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A B S T R A C T   

Purpose: The current study aimed to evaluate the efficiency of dynamic contrast-enhanced (DCE) MRI visual 
features in classifying benign liver nodules and hepatocellular carcinoma (HCC) using a machine learning model. 
Methods: 115 LI-RADS3, 137 LI-RADS4, and 140 LI-RADS5 nodules were included (392 nodules from 245 pa-
tients), which were evaluated by follow-up imaging for LR-3 and pathology results for LR-4 and LR-5 nodules. 
Data was collected retrospectively from 3 T and 1.5 T MRI scanners. All the lesions were categorized into 124 
benign and 268 HCC lesions. Visual features included tumor size, arterial-phase hyper-enhancement (APHE), 
washout, lesion segment, mass/mass-like, and capsule presence. Gini-importance method extracted the most 
important features to prevent over-fitting. Final dataset was split into training(70%), validation(10%), and test 
dataset(20%). The SVM model was used to train the classifying algorithm. For model validation, 5-fold cross- 
validation was utilized, and the test data set was used to assess the final accuracy. The area under the curve 
and receiver operating characteristic curves were used to assess the performance of the classifier model. 
Results: For test dataset, the accuracy, sensitivity, and specificity values for classifying benign and HCC lesions 
were 82%,84%, and 81%, respectively. APHE, washout, tumor size, and mass/mass-like features significantly 
differentiated benign and HCC lesions with p-value < .001. 
Conclusions: The developed classification model employing DCE-MRI features showed significant performance of 
visual features in classifying benign and HCC lesions. Our study also highlighted the significance of mass and 
mass-like features in addition to LI-RADS categorization. For future work, this study suggests developing a deep- 
learning algorithm for automatic lesion segmentation and feature assessment to reduce lesion categorization 
errors.   

1. Introduction 

The sixth most common type of cancer worldwide is hepatocellular 
carcinoma (HCC), which accounts for 75% of all liver tumors [1]. As 

one-third of patients with chronic liver cirrhosis develop the disease at 
some point in their lives, they are at high risk for developing hepato-
cellular carcinoma [2]. Early detection and accurate diagnosis are 
crucial for effective treatment and improved patient outcomes. Liver 

Abbreviations: HCC, Hepatocellular carcinoma; LI-RADS, Liver Imaging Reporting and Data System; CE-MRI, Contrast-enhanced MRI; SPGR, Spoiled gradient- 
recalled echo; SSFSE, Single-shot fast spin echo; DWI, Diffusion-weighted imaging; DCE, Dynamic contrast-enhanced; EPI, Echo planar imaging; APHE, Arterial 
phase hyperenhancement; SMOTE, Synthetic Minority Oversampling Technique; AUC, Area under the curve; ROC, Receiver operating characteristics. 

* Correspondence to: Advanced Diagnostic and Interventional Radiology (ADIR), Cancer Institute, Radiology Department, Imam Khomeini Hospital Complex, 
Tehran University of Medical Science, Qarib St, Keshavarz Blvd, Tehran 14194, Iran. 

E-mail address: aryana@sina.tums.ac.ir (A. Arian).  

Contents lists available at ScienceDirect 

European Journal of Radiology Open 

journal homepage: www.elsevier.com/locate/ejro 

https://doi.org/10.1016/j.ejro.2023.100535 
Received 21 May 2023; Received in revised form 12 October 2023; Accepted 23 October 2023   

mailto:aryana@sina.tums.ac.ir
www.sciencedirect.com/science/journal/23520477
https://www.elsevier.com/locate/ejro
https://doi.org/10.1016/j.ejro.2023.100535
https://doi.org/10.1016/j.ejro.2023.100535
https://doi.org/10.1016/j.ejro.2023.100535
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


European Journal of Radiology Open 11 (2023) 100535

2

Imaging Reporting and Data System (LI-RADS) was developed by the 
American College of Radiology to standardize the interpretation and 
reporting of liver imaging studies, particularly for patients at high risk 
for hepatocellular carcinoma (HCC). A liver lesion in a high-risk patient 
(cirrhosis, chronic HBV infection, current or prior HCC) is assigned 
LI-RADS (LR) category, indicating the possibility of acquiring HCC, 
ranging from LR-1 to LR-5. LR-1 and LR-2 are definitely and probably 
benign; LR-3 indicates a moderate risk of HCC, LR-4 is a high risk 
without certainty, and LR-5 is definitely HCC [3,4]. 

