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Collective cell migration is a key 
process during epithelial morpho-

genesis, tissue regeneration and tumor 
dissemination. During collective epithe-
lial migration, anterior-posterior polar-
ity, apical-basal polarity and cell-cell 
junctions must be dynamically coor-
dinated, but the underlying molecular 
mechanisms controlling this complex 
behavior are unclear. Rho GTPases regu-
late the actin cytoskeleton, in particular 
protrusive and contractile activities at 
cell-cell contacts. Recently, a number of 
regulators—nucleotide exchange factors 
(GEFs) and GTPase activating proteins 
(GAPs)—have been identified and sug-
gested to provide spatio-temporal con-
trol of Rho GTPases at cell-cell contacts. 
One of these is myosin IXA, a member of 
class IX, single-headed actin motors hav-
ing a conserved RhoGAP domain. Using 
its actin-binding and motor activities, 
myosin IX interacts with actin filaments 
and moves toward filament plus ends. 
At the plasma membrane, myosin IX’s 
RhoGAP activity negatively regulates 
Rho to facilitate localized reorganization 
of the actin cytoskeleton. Here, I discuss 
how myosin IXA regulates Rho and the 
actin cytoskeleton during the assembly 
of nascent cell-cell contacts and how this 
might contribute to collective epithelial 
migration.

Introduction

Collective cell migration is character-
ized by the maintenance of a physical 
interaction between cells coupled with 
coordinated anterior-posterior polariza-
tion of individual cells within a migrating 
monolayer or group (Fig. 1). It has a fun-
damental role in embryonic development, 
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regeneration and cancer metastasis.1 
Collective cell migration has been stud-
ied in vitro in migrating epithelial or 
endothelial monolayers in response to a 
scratch wound,2-4 on patterned substrates,5 
in tissue explants of cancer cells, meso-
derm or mammary ducts6-8 and in 3D.9-11 
Examples of in vivo models of collective 
cell migration are numerous and include 
developing embryos of fruit fly, zebrafish, 
mouse and metastatic cancers in mice.1 
The molecular mechanisms underlying 
such coordinated migration are, however, 
not well understood.1

Morphological features of collective 
cell migration include basal anterior-
posterior cell polarity manifested as uni-
directional, actin-rich protrusions at the 
front of multiple cell rows (Fig. 1A and 
B). This results in the migrating group 
having a fish scale-like arrangement (Fig. 
1C). The basal protrusions of following 
cells penetrate under leading cells and 
have a distinct cadherin distribution (Fig. 
1B and underlapping) and actin cyto-
skeletal organization12 reflecting com-
plex cell-cell interactions in this region. 
Highly coordinated regulation of cell-cell 
junctions (localization and clustering of 
junctional proteins) and the actin cyto-
skeleton associated with junctions (affect-
ing stabilization, adhesion strength and 
protrusive activity) are key features of col-
lective cell migration. Recent experiments 
have revealed that cell-cell adhesion 
strength can regulate the directionality 
of coordinated cell movement, as demon-
strated by collective E-cadherin-mediated 
mesendoderm migration during zebraf-
ish gastrulation.13 E-cadherin is essential 
for collective epithelial migration,14 but 
excess cell-cell adhesion blocks collec-
tive migration, for example in Drosophila 
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Collective Cell Migration  
and the Role of Rho-Dependent  

Actin-Myosin Contractility

A major contributor to collective cell 
migration is thought to be a mechani-
cal force. Actin-myosin contractile forces 
regulate cell shape and the stability of 
cell-matrix and cell-cell junctional adhe-
sions.22-25 The forces generated by actin-
myosin contractile filament bundles 
associated with cell-cell junctions can also 
be transmitted throughout migrating cell 
groups to regulate collective behavior, as 
seen in monolayers26 and tissues.27

Two spatially and functionally distinct 
actin populations have been reported at 
cell-cell contacts in epithelial cells: junc-
tional or radial actin, and tangential con-
tractile thin bundles.28,29 The collision of 
two protruding lamellipodia stimulates 
local clustering of E-cadherins (primordial 
junctions) accompanied by the formation 
of junctional actin. The junctional actin 
associates with and stabilizes E-cadherins 

defining the spatio-temporal activity of 
Rho GTPases during migration.

In a recent study, we described a role 
for myosin IXA, a Rho-specific GAP, in 
the collective migration of human bron-
chial epitheliocytes, 16HBE cells.21 These 
cells, which show remarkably coordinated 
collective migration in culture (Fig. 1), 
were used in an siRNA-based screen to 
identify GEFs and GAPs involved in col-
lective cell migration. We found that in 
the absence of myosin IXA, 16HBE cells 
failed to form stable adherens junctions 
during migration resulting in cell scat-
tering and subsequent random migration. 
More careful analysis revealed that remod-
eling of the actin cytoskeleton at cell-cell 
contacts in response to cadherin-mediated 
adhesion was defective in myosin IXA-
depleted cells. Here, I will discuss our 
current ideas about how the regulation of 
Rho by myosin IXA likely contributes to 
effective collective migration of these epi-
thelial cells.

