figure 5. Average results of the typicality ratings rank ordered. Green circles show stimuli from the Trajectory Only condition, purple
triangles show stimuli of the No Context condition, and blue squares show Full Rendering condition. Stimuli that are highlighted in red
and assigned a letter are shown in Supplementary Movies S2–S4 and visualized on the right: (A) least and (B) most typical stimulus of
Trajectory Only condition, (C) least and (D) most typical stimuli of Full Rendering condition, (E) most atypical stimulus of low elasticity
(Full Rendering Condition), and (F) most atypical stimulus of high elasticity (Full Rendering condition).

Only condition. Presumably, the stimulus looks less odd
in the Full Rendering condition because the cube shows
a lot of motion in depth and there are more depth cues
available here. Why, however, does it look particularly
typical? We can only speculate about this. This cube
shows relatively few bounces compared to other cubes
of the same elasticity, so it might have appeared less
elastic. Indeed, the elasticity ratings were lower for
this than for the other stimuli of the same elasticity.
Therefore, what we see here might simply be the main
effect of elasticity.

Discussion

In sum, we found that observers could judge the
elasticity of the bouncing cubes despite confounding
variations of external factors. Participants were,
however, not perfectly constant. Importantly, we found
the same pattern of elasticity ratings in all three cue
conditions. Stimuli in the Trajectory Only condition
were generally rated slightly less elastic and their motion
appeared less typical. Overall, highly elastic stimuli
were rated less typical. Rated typicality also seemed to
be influenced by the likelihood of observed events (e.g.,
how the cube lands).

Consider first the results of the Full Rendering
condition. In agreement with the literature (Nusseck
et al., 2007; Warren et al., 1987), we showed that
observers are able to judge the elasticity of bouncing
objects from visual information. Our findings extend
previous reports by showing that humans can do this

even if the observed motion pattern is confounded with
the influence of external factors, such as a random
initial velocity. However, our results also suggest that
human observers do not show perfect “elasticity
constancy” (i.e., they cannot perfectly discount the
contribution of external factors). If they were perfectly
constant, observers should have given the same
ratings to different stimuli of the same elasticity level.
Interestingly, these misperceptions were not random.
Instead, certain stimuli were consistently misjudged
in the same way by many participants (e.g., the same
elastic stimulus was falsely rated as rather inelastic by
the majority of observers). These systematic errors
indicate similar underlying representations or at least
the use of similar image information. By randomly
varying external factors, we have created conditions
that misguide the perceptual system and therefore
provide potential to gain insights about the underlying
mechanisms. Strikingly, stimuli that were consistently
misjudged by our participants were not rated less
typical. Presumably, these stimuli showed a plausible
motion pattern, but one that is more typical for a
different level of elasticity. Typicality judgments in
the Full Rendering condition seemed to be driven by
something else: (a) Stimuli appeared less typical the
more elastic they were. This result is interesting, as
it suggests a perceptual prior for relatively inelastic
objects in the real world. (b) Stimuli also appeared
less typical if they showed less likely events, such as a
cube landing exactly on one side. This indicates that
observers have some intuition about the statistics of the
behavior of bouncing objects. Presumably, an intuition
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about how more or less bouncy objects typically
behave also plays a role in the estimation of elasticity.
What exactly is the information that human observers
use in order to estimate the “bounciness” of an
object?

In the current study, we have systematically limited
the amount of visual information to gain further
insights into this question. In the No Context condition,
participants judged the same trajectories as in the
Full Rendering condition, but they did not see the
room, the floor or the walls with which the cube was
interacting, or the shadow of the cube. Thus, they
had less information about the bounce events and
about the spatial layout in general (e.g., the depth
and height of the cube). Interestingly, despite limited
information, the perception of elasticity was the same
as in Full Rendering condition. Observers showed the
same pattern of responses here. The cube’s rotation
(which was visible in the No Context condition)
presumably gave the observers some impression of the
room. When the cube hit a wall, this became apparent
through its sudden change in direction and potentially
its deformation (if it was detectable). This behavior,
however, not only signaled a bounce event but also
indicated the presence and properties of the wall,
somewhat like an illusory contour. Unsurprisingly,
they rated the motion in the No Context condition as
less typical than in the Full Rendering condition. Even
if participants were able to make some assumptions
about the room, the similarity to the ratings of the Full
Rendering condition is still remarkable. This shows that
the information that the visual system uses to visually
infer elasticity has to be present in this condition
without the background (i.e., in the mere motion
trajectory).