Based on meta-analyses and expert consensus, multiphase contrast- 
enhanced MRI (CE-MRI) coupled with intravenous gadoxetate diso-
dium achieves an 80% staging accuracy in diagnosis with the more ac-
curate and radiation-free diagnosis of HCC [5–8]. DCE-MRI, as a 
powerful imaging modality, can provide detailed information about the 
vascular characteristics of liver nodules. Besides, LI-RADS liver lesion 
score on CE-MRI includes assessing tumor size, arterial phase non-rim 
hyperenhancement (APHE), washout, threshold growth, and capsule 
presence [9]. Visual assessment of liver nodules in cirrhotic patients is a 
major part of international guidelines for the treatment of liver nodules 
[10]. The concept of accuracy for main feature characterization and for 
LR-5 category assignment is fundamental to LI-RADS and aims to reduce 
discrepancies across radiologists. However, some margin for error re-
mains due to interreader variability in each characteristic, which could 
be amplified if a large number of characteristics or longitudinal data 
were used. Size measurement and APHE detection are the areas where 
interreader consistency is greatest, but it is less effective for washout and 
enhancing capsule [11]. 

The performance of LI-RADS was evaluated using visual features in 
MRI sequences, including T1, T2-weighted, and CE-perfusion [12,13]. In 
V. Granta’s study, the results demonstrated the high performance of 
LI-RADS in classifying benign and malignant lesions with a sensitivity of 
100%, a specificity of 81.3%, and an accuracy of 96.3% [14]. Another 
study published in 2021 by Zhong et al.[15] evaluated the performance 
of LI-RADS in a cohort of 150 patients with liver nodules who underwent 
T1W, T2W, and ADC-MRI. The authors compared the diagnostic accu-
racy of LI-RADS to radiomics features in combination with linear 
regression classifier. The designed model showed a higher classification 
performance compared with LI-RADS alone (area under curve (AUC) =
0.91 vs 0.89). 

Recently, an improvement in classification accuracy with multiple 
features can be achieved through machine learning. As reported previ-
ously, deep learning and machine learning classifiers can differentiate 
between LR-3 and LR-4,5 by utilizing clinical and image-extracted fea-
tures [16–19]. This breakthrough, combined with the functional fea-
tures derived from vascular perfusion patterns, has remarkable potential 
to open up new possibilities for predicting early pathology/follow-up 
results for HCC patients. 

To the best of our knowledge, no previous research has used visual 
features from MRI-DCE to train machine learning algorithms to assist 
radiologists in primary diagnosis. Thus, this study aims to explore the 
potential of LI-RADS in conjunction with machine learning techniques to 
diagnose HCC in cirrhotic patients with high accuracy. We tested this 
idea using visual DCE-MRI features and the SVM classifier. 

2. Material and methods 

2.1. Patients 

This retrospective study was approved by the university review 
board, and the requirement for written informed consent was waived. 
All patients were discussed at the regional reference center at the time of 
image acquisition, and its tumor board in “… name of the center …” was 
screened between April 2019 and December 2022. For data inclusion 
and evaluation in this study, an expert radiologist with eight years of 
expertise conducted a comprehensive evaluation on cirrhotic patients 
without vascular abnormalities. The findings were subsequently 

reviewed and confirmed by a diagnostic radiologist with 11 years of 
experience. Lesions falling within the LI-RADS 3–5 category were 
carefully examined and subsequently classified, ensuring that prior re-
ports were not taken into consideration during the assessment process. A 
total of 245 patients with 392 nodules met the inclusion criteria (Fig. 1): 
(i) 140 LR-5 definitely HCC nodules, which were evaluated by post- 
operative sample pathology results; (ii) 115 LR-3 intermediate proba-
bility of malignancy liver nodules, which were evaluated by last follow- 
up imaging; (iii) 137 LR-4 the probably HCC nodules, which were 
evaluated by core needle biopsy and pathology results. We divided all 
nodules into two cohorts: 1- benign nodules (124 nodules; 113 nodules 
from LR-3 and 11 nodules from LR-4) 2- HCC nodules (268 nodules; 140 
nodules from LR-5, 126 nodules from LR-4, and 2 nodules from LR-3). 

