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Abstract: Both environmental factors and genetic factors are involved in the pathogenesis of autism
spectrum disorders (ASDs). Epigenetics, an essential mechanism for gene regulation based on
chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was
recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental
stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover,
environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted
to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has
a reversible nature since it is based on the addition or removal of chemical residues, and thus the
original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used
for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore,
further epigenetic understanding of ASDs is important for the development of new drugs that take
advantages of epigenetic reversibility.
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1. Introduction

Autism spectrum disorders (ASDs) are complex, pervasive neurodevelopmental disorders that
are characterized by dysfunctions in social interactions and communications and restricted/fixated
interests or repetitive behavior that manifest in early childhood [1]. ASDs include classical autism,
Asperger syndrome, and pervasive developmental disorder-not otherwise Specified [2,3].

A number of environmental factors are known to be involved in the pathogenesis of ASDs,
including nutritional factors and hormones [4]. Furthermore, inappropriate child rearing, such as child
abuse and malnutrition by parents with psychiatric problems, can be associated with ASDs [5–8]. Viral
infections with rubella and cytomegalovirus and associated immunological reactions via activation
of microglia are also thought to be involved in ASDs, which has been demonstrated by pathological
studies of post-mortem brains and neuroimaging studies of ASD patients [9–14], although some
epidemiological studies conducted in Denmark and Taiwan did not support the hypothesis that
pre- and postnatal infection and immunological reaction are involved in ASD cases with regard to
herpes and influenza viral infection and Kawasaki Disease (a disorder potentially associated with
corona virus) [15–17]. In addition, endocrine-disrupting chemicals (EDCs) are thought to be involved
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in the development of ASDs, including tobacco, air pollutants, solvents, metals, pesticides, and organic
EDCs such as flame retardants, non-stick chemicals, phthalates, and bisphenol A (BPA) [18].

Conversely, a number of genetic factors have been identified as causes of ASDs. Mutations
in genes encoding neurotransmitters such as synapsin, dopamine transporter, and neuroligin, and
synapse-associated proteins such as scaffold proteins including shank and lin7B, have been identified
in ASD patients [19–24]. Unexpectedly, mutations have also been identified in chromatin-remodeling
factors such as histone modifying enzymes and chromodomain helicases in congenital ASDs (e.g.,
Kleefstra syndrome) [25–27]. These findings suggest that ASDs can be recognized as a “synaptic and
chromatin-remodeling disorders” [25,28].

Chromatin is a genetic unit that consists of DNA and histone proteins, which are modified
by enzymes for DNA methylation, histone acetylation and methylation and by chromatin-binding
polycomb proteins. A recent three-dimensional resolution imaging technology provided a precise
chromatin organization with epigenetic modifications [29]. Furthermore, autism susceptibility
candidate 2, a nuclear protein involved in cortical neuronal migration and neuritogenesis in the
developing brain [30] and whose mutations cause ASDs [31,32], forms a complex with polycomb
repressive complex 1 to purge its repressive function and activates expression of neurodevelopmental
genes involved in axon guidance in the developing forebrain, such as neruocan [33,34]. These results
suggest that close interaction between neuronal molecules and epigenetic molecules is important for
normal brain development and failure of this interaction is potentially associated with ASDs.

In this review, we introduce congenital epigenetic disorders with ASD-like phenotypes and
environmental factors that affect epigenetic regulation of neuronal genes, and discuss transgenerational
epigenetic inheritance and therapeutic strategies for ASDs taking advantage of use of the
epigenetic reversibility.

2. Congenital Epigenetic Diseases

Rett syndrome (RTT) is a representative ASD characterized by repetitive and stereotypic hand
movements, seizures, gait ataxia and autism [35] and is caused by mutations in the gene that encode
methyl-CpG-binding protein 2 (MeCP2), which is associated with chromatin remodeling [36]. Since
RTT is an X-linked dominant disorder, male patients are embryonic lethal and thus all patients
are female.