Results of the Trajectory Only condition suggest
that the deformation and rotation might add to the
overall impression of elasticity but that they are not
necessary for the elasticity estimate itself. This is a new
and interesting finding. Previous studies (Nusseck et
al., 2007; Warren et al., 1987) used undeformed spheres,
whose rotations were not visible. Here, we found that
the presence of both caused the motion to look more
typical and overall more elastic, but the pattern of
elasticity ratings, including systematic misperceptions,
was the same as in the Full Rendering condition.
Unlike the No Context condition, there was only a very
weak impression of “illusory” walls here, because the
cube’s orientation stayed the same after a bounce and
it did not deform when hitting a wall. This sometimes
gave the cube a “floating” appearance and might have
lowered the impression of elasticity. Clearly, the motion
patterns in these stimuli were considered very atypical.

One may argue that the knowledge of the room’s
layout from the Full Rendering condition may have
helped observers to interpret the scene and estimate
elasticity. The same observers saw stimuli of all

Figure 6. Average ratings of the control group plotted against
the average ratings in the Trajectory Only condition of the main
experiment. Symbols show average ratings of 30 individual
stimuli. Participants of the control group had never seen the
stimuli of the other two conditions of the main experiment (i.e.,
they had no knowledge about the layout of the scene).

conditions and thus might have assumed a similar scene
layout across all conditions. In order to exclude any
influence of the Full Rendering condition on the ratings
in the Trajectory Only condition, we ran a small control
experiment. Thirteen new participants (eight females;
M = 23 years; SD = 2.24 years), none of whom had
participated in the main experiment, rated the elasticity
of the stimuli in the Trajectory Only condition (all
other experimental details were the same as in the
main experiment). As can be observed in Figure 6, we
found an almost perfect correlation between the average
ratings of the control group and the main experiment
(r = .97, BF10 = 3.676 * 1015, extreme evidence). Highly
elastic stimuli were judged slightly more elastic in the
control than the main group. Presumably, this was due
to the fact that observers in the control group used
the same response scale for a subset of the stimuli
(i.e., different anchoring of the response scale in both
groups). Importantly, even without knowledge about
the scene layout, observers were able to judge elasticity
based only on the atypical-looking trajectories. This
raises two important question: (a) If complete bounce
information, rotation, and deformation are not
necessary for an object to look elastic, what are the
necessary conditions for an object to be judged as an
elastic object at all? (b) What features of the motion
trajectory make an object appear more or less elastic?

Previous research has identified several cues for
elasticity estimation and suggested, for instance, that
a bouncing ball looks more elastic when the square
root of the ratio of the bounce height to the preceding
bounce height is large (Nusseck et al., 2007; Warren
et al., 1987). Warren and colleagues (1987) showed
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that observers could use different cues (e.g., related
to the velocity) if the bounce height information was
occluded. Here, we show that humans can also use a
different estimation strategy if the relation between
bounce height and elasticity is broken. Furthermore,
Nusseck et al. (2007) showed that humans use different
(or more) cues when the task changes from passive
estimation to active interception. These lab results are
in agreement with the great flexibility the visual system
shows in the real world. The visual system seems able
to adjust its strategy of estimating elasticity flexibly
depending on the type of information present or the
type of judgment required for the task. Based on
the results of our study, we can only speculate about
the trajectory features that the brain possibly uses to
estimate elasticity (beside height and velocity ratios).
Likely candidates for our scenes are the number of
bounces, the trajectory traveled by the cube (overall
or between bounces), the overall duration of the
motion, or the pattern of acceleration and deceleration.
Although our stimuli were simulated with the correct
gravitational force, the observed gravitational constant
(and therefore acceleration) was incorrect because of
the size at which stimuli were presented. Interestingly,
participants were able to judge relative elasticity despite
the incorrect scale. Future research is necessary to test
the influence of possible visual cues systematically.
Presumably, these features are highly correlated and
will therefore be difficult to isolate. Furthermore,
future studies should not only aim at identifying visual
cues but also at understanding how these cues (e.g.,
bounces) are computed by the visual system in the
first place. For example, Jepson, Richards, and Knill
(1996) derive theoretically how to detect bounces from
visual information in a Bayesian inference framework,
but it remains open whether human observers use the
proposed strategy.

The idea that the brain uses visual features of the
motion pattern in order to estimate elasticity is in line
with previous research about potential mechanisms
for estimating mechanical properties such as stiffness
or viscosity and optical material properties such as
glossiness or translucency (Kawabe et al., 2015; Kawabe
& Nishida, 2016; Norman et al., 2007; Paulun et al.,
2015; Paulun et al., 2017; Schmid & Doerschner, 2018;
Schmidt et al., 2017; van Assen et al., 2018). Perceptual
dimensions, however, might not necessarily map directly
onto the physical dimensions. An important question
in this regard is whether the brain tries to estimate
Newtonian physics in the first place. Instead of arguing
that the visual system is measuring a certain visual
feature (e.g., bounce height) in order to estimate a
certain physical property (e.g., elasticity), one might
also argue that the brain is primarily interested in the
visual feature itself (or—depending on the definition of
a visual cue—a composite of features). For example,
a ball will bounce high when it is highly elastic. Yet,