border cells or in mouse mammary epi-
thelial cells.14,15

The Rho family of small GTPases are 
major regulators of the actin cytoskel-
eton, with protrusive lamellipodial activ-
ity promoted by Rac, filopodia formation 
by Cdc42 and contractile actin-myosin 
activity by Rho.16 They also regulate cell-
cell junction dynamics (adherens and 
tight junctions), both directly (transport 
and clustering) and indirectly (through 
the associated actin cytoskeleton).17,18 
Rho GTPases are molecular switches 
and are themselves controlled by inter-
convertion between active GTP-bound, 
and inactive GDP-bound states. When 
active, GTPases bind specific effector 
proteins to stimulate downstream signal-
ing. Rho GTPases are activated by gua-
nine nucleotide exchange factors (GEFs) 
19 and inactivated by GTPase activat-
ing proteins (GAPs).20 Some 150 genes 
encode mammalian GEFs and GAPs, and 
most are not well characterized. It is likely 
that these regulators play a central role in 

Figure 1. Morphological features of collective epithelial cell migration. (A) Anterior-posterior polarity in 16HBE cells developed in response to a 
wound scratch. Wound edge is at the right. Actin-rich protrusions (arrows) visualized by EYFP-actin expressed in a mosaic pattern in a 16HBE epithelial 
monolayer have unidirectional orientation many rows behind the scratch. Bar is 100 μm. (B) Protrusions found at the basal plane (arrowheads) visual-
ized by GFP-E-cadherin expression in a monolayer or islands of 16HBE cells face the direction of migration (arrows). Note, the protrusions in the back 
row cells underlap the front rows cells (arrowheads). Bar is 10 μm. (C) Schematic of migrating epithelial cell island profile. Cell-cell interaction zones 
at the basal plane labeled with red lines (underlapping protrusions) and the lateral sides marked with tight and adherens junctions. Protrusions face 
direction of migration (to the right).
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proteins have been characterized in the 
context of cell-cell contact regulation.17 In 
fibroblasts, N-cadherin-mediated cell-cell 
junctions are regulated by p190RhoGAP-
mediated inhibition of RhoA. It was 
shown that Rac1 activation promoted 
recruitment of p190RhoGAP to adherens 
junctions where p190RhoGAP transiently 
interacted with p120catenin leading to 
local inhibition of RhoA.35 However, the 
exact role of p190RhoGAP in epithe-
lial cells remains unclear.17 In epithelial 
cells, ARHGAP10 was found to local-
ize at cell-cell contacts and interact with 
α-catenin. In siRNA depletion experi-
ments ARHGAP10 was necessary for 
recruitment of α-catenin. Overexpression 
of C-terminal RhoGAP-containing frag-
ment led to disassembly of the actin stress 
fibers.36 ARHGAP12 was recently identi-
fied and cloned as a new junctional pro-
tein localized to E-cadherin-mediated 
junctions of intestinal epithelia.37 It seems 
likely that the negative regulation of Rho 
GTPases underlies the dynamic behavior 
of cell-cell contacts, and it will be interest-
ing to investigate the functional roles of 
these different GAPs at junctions. 

or dominant negative forms of RhoA has 
been reported to alter the actin cytoskel-
eton and inhibit monolayer migration.32 
A more detailed analysis revealed that the 
depletion of RhoA by RNAi inhibits the 
formation of mature cell-cell contacts and 
the formation of tangential actin bundles, 
but does not prevent the assembly of junc-
tional actin and radial bundles associ-
ated with primordial junctions.30 On the 
contrary, it seems likely that the initial 
stages of cell-cell contact establishment, 
including the formation of radial actin 
fingers, are inhibited by contractile forces 
associated with Rho and myosin II activ-
ity. Direct evidence to support this has 
emerged from studies on the spatio-tem-
poral activity of RhoA using FRET-based 
biosensors in various epitheliocytes. They 
reveal that active RhoA accumulates at the 
lateral expanding edges of cell-cell con-
tacts, but not at the overlapping central 
area.33,34 This raises the possibility that 
RhoA is locally inhibited and an obvious 
mechanism for this would be through the 
recruitment of a RhoGAP.

A number of Rho family regulators 
including RhoGAP domain containing 

and primordial junctions.28 During junc-
tional maturation, actin filaments become 
tangential, circumferential bundles (Fig. 
2). These are contractile and co-align with 
linear tangential E-cadherin-mediated 
adhesions and function to increase the 
height of the lateral surface of cell-cell 
contact.28 In 16HBE epitheliocytes, actin 
puncta and radial actin finger bundles are 
associated with primordial junctions, and 
this later reorganizes into circumferential 
bundles and mature junctions (Fig. 2).21,30

Diverse mechanisms control actin-
myosin contractility, but a major player, 
particularly during cell migration, is 
Rho.31 Activation of Rho by a variety of 
GEFs results in activation of the effec-
tor Rho kinase (ROCK). ROCK in turn 
activates myosin II directly, by phos-
phorylation of myosin light chain II, and 
probably more importantly indirectly, by 
inactivating myosin light chain phospha-
tase. Bundled filaments of active myosin 
II motors pull on the F-actin network to 
generate contractile force.31