MeCP2 interacts with the Sin3A/HDAC complex [37–40], and binds to methylated CpG in DNA
to suppress a number of genes associated with synaptic function (e.g., BDNF, DLX5, ID, CRH, IGFBP3,
CDKL1, PCDHB1 and PCDH7, LIN7A) in neurons and other types of brain cells [41–47], thereby
controlling excitatory synaptic strength by regulating the number of glutamatergic synapses [48].

Induced pluripotent stem cells (iPSCs) can be used to determine how a disease develops in
patients, especially inaccessible brain cells. Using iPSC technology, it is possible to generate neural
cells from patients’ peripheral tissue such as skin fibroblasts. Several studies have shown that RTT
iPSC-derived neurons exhibit maturation and electro-physiological defects reminiscent of those seen in
RTT patients and mouse models [49–51], and we have shown that astrocyte-specific genes (e.g., GFAP)
are aberrantly expressed in neural cells generated from iPSC lines that lack MeCP2 expression, which
leads to the de-suppression of astrocyte-specific genes (Figure 1A) [52].

Interestingly, not only functional deficiency of MeCP2 protein (i.e., due to mutations of MECP2)
but also increased dosage of MeCP2 protein (i.e., due to duplication of MECP2) results in severe mental
retardation in males [53] and cognitive impairment with learning difficulties and speech delay in
females [54]. The increased dosage effect of Mecp2 on neurological function has been confirmed in
a model mouse that exhibits motor coordination deficits, heightened anxiety, and impairments of
learning and memory [55], and in a monkey model that exhibits a higher frequency of repetitive circular
locomotion, increased stress responses, less interaction with wild-type monkeys, reduced interaction
time with other transgenic monkeys, and stereotypic cognitive behaviors [56,57]. These findings
indicate that the expression of MECP2 within a normal range is essential for normal brain development.
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Figure 1. Epigenetic gene regulation in congenital epigenetic diseases and acquired epigenetic 
disorders. (A) Deficiency of DNA-binding protein or DNA methylation causes Rett syndrome (an 
ASD) or ICF syndrome (an immunodeficiency disease), respectively. Congenital aberrant DNA 
methylation due to genomic imprinting error causes Prader-Willi syndrome; and (B) Various 
environmental factors such as endocrine disrupting chemicals (EDCs), hyponutrition, and mental 
stress are known to alter epigenetic status, resulting in aberrant gene expression. 
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ICF syndrome is a congenital disorder named after three major features, such as 
Immunodeficiency, Centromere instability, and Facial anomalies [58]. Although the cause is different 
between RTT and ICF syndromes, the consequence is similar; both lead to the de-suppression of 
target genes by the failure of DNA methylation-dependent gene regulation (Figure 1A). ICF 
syndrome is diagnosed by specific chromosome findings with breakage of the pericentric 
heterochromatic regions of chromosomes 1, 9 and 16, which are normally hypermethylated but are 
hypomethylated due to deficiency of DNMT3B in ICF [59]. The patients show distinct low levels of 
immunoglobulins (e.g., IgG and IgA) and they required intravenous immunoglobulin 
supplementation every 2 weeks. Although a recent study has demonstrated an ICF-specific DNA 
hypomethylation pattern in mesenchymal stem cells differentiated from the iPSCs of ICF patients 
[60] and another study has shown a subset of hypomethylated genes in ICF patients [61], the precise 
molecular mechanism for the immune dysregulation, which is the main clinical feature in ICF, is still 
largely unknown. It may be necessary to analyze purified B lymphocytes from ICF patients in order 
to identify hypomethylated DNMT3B-driven immunological genes. Interestingly, mutations in a 
gene encoding another DNA methyltransferase, DNMT3A, cause intellectual disability with 
overgrowth [62], suggesting that DNA methyltransferases are essential for normal brain and 
immunological development. 

Figure 1. Epigenetic gene regulation in congenital epigenetic diseases and acquired epigenetic disorders.
(A) Deficiency of DNA-binding protein or DNA methylation causes Rett syndrome (an ASD) or ICF
syndrome (an immunodeficiency disease), respectively. Congenital aberrant DNA methylation due to
genomic imprinting error causes Prader-Willi syndrome; and (B) Various environmental factors such as
endocrine disrupting chemicals (EDCs), hyponutrition, and mental stress are known to alter epigenetic
status, resulting in aberrant gene expression.