a ball of lower elasticity might bounce to the same
height when it is thrown with higher speed. One needs
to disentangle these causes of a high bounce in order
to estimate elasticity. However, a precise estimate of
elasticity is maybe unnecessary in order to intercept
the ball. Instead, the brain needs to estimate the
bounce height itself, irrespective of whether elasticity
or velocity contributed to it. Therefore, how high a ball
bounces might be a useful estimate for a given task,
although it may lead to inaccurate results when used as
a proxy for elasticity. This perspective suggests that in
order to understand the underlying perceptual process,
it is worth looking not only for possible visual cues but
also for plausible ones in terms of the tasks the brain
has to solve.

Keywords: material perception, elasticity, intuitive
physics, motion perception
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Appendix

Virtual physics experiments

Any physics simulation can only approximate the
complex physical behavior of objects in the real world.
For our purposes, this approximation is sufficient
if the macroscopic behavior of simulated objects
approximately matches the macroscopic behavior in a
real physical system. Qualitatively, elastic bodies must
return to their original shape after an external distorting
force is removed. This is true for our simulated objects,
as can be seen in Figure 2, Supplementary Movie S1,
and one of our previous studies using the same physics
engine (Paulun et al., 2017). To quantitatively test
whether the simulated macroscopic behavior is a good
approximation of the real world, we further conducted
two virtual experiments that make quantitative
predictions about (a) the elastic modulus and (b) elastic
collisions. Both were conducted with the same settings
as the simulations used for the experiment (i.e., same
frame rate and resolution, etc.).

Elastic modulus
In the real world, for small deformations, most

materials show a linear relationship between stress and
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Figure A1. Stress-strain diagram for a cube from our experiment
(elasticity = 0.5). As in the real world, there is a linear
relationship between the amount of force applied and the
lengthening of the material.

strain (Hooke’s law). Put simply, the amount of elastic
deformation increases linearly with the force applied
to the material. The strength of that relationship varies
between materials (i.e., the slope of the stress-strain
curve). Here, we did not manipulate the elastic modulus
(as we kept the stiffness parameter constant). If,
however, the simulated objects realistically approximate
the behavior of real elastic materials, we should find a
linear relationship between stress and strain (without
making a prediction about the slope of the curve). In
the real world, Young’s modulus is defined as the ratio
of uniaxial stress or force per unit surface and the
change in proportional deformation (change in length
divided by original length). We measured Young’s
modulus of a cube of medium elasticity (e = 0.5) in
RealFlow. For this purpose, the cube was attached
below another cube of the same size, which was
placed in the center of the room. This second cube was
simulated as a “passive rigid body” (i.e., it would not
deform or move under gravity but simply hold the soft
cube in position). We systematically manipulated the
gravity parameter to apply a unidirectional force to the
soft body and measured how much it stretched under
this influence. More precisely, we ran 10 simulations of
31 frames. In each simulation, the gravity value was set
to a value between 10 and 100 m/s2 (in equal steps). We
measured the elongation of the cube at each time point
and compared its length in the first frame (0.1 m) to the
last frame (when it had settled after some initial motion)
and divided this by the original length. Figure A1 shows
the resulting stress-strain curve (i.e., the elongation
of the cube following linear increases in gravity). This
relationship is almost perfectly linear and therefore
matches the behavior of many materials in the real
world.

Elastic collisions
In physics, collisions can be described by the

proportion of kinetic energy that is retained by the
system. This is quantified by the coefficient of restitution
(e). Accordingly, collisions can be perfectly elastic
(e = 1), perfectly inelastic (e = 0), or somewhere in
between. The “amount of energy that the cube retains
when it collides” is exactly what is modified when
changing the RealFlow parameter “elasticity,” as we
did in the current study. To test whether this is indeed
what the software simulates, we conducted a virtual
experiment in which we dropped balls of different
elasticities from the same height and measured how
high they bounced. We used the ratio between the
height of the first bounce and the initial height as a
measure of the coefficient of restitution. We expected
to find a linear increase in the measured coefficient with
increasing the elasticity parameter.

To conduct the virtual physics experiment, we used
the same basic scene as for the stimuli. Instead of a
cube, we used a sphere, because it will not change
the direction (drastically) after a bounce. The sphere
was matched to the cube from the psychophysical
experiment in terms of volume, density, and mesh
density (important for simulation accuracy). We placed
the sphere in the center of the room at 0.5 m height
and let it fall freely under gravity (9.81 m/s2) while
continuously measuring the height of the cube’s CoM
(at 30 fps). This was done for 10 spheres, one for each
level of elasticity used in the psychophysics experiment
(see Figure A2). Figure A3 shows the coefficient of
restitution (ratio of first bounce height to initial height)
for all levels of elasticity. Note that the coefficient is
never exactly zero, because we measured the height
of the CoM. Importantly, the relation between the
elasticity parameter and coefficient of restitution is
linear. This shows that the simulations used for the
human experiments are good approximations of the
real-world physics. We make no specific claims about
the perception of absolute physical quantities, so the
slope of the line is irrelevant for our purposes.

