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ABSTRACT
Coregonid fishes are among the most successful groups in the subarctic, boreal, and subalpine fresh
waters of the northern hemisphere. Limnetic–benthic sympatric species-pairs from two different evolu-
tionary lineages, the North American lake whitefish (Coregonus clupeaformis species complex), and the
European whitefish (Coregonus lavaretus species complex), are becoming the subject of close attention
to explore the role of natural selection during the ecological speciation. Baikal endemic coregonids,
limnetic omul (Coregonus migratorius), and benthic lacustrine whitefish (Coregonus baicalensis) are the
only representatives of another unique lineage that has not left the lake since the divergence from the
two above. Due to Pleistocene oscillations sympatric limnetic–benthic divergence has been replicated
here many times within the same water body over a long geological period in contrast to both Europe
and America where sympatric species-pairs are the results of post-glacial secondary-contacts between
glacial isolates during the Late Pleistocene on the territory of each continent. Mitochondrial genomes
encode genes that are essential for respiration and metabolism. Data on complete mitogenomes of
Baikal endemic coregonids provided here will complement ongoing investigations on energy metabol-
ism as the main biological function involved in the divergence between limnetic and benthic whitefish.
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In contrast to numerous studies that focus on the genomic
basis of adaptive phenotypic divergence, the role of gene
expression during speciation has been much less investigated
and, consequently, less understood (Rougeux et al. 2019).

‘Nonmodel’ species studied in their ecological context,
such as whitefish, play an increasingly important role in eco-
logical genomics (Bernatchez et al. 2010; Rougeux et al.
2019). Transcriptomic studies of these fish show that energy
metabolism is the main biological function involved in the
divergence between limnetic and benthic whitefish (Trudel
et al. 2001; Bernatchez et al. 2010; Rougeux et al. 2019).
There is mounting evidence that selection has been acting
more strongly on limnetic than benthic whitefish and special
attention is given to metabolic genes associated with the
mitochondrion machinery (Derome et al. 2006; St-Cyr
et al. 2008).

Lake Baikal is one more unique place to study genetic and
phenotypic divergence among sympatric whitefish ecotypes
(Bychenko et al. 2014). Obviously, in Baikal, in comparison
with North American and European lakes, selection has been
acting on limnetic ecotype even more strongly. Complete
reproductive isolation of ecotypes by spawning time
(autumn/winter) and place (rivers/lake shoals) (Skryabin 1969)
as well as pronounced intraspecific phenotypic structure, of
limnetic ecotype, testify it (Smirnov 1992).

To explore adaptation to the deepest oligotrophic lake
with a highly superstructured vast pelagic zone (Shimaraev
et al. 1994) and to trace parallelisms between sympatric pairs
through the continents, we present the first complete mito-
genomes for Baikal endemic coregonids: limnetic – omul C.
migratorius and benthic – lacustrine whitefish Coregonus
baicalensis.

All the samples were collected directly in Lake Baikal and
its basin during fish spawning migrations. Total genomic
DNA was isolated from fin clips collected from three speci-
mens for each species. The exact collection sites for each
sample placed in the GenBank were as follows:

1. C. migratorius MN394787 – Barguzin River (Baikal’s tribu-
tary) – 53�30011 N; 109�21031 E

2. C. migratorius MN394788 – Barguzin River (Baikal’s tribu-
tary) – 53�30011 N; 109�21031 E

3. C. migratorius MN394789 – Kulinda Lake (Lake Baikal
basin) – 56�07013 N; 110�28003 E

4. C. baicalensis MN394784 – Chivyrkuy Bay (Lake Baikal) –
53�45035 N; 109�04021 E

5. C. baicalensis MN394785 – Delta of the Selenga River
(Lake Baikal) – 52�27001 N; 106o39045 E

6. C. baicalensis MN394786 – Maloye More Strait (Lake
Baikal) – 53�03030 N; 106�51038 E
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Voucher material from the list above was retained at
Baikal Museum of ISC SB RAS, Listvyanka, Russia under
Accession numbers as follows: 1. Bar376; 2. Bar377; 3. Kul52;
4. Chiv1; 5. ss11; 6. 14mm.

Mitogenomes were generated using traditional Sanger
sequencing at the Limnological Institute and sequencing-
by-synthesis on Genome Analyzer IIx (Illumina, Inc., San
Diego, CA, USA) at the ZAO Genoanalitica (Moscow, Russia).
Sanger reads were trimmed and aligned with Bioedit 7.0.0
(Hall 2005), and Genome Analyzer reads were assembled
using CLC Genomics Workbench 12.0 (QIAGEN, Aarhus,
Denmark) on the HPC-cluster ‘Akademik V.M. Matrosov’ of
Irkutsk Supercomputer Center SB RAS (http://hpc.icc.ru. . . . . .
. . . . ). The mitogenomes of Coregonus clupeaformis and
Coregonus lavaretus (Jacobsen et al. 2012) were served as ref-
erence sequences and used for phylogenetic reconstructions
together with available mitogenomes of some other corego-
nids. A multiple alignment was conducted with ClustalW
implementation in MEGA version 7 (Kumar et al. 2016) and
validated by eye. Annotation pipeline MitoAnnotator (Iwasaki
et al. 2013) was used for annotation of mitoge-
nome sequences.

MEGA 7 (Kumar et al. 2016) was used to select the opti-
mum nucleotide substitution model and conduct a max-
imum-likelihood phylogenetic analysis (Tamura et al. 2013;
Figure 1). Minimum evolution and neighbor-joining trees
resulted in the same tree topology as the maximum-likeli-
hood tree. Phylogenetic analyses (Figure 1) confirmed inter-
species relationships reported for Baikal coregonids based on
Cytb mtDNA (Sukhanova et al. 2012). Comparable genetic
distances (Figure 1) indicate a similar age between three

lineages of interest: Baikal endemics, the North American lake
whitefish, and the European whitefish.
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