ICF syndrome is a congenital disorder named after three major features, such as Immunodeficiency,
Centromere instability, and Facial anomalies [58]. Although the cause is different between RTT and ICF
syndromes, the consequence is similar; both lead to the de-suppression of target genes by the failure
of DNA methylation-dependent gene regulation (Figure 1A). ICF syndrome is diagnosed by specific
chromosome findings with breakage of the pericentric heterochromatic regions of chromosomes 1, 9
and 16, which are normally hypermethylated but are hypomethylated due to deficiency of DNMT3B
in ICF [59]. The patients show distinct low levels of immunoglobulins (e.g., IgG and IgA) and they
required intravenous immunoglobulin supplementation every 2 weeks. Although a recent study has
demonstrated an ICF-specific DNA hypomethylation pattern in mesenchymal stem cells differentiated
from the iPSCs of ICF patients [60] and another study has shown a subset of hypomethylated genes
in ICF patients [61], the precise molecular mechanism for the immune dysregulation, which is the
main clinical feature in ICF, is still largely unknown. It may be necessary to analyze purified B
lymphocytes from ICF patients in order to identify hypomethylated DNMT3B-driven immunological
genes. Interestingly, mutations in a gene encoding another DNA methyltransferase, DNMT3A, cause
intellectual disability with overgrowth [62], suggesting that DNA methyltransferases are essential for
normal brain and immunological development.

Prader-Willi syndrome (PWS) is a hallmark epigenetic disease; the causative epigenetic
abnormality was identified more than 20 years ago. Approximately 70% patients have a chromosomal
deletion at 15q11-q13, and the remaining patients have genomic imprinting errors. In PWS patients
with maternal uniparental disomy, both paternal and maternal alleles of genes within the 15q11-q13
region are hypermethylated and thus expression from both alleles is suppressed (Figure 1A) [63–65].
The clinical features of PWS includes neurocognitive deficits, excessive daytime sleepiness, muscle
hypotonia, short stature, small hands and feet, hypergonadism, hyperphagia starting from infancy,
and subsequent obesity and type 2 diabetes [66].

Angelman syndrome is characterized by severe intellectual disability, intractable epilepsy,
puppet-like ataxic movement, and paroxysms of laughter. The critical region is the same as PWS (i.e.,
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15q11-q13), but parental-of-origin is different; either maternal deletion or paternal uniparental disomy
causes Angelman syndrome, because the causative gene, ubiquitin protein ligase E3A (UBE3A), is
maternally expressed [67]. Interestingly, the increased copy number (i.e., duplication or triplication) of
the maternal 15q11-q13 region that leads to UBE3A overexpression causes an ASD [68]. These findings
indicate that the expression of UBE3A within a normal range is essential for normal brain development.

Epigenomic studies were conducted within the regions of various neuronal genes and
ASD-specific differential DNA methylation was revealed. For example, increased DNA methylation
at the promoter regions subsequent reduced expression were observed within the genes of oxytocin
receptor (OCTR), Engrailed-2 (EN2) and Reelin (RELN) in the postmortem brain tissues from
ASD patients [69–71]. Increased hydroxymethylation and subsequent increased binding of MeCP2
associated with gene silencing were identified within the promoter region of glutamate decarboxylase
1 (GAD1) in the postmortem brain tissues from ASD patients [71].

Recent genome-wide DNA methylation studies using array-based Infinium BeadChip identified
ASD-associated differential DNA methylation at ZFP57 associated with folate metabolism, which is
a potential contributor to ASD risk, in the postmortem brain tissues [72–74], and at brain-derived
neurotrophic factor (BDNF) in the peripheral blood tissues from ASD patients [75]. Findings through
these studies potentially generate robust epigenetic biomarkers for risk, diagnosis and prognosis of
ASD, which may also be used to monitor response to early interventions [76,77].