Rho is an important player in the 
collective migration of 16HBE cells. 
Overexpression of constitutively active 

Figure 2. Cell-cell contact formation in 16HBE cells is controlled by myosin IXA. Protrusive lamellipodia collide and overlap leading to accumulation 
of junctional actin (red dots). Myosin IXA is recruited at this time and the GAP domain reduces Rho activity at contact zones allowing the formation of 
radial actin bundles (red diagonal lines). Maturation of the cell-cell contact leads to tangential actin bundles. In myosin IXA depleted cells, high Rho 
activity prevents lamellipodial overlapping, formulation of radial actin and stabilization of cell-cell contacts. Colliding lamellipodia retract leading to 
cell scattering.
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function of the RA and C1 domains is not 
clear.

In contrast to myosin IXB, whose 
biochemical and motor properties have 
been characterized in some detail, little 
is known about myosin IXA.38,44 A myo-
sin IXA knockout mouse revealed defects 
in cell-cell junctions and cell morphol-
ogy of brain ependymal epithelial cells, 
indicating the physiological importance 
of myosin IXA function at junctions.38,45 
We found that EGFP-myosin IXA local-
izes to actin bundles through its motor 
domain, and in a punctate fashion similar 
to myosin II.21 These EGFP-myosin IXA 
puncta were able to translocate along actin 
bundles, as observed by TIRF microscopy 
in live epitheliocytes (data not published), 
and to move together by retrograde flow. 
Mutations abolishing motor activity or 
actin-binding (loop 2 insertion deletion) 
of myosin IXA led to the loss of puncta 
and a diffuse localization of the protein 
into the cytoplasm. Thus, motor and 
actin-binding activities are important for 
junctional localization of myosin IXA. 

supporting cell-cell contact stability dur-
ing collective epithelial migration.

Regulation of Rho at Cell-Cell 
Contacts by Myosin IXA

Myosin IXA (Myo9a) and myosin IXB 
(Myo9b) are the only class IX myosins 
in mammals.38 These two proteins share 
similar domains: N-terminal RA (Ras-
associated) domain, the motor domain 
composed of two parts separated by loop 
2 insertion (the head), multiple IQ motifs 
(a light chain binding region, the neck), 
an atypical C1 domain and a RhoGAP 
domain (the tail) (Fig. 3A). The motor 
domain has a unique structure allowing 
myosins IX to attach to actin filaments 
and move processively toward the plus 
end of F-actin.39,40 The loop 2 insertion 
has been shown to be required for actin 
filament attachment.41 The RhoGAP 
domain is highly conserved and shows 
specificity to RhoA/B/C in vitro and in 
vivo.42,43 The IQ motifs play a regula-
tory role by binding calmodulin, but the 

In our work, using an RNAi-based 
screen to identify Rho family GTPase 
regulators required for the collective 
migration of human bronchial epithelial 
cells, we identified RhoGAP myosin IXA. 
High-resolution time-lapse imaging and 
structure-function analysis of RhoGAP 
myosin IXA allowed us to investigate how 
RhoGAP activity regulates the junctional 
actin cytoskeleton and cell-cell adhesions 
in collectively migrating cells. In 16HBE 
epitheliocytes, FRET ratio imaging 
experiments revealed high levels of RhoA 
activity at primordial cell-cell contacts 
after myosin IXA depletion, resulting in 
destabilization of overlapping lamellipo-
dia and inhibition of radial actin bundle 
formation. Experimentally reducing Rho-
dependent contractility, using a ROCK 
inhibitor or expressing the RhoGAP 
domain-containing fragment of myosin 
IXA, increased cell-cell contact stability 
in myosin IXA-depleted cells.21 These 
data support the idea that local inhibition 
of Rho-dependent actin-myosin contrac-
tility is important for actin reorganization 

Figure 3. Possible mechanism of myosin IXA function at cell-cell contacts. (A) Schematic diagram of the domain organization of the human class IX 
myosins. The domains are RA (Ras-associated domain, purple), MOTOR (motor domain divided by loop 2 insertion, green), IQ (five IQ motifs, a light 
chain binding region, yellow), C1 domain (dark blue) and RhoGAP domain (blue). Sequence length is in aminoacids (red numbers). (B) Model for 
myosin IXA RhoGAP function at cell-cell contact site. Targeted to the cell-cell collision sites, myosin IXA maintains low Rho-GTP levels at the plasma 
membrane. Low Rho favors the formation of thin actin fingers associated with primordial junctions. Myosin IXA RhoGAP activity is later attenuated, 
perhaps by binding to actin filaments and removal by retrograde flow.
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actin-myosin contractility during early 
stages of cell-cell contact formation, 
but during junctional maturation Rho 
activity is restored, presumably though 
recruitment of specific GEFs. The spatio- 
temporal recruitment of Rho family 
GEFs and GAPs is likely to be a major 
driving force for collective epithelial cell 
migration.
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