2.2. MRI imaging acquisition 

MRI was performed using a 3 T (GE Medical Systems, Discovery 
750w) and external test set in 1.5 T (GE Medical System, Signa) MRI 
scanners. To assess the effectiveness of the model created using 3 T MRI 
data (193 patients with 314 lesions), the combination dataset of patients 
who underwent imaging with a 1.5 T (30 patients with 42 lesions) and 
3 T (22 patients with 36 lesions) MRI scanner were utilized as an 
external test dataset. The regular procedures and techniques included 
the following: 1) DCE-MRI, LAVA sequence, based on a 3D spoiled 
gradient-recalled echo (SPGR) sequence with uniform fat suppression, 
was conducted in the axial plane with a breath-hold 2D gradient echo 
T1-weighted sequence. The baseline signal intensity was acquired 10 s 
before the contrast agent’s injection (Gadolinium-diethylene triamine 
pentaacetate, GD-DTPA, 0.1 mmol/kg body weight, a flow rate of 
2.0 ml/s). Thirty-six dynamic contrast slices with a temporal resolution 
of 4 s/image were acquired during 66 acquisition phases and normal 
breathing. 2) Axial T2 -weighted with single-shot fast spin echo (SSFSE) 
sequence. 3) Before contrast agent injection, diffusion-weighted imaging 
(DWI) with three orthogonal orientations and respiratory-triggered 2D 
echo planar imaging (EPI) with three b-values (0, 200, 800 s/mm2) 
were performed. Table 1 provides details on image acquisition 
parameters. 

2.3. Visual feature assessment and segmentation 

Following the process of inclusion categorization, subsequent to a 
distinct time interval, visual characteristics were evaluated by a radi-
ologist with eight years of experience in the field and subsequently 
verified by another radiologist with 11 years of expertise in diagnostic 
radiology. Visual characteristics of non-rim arterial phase hyper-
enhancement (APHE), enhancing capsule, non-peripheral washout, and 
tumor size were evaluated according to standard definitions. Another 
important characteristic that was evaluated beyond the main features of 
LIRADS criteria is the mass and mass-like configuration, which refers to 
a discrete lesion that is distinct from the surrounding liver tissue. Any 

Fig. 1. Inclusion and study population.  
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three-dimensional space-occupying observation displaces or distorts 
background hepatic parenchyma, such as an expansile, infiltrative, or 
tumoral mass in the vein, is considered a mass-like configuration [4].  
Fig. 2 displays illustrative sequences in explanation for a 65-year-old 
patient with HCC diagnosis with assessing the visual features. 

2.4. Data splitting and balancing 

For the robustness and generalizability of our model, we split our 
dataset into three subsets: a training set for model training (70%), a 
validation set (10%) for hyperparameters tuning and model selection 
using 5-fold cross-validation, and a final external dataset (20%) for 
evaluating the performance of the selected model on unseen data. All the 
data of the 1.5 T MRI dataset were used for testing and not used in the 
training process. Table 2 provides details on splitting of training/vali-
dation and test datasets. Unbalancing effect between benign and HCC 
lesions was minimized by utilizing the Synthetic Minority Oversampling 
Technique (SMOTE) to avoid insufficient training and inaccurate pre-
diction since our study’s predominant diagnosis is HCC (69% vs. 31%) 

[20]. 

2.5. Classification model construction 

The most significant features were chosen using the Gini importance 
technique to avoid overfitting. The classification model was trained 
using four features with a Gini importance rate exceeding 0.2. The Gini 
importance quantifies how much each feature contributes to decreasing 
impurity in a dataset, helping decision tree algorithm identify and select 
features that are most effective at splitting and organizing data. We 
implemented the classification algorithm in open-source Scikit-learn API 
in Python software [21]. We used Support Vector Machine (SVM) as the 
classifier for classification method. The SVM setting involved several 
parameters that were optimized to achieve the best performance. The 
first parameter was the kernel function, which determined how the data 
is transformed into a higher-dimensional space for classification. In this 
study, we used the radial basis function kernel, which is commonly used 
in SVM classification. The second parameter was the regularization 
parameter C, which controls the trade-off between maximizing mis-
classifications. We used a grid search approach to find the optimal C 
value that maximizes accuracy. The third parameter was gamma, which 
determines how far the influence of a single training example reaches. A 
small gamma means that only nearby points are considered for classi-
fication, while a large gamma means that more distant points are also 
considered. Our study used the grid search approach to find the optimal 

Table 1 
MR Imaging parameters in 1.5 T and 3 T scanners.  