3. Acquired Epigenetic Disorders

As mentioned above, not only genetic factors (i.e., DNA mutations) but also environmental factors
are involved in ASDs, and a combination of heritability (G: genetic factor such as single nucleotide
polymorphism) and experience (E: environmental factor)—that is, “G, X, E”—has been the main
concept for understanding common diseases, including ASDs. Recently, new G X E model has been
proposed in which E dynamically changes G and causes DNA and histone chemical modifications (i.e.,
epigenetics), but not DNA sequence changes [78].

EDCs are compounds released from chemical, agricultural, pharmaceutical, and consumer
product industries that have estrogenic activity or interfere with endogenous sex hormones. Of the
many EDCs, BPA is associated with reproductive toxicity, altered growth, and immune dysregulation,
and alters DNA methylation in fetal mouse brains [79]. Moreover, perinatal BPA exposure via maternal
diet decreases global DNA methylation in bone marrow-derived mast cells of the offspring during
adulthood [80], and it alters DNA methylation of Stat3 dose in a dose dependent manner in mouse
liver [81]. High dose exposure of polybrominated diphenyl ethers (flame retardants) decreases DNA
methylation at the promoter of TNFα, a proinflammatory gene, and increase TNFα protein expression
in human cord blood [82]. Furthermore, the altered DNA methylation patterns in AHRR, MYO1G,
CYP1A1, and CNTNAP2 caused by maternal tobacco smoking detected in cord blood was confirmed in
the peripheral blood of their children at 17 years of age [83], suggesting that altered DNA methylation
in the early development period can persist for a long period and it may be useful as a long-lasting
signature of maternal stress or history of the offspring.

Nutrition also influences programming of an offspring’s epigenome, which includes folic acid
and vitamins B2, B6 and B12 that are essential for one-carbon metabolism and are involved in DNA
methylation (Figure 1B). Moreover, a calorie- or protein-restricted maternal diet decreases DNA
methylation and induces the over-expression of energy storage-associated genes (e.g., PPARγ) in fetal
liver to generate a “thrifty phenotype,” which promotes survival under conditions of poor nutrition
before and after birth [84,85]. Once an individual is born with a thrifty phenotype in modern society
with an abundance of food, the nutritional mismatch between prenatal and postnatal conditions
induces metabolic and mental disorders [86–89], the concept of which is referred to as “Developmental
Origins of Heath and Disease (DOHaD)” [90].

Several lines of evidence suggest that not only materials (e.g., chemicals and nutrients) but also
mental stresses can alter an offspring’s epigenome (Figure 1B). For example, exposure of short-term
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postnatal stress by separating offspring from the mother induced hypermethylation within the
promoter region of the glucocorticoid Receptor (NR3C1) gene, which encodes a hormone associated
with resilience, in the hippocampal region of the offspring, leading to abnormal behavior in rats [91].
Furthermore, exposure to prenatal maternal stress also predicts a wide variety of behavioral and
physical outcomes in the offspring. A recent study of women who were pregnant during a disaster
(the ice storm in Quebec in 1998) revealed that DNA methylation profiles were altered in genes related
to immune function in the peripheral blood of their offspring [92]. Similarly, it has been demonstrated
that maternal stress during pregnancy alters DNA methylation of the imprinted genes IGF2 and
GNASXL in cord blood [93], and that maternal stress also alters DNA methylation in NR3C1 and BDNF
in buccal mucosa DNA samples obtained from 2 month-old infants born to mothers with depressive
symptoms during pregnancy [94,95].

4. Transgenerational Epigenetic Inheritance

Environmental factors that alter a phenotype not only affect the exposed individual but also
subsequent progeny for successive generations. In other words, ancestral experiences could influence
subsequent generations, the concept of which is termed “transgenerational inheritance.” Furthermore,
environmental factors such as EDCs and nutrition do not promote genetic mutations but instead
promote epigenetic changes; the permanent programming of an altered epigenome in the germline can
allow for the transmission of transgenerational epigenetic phenotypes [96]. The evidence supports the
theory of Lamarckian inheritance in which an organism can pass on phenotypes that it acquired during
its lifetime to its offspring. More precisely, a hypothesis has emerged that environmental stress results
in epigenetic changes at some loci in the genome and these can escape the epigenetic reprogramming
that normally occurs between generations [97,98].