Frequentist statistical analysis

In addition to the Bayesian statistics presented in
this study, we will present results of the corresponding
frequentist analysis in the following. More specifically,
we conducted three statistical tests for potential
main and interaction effects of cue condition and
elasticity on the typicality as well as elasticity
ratings.

1) To test for an effect of elasticity on the ratings, we
used a linear fit of elasticity and typicality ratings
to ground truth elasticity (irrespective of viewing
condition) to determine the slope for each individual
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Figure A2. Height of spheres with different elasticities dropped from a height of 0.5 m over 4 s. Data show the height of the CoM of
the spheres, which had a diameter of 0.124 m. Therefore, the height never reaches zero. The height of the first bounce was used to
calculate an approximation of the coefficient of restitution. Note also that the exponential envelope of the curves (decay) is also
consistent with ideal physical behavior.

Figure A3. The coefficient of restitution (bounce height/drop
height) for spheres of different elasticity (as defined by
RealFlow’s elasticity parameter).

observer. We then tested whether the slopes were
significantly different from zero using two-sided
one-sample t tests. In agreement with the Bayesian
analysis presented in the Results section of this
article, we found that elasticity had a significant
effect on the typicality as well as elasticity ratings.
The slopes were significantly larger than zero in case
of elasticity ratings, t(12) = 8.55, p < 0.001, and
significantly smaller than zero in case of typicality
ratings, t(12) = -2.41, p = 0.033.

2) To test for an effect of cue condition on both types
of ratings, we compared the intercepts resulting
from a linear fit of the rating data to ground truth
elasticity for each cue condition individually with
a one-factorial repeated-measure ANOVA. Results
are summarized in Table A1. In accordance with the

Bayesian analysis, we found a significant effect of
cue condition on the typicality ratings. We found,
however, no significant effect of cue condition
on the elasticity ratings. The discrepancy to the
Bayesian analysis might be due to the fact that
in this ANOVA, we are comparing intercepts of
linear fits (instead of raw data). Importantly, this
does not affect the main conclusions of our study.
The Bayesian analysis suggests the same pattern of
elasticity ratings in all three cue conditions, with
overall slightly lower ratings for the Trajectory Only
condition. Here, we find that this difference may be
negligible.

3) To test for an interaction effect of cue condition
and elasticity, we compared the slopes resulting
from the same linear fits of the rating data to
elasticity for each cue condition with a one-factorial

Factor df1 df2 F p

Elasticity ratings
Intercept (main effect
of cue)

1.17 13.99 2.46 .136

Slopes (interaction
Cue × Elasticity)

1.26 15.15 3.59 .070

Typicality ratings
Intercept (main effect
of cue)

1.30 15.62 33.20 < .001

Slopes (interaction
Cue × Elasticity)

2 24 0.31 .734

Table A1. Results of one-way repeated-measures ANOVAs on
the slopes and intercepts resulting from linear fits of the rating
data to ground truth elasticity for each observer. Note: Effects
were corrected for violations of sphericity using the
Greenhouse-Geisser method where necessary.
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repeated-measure ANOVA. In accordance with the
Bayesian analysis, we found no interaction effects
(i.e., neither a significant difference between the
slopes of the elasticity ratings nor the typicality
ratings; see Table A1).

The intraobserver variability in the three viewing
conditions was compared using a one-factorial
repeated-measures ANOVA. In agreement with the
Bayesian analysis, we found no significant effect of
the cue condition on the intraobserver variability,
F(2, 24) = 1.91, p = 0.170.

Finally, the correlation between the results of the
main and control experiment was 0.97 and significant
at p < 0.001.

Supplementary material

Supplementary Movie S1. Example trajectory in all
three viewing conditions (Full Rendering, No Context
and Trajectory Only). The same stimuli are visualized
in the static images of Figure 1.
Supplementary Movie S2. Least (A) and most (B)
typical stimulus of the Trajectory Only condition.
Supplementary Movie S3. Least (C) and most (D)
typical stimulus of the Full Rendering condition.
Supplementary Movie S4. Generally, stimuli of lower
elasticity appeared more typical. However, (F) shows
the most typical stimulus of high elasticity (elasticity
0.9) and (E) shows the low elastic stimulus (elasticity
0.1) that was rated least typical.