Sequence Repetition 
time (ms) 

Echo 
time 
(ms) 

Inversion 
time (ms) 

Slice 
thickness 
(mm) 

Flip 
angle 

B 
value 
(s/ 
mm2) 

T1WI  100  4.2  120  5 24◦ - 
T2WI  538  110  150  5 90◦ - 
DWI  9400  70  110  8 90◦ 0, 

200, 
800 

DCE  3.7  1.7  5  5 15◦ - 

MRI: Magnetic resonance imaging, T1WI: T1-weighted imaging, T2WI: T2- 
weighted imaging, DWI: Diffusion-weighted imaging, DCE: Dynamic contrast- 
enhanced. 

Fig. 2. Hepatocellular carcinoma in a 65-year-old man. A. Axial T2-weighted imaging shows a 40 × 35 mm mass with mild-moderate high signal intensity in 
segment VIII, B. In-phase T1-weighted depicts a low signal intensity C. Diffusion-weighted imaging (DWI) with b-value:1000 with restriction, D. Arterial phase 
postcontrast T1 fat-suppressed (FS) with arterial phase hyperenhancement, E. Venous phase postcontrast T1 FS depicts washout, F. Apparent diffusion coefficient 
(ADC) map with decreased signal comparing to background liver. 

Table 2 
Data splitting- training/validation and test datasets.  

Dataset Pathology MRI scanner  

BENIGN HCC 1.5 T 3 T 

Training/Validation*  92  222 0 314 (193 patients) 
Test*  32  46 42 (30 patients) 36 (22 patients) 

*Number of lesions 
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value of gamma to maximize accuracy. 
Finally, cross-validation was used to evaluate and compare different 

SVM settings. 5-fold cross-validation was used to estimate the general-
ization performance of each setting and select the best one. In addition 
to cross-validation on the training set, a calibration set was used to 
prevent overfitting. The AUC was calculated for candidate models 
generated based on the training set and also the performance of the 
candidate model was evaluated by checking the AUC on an external 
dataset comprising of both 1.5 T and 3 T MRI datasets. Fig. 3 depicts the 
analytical process of feature extraction and selection, model construc-
tion, validation, and final performance test. To determine the correla-
tion between visual features and benign or HCC tumors, Spearman’s 
correlation was applied. Fisher’s exact test or X 2 was used to compare 
categorical variables. The T-test was used to compare continuous 
variables. 

3. Results 

3.1. Clinical characteristics 

Two hundred forty-five participants (109 males; mean age 59.08 
± 14.53; range 29–72) with 392 lesions (mean size 28.45 ± 33.17 mm) 
from LI-RADS 3–5 were divided into benign and HCC groups based on 
their pathology or follow-up results. A total of 268 HCC tumors and 124 
benign lesions were identified. APHE was present in 72% of cases in HCC 
tumors, whereas in benign masses, it was only present in 18.5% of cases. 
Mass configuration was present in 86.6% of HCC and mass-like in 26.6% 
of benign lesions (P < 0.001). Non-peripheral washout appearance was 
recorded by 84.7% in HCC and 11.2% in benign lesions (P < 0.001). 
Clinical features and visual assessment of the included lesions are shown 
in Table 3. The regression analysis results indicated a significant positive 
correlation between mass/mass-like, APHE, and washout and benign/ 
HCC groups with R2 = 0.83 and P < 0.001, R2 = 0.65 and P < 0.001, 
and R2 = 0.8 and P < 0.001, respectively (Table 3). 

3.2. Machine learning 

The Gini importance rate threshold for benign and hepatocellular 
carcinoma (HCC) tumors was set at 0.2, and the corresponding Gini 
importance values for the features are presented in Table 4. Among the 
selected features, mass/mass-like, Washout, Tumor Size, and APHE 
exhibited importance rates of 2.8, 2.4, 2.1, and 2, respectively. Notably, 

Fig. 3. Study workflow. Training procedure: Qualitative features, GINI importance feature reduction, Synthetic Minority Oversampling Technique (SMOTE) based 
data balancing, SVM, and 5-fold cross-validation. Test procedure and receiver operating characteristics (ROC). 

Table 3 
Clinical characteristics.  