Short-term postnatal mental stress by separating offspring from their mother alters DNA
methylation not only in the brain but also in the sperm of male offspring, and then the environmentally
induced epigenetic and expression alterations of Crfr2 are transmitted up to the third generation
(F1 sperm and F2 brain) along with behavioral abnormalities [99]. Since this initial observation,
similar findings have accumulated. For example, prenatal stress exposure induces changes in DNA
methylation and miRNA expression in the placenta and brain, which leads to an increase in risk
for schizophrenia, attention deficit hyperactivity disorder, ASDs, and anxiety- or depression-related
disorders later in life [100]. Besides mental stress, exposure to an EDC (e.g., vinclozolin) during
embryonic gonadal sex determination can alter male germ-line epigenetics, and the alteration of DNA
methylation in the germ line appears to result in the transmission of transgenerational adult-onset
diseases, including spermatogenic defects, prostate disease, kidney disease and cancer [101]. A
recent study demonstrated that exposure to BPA in early life induces glucose intolerance and β-cell
dysfunction, with hypermethylation and associated decreased expression of IGF2 in the islets of male
F2 offspring; this finding suggests that BPA exposure during early life can result in generational
transmission of glucose intolerance and β-cell dysfunction through the male germ line by an epigenetic
mechanism [102].

However, evidence that such effects persist in the subsequent generations has been
inconclusive [97,103,104]. The effects must be observed in the F3 generation to be considered
transgenerational, because the in utero nature of the ancestral perturbation affects not only the somatic
and germ cells of the developing F1 fetus, but also the germ cells of the F2 generation. In this context,
a recent study demonstrated that treatment of pregnant mice with the EDC methoxychlor altered
the methylation of all imprinted genes examined (i.e., H19, Meg3 (Gtl2), Mest (Peg1), Snrpn, and
Peg3) in the F1 offspring, but these effects disappeared gradually from F1 to F3 [105]. These finding
suggests that transgenerational epigenetic inheritance is not “solid” inheritance, such as genetic (DNA
sequence-based) inheritance, but “soft” inheritance [106,107].
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5. Conclusions

In this article, we have introduced ASDs with epigenetic abnormalities caused by genetic
mutations in enzymes and proteins involved or chromosomal abnormalities such as Rett and
Prader-Willi syndromes (i.e., congenital and syndromic ASDs) and ASDs with epigenetic abnormalities
caused by environmental factors such as chemicals, nutrition, and mental stress (i.e., acquired and
non-syndromic ASDs). Furthermore, we introduced the concept of transgenerational epigenetic
inheritance in which environmental stress-induced epigenetic changes can be transmitted to the
subsequent generations by escaping from erasure during epigenetic reprogramming. However,
transgenerational epigenetic inheritance is not “solid” inheritance but “soft” inheritance because
epigenetics is a reversible mechanism based on the addition and removal of chemical residues on DNA
and histone proteins.

Taking advantage of this epigenetic reversibility, some psychotropic drugs, such as valproic acid
for epilepsy and mental disorders and imipramine for depressive disorders, can restore altered histone
modifications and gene expression [108–110]. A recent epidemiological study demonstrated that
supplementation of folic acid during pregnancy, which is an important nutrient and substrate for
DNA methylation, reduced the risk of ASDs in the offspring [111]. Furthermore, studies using RTT
or MeCP2-duplication mouse models demonstrated that genetic supplementation of MeCP2, bone
marrow transplantation, or antisense oligonucleotides after birth successfully attenuated neurological
symptoms [112–114]. These findings support the idea that the phenotypes of ASDs caused by
epigenetic dysregulation are reversible and thus treatable. Further epigenetic understanding of
ASDs will offer new concepts for therapeutic strategies.
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