Parameters Benign 
(n = 124) 

HCC 
(n = 268) 

P-value Correlation 
value 

LI-RADS 3 113 2 - - 
LI-RADS 4 11 126 - - 
LI-RADS 5 0 140 - - 
Age 63.2.4 ± 10.2 69.2 ± 13.5 0.52 0.06 
Sex (M/F) 35/49 74/87 0.73 0.07 
Tumor Size (mm) 8.9 ± 3.1 28.9 ± 16.4 0.002 * 0.32 
Mass/Mass-like 33/91 233/36 < 0.001* 0.79 
APHE (Yes/No) 23/101 193/75 < 0.001 * 0.62 
Capsule (Yes/No) 52/72 161/107 0.6 0.03 
Washout (Yes/No) 14/110 227/41 < 0.001 * 0.86 

Arterial phase hyperenhancement: APHE, Hepatocellular Carcinoma: HCC 

Table 4 
Importance rate of features using GINI-random forest.  

Features Importance rate 

mass  0.28 
Washout  0.24 
Tumor Size  0.21 
APHE  0.2 
Capsule  0.06 
Segment  0.03 
Age  0.01 

Arterial phase hyperenhancement: APHE 

M. Fotouhi et al.                                                                                                                                                                                                                                



European Journal of Radiology Open 11 (2023) 100535

5

the mass/mass-like feature demonstrated the highest importance rate, 
underscoring its paramount significance in the classification task. The 
sample size for benign and HCC cases was the same at 222 after data 
balancing using the SMOTE approach, as shown in Fig. 1. Regarding 
accuracy, precision, recall, and F1-score, the SVM classifier with the 
training dataset achieved 100%, 1.00, 1.00, 1.00, and 1.00. The result 
indicates that our model could accurately classify all of the data points in 
our dataset. To further validate our SVM model, the model was subse-
quently tested on the same 3 T scans as well as the external set from 
1.5 T dataset. The results from testing our SVM model on the external 
dataset were promising, with an accuracy of 82%, sensitivity of 0.84, 
specificity of 0.81, recall of 0.8, and F1-score of 0.82. These results 
suggest our SVM model robustness and can generalizability. Fig. 4 il-
lustrates how visual features extracted from DCE-MRI were used to 
distinguish benign liver nodules from HCC to achieve an AUC in receiver 
operating characteristics (ROC) of 1 in the validation step and AUC of 
0.8 in the final test step. 

4. Discussion 

The accurate classification of liver nodules as benign and HCC is 
crucial for effective management strategies, as surveillance or biopsy. LI- 
RADS has been developed to standardize the reporting and management 
of liver nodules detected in imaging studies, including DCE-MRI [22]. 
However, the accuracy of LI-RADS in distinguishing between benign and 
HCC nodules can be challenging, particularly in case where there is 
uncertainty or disagreement among radiologists. There have been some 

errors associated with the ability to correctly classify LR-3, LR-4, and 
LR-5 categories using this method. Following up on LR-3 cases requires 
repeating imaging twice annually until a definitive diagnosis is made, 
whereas most LR-4 subjects require a biopsy [23]. Therefore, this 
approach needs to be evaluated to determine whether it is accurate in 
predicting the type of tumor without contributing to artificial errors. 

SVM is preferred over other classifiers due to its effectiveness in high- 
dimensional spaces, good generalization performance, robustness to 
noise, ability to handle non-linearly separable data, efficiency, and 
tunability [24]. This study aimed to assess the effectiveness of LI-RADS 
in classifying liver nodules through the use of DCE-MRI visual features 
and machine learning. Our findings revealed a 100% accuracy rate with 
the training dataset using cross-validation and an 82% accuracy rate 
with an external dataset. These results suggest that visual features, 
including LI-RADS, could offer a non-invasive and precise approach for 
detecting and managing liver cancer. Notably, our study also high-
lighted the significance of mass and mass-like features in addition to 
LI-RADS categorization, which were not considered as major features 
compared to other features but were found to be among the important 
features based on the Gini importance rating method. It has been 
demonstrated that LI-RADS criteria can predict HCC with considerable 
accuracy, which is accessible to expert radiologists. Recent studies have 
shown that by correctly evaluating the visual features of liver nodules 
using the LI-RADS criteria, an expert radiologist can predict HCC with 
considerable accuracy. However, with the potential of computational 
algorithms, automating these steps can significantly improve the accu-
racy and efficacy of LI-RADS in clinical settings. 

Fig. 4. A. SVM validation ROC curve B. ROC curve of model on the test dataset to predict pathology result using LIRADS-based qualitative features extracted from 
dynamic contract enhanced (DCE)-MRI C. Synthetic Minority Oversampling Techniques (SMOTE) based data balancing result D. Correlation map between qualitative 
features and groups. 
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The LI-RADS features methodology was evaluated by Granta et al. 
(2022) for the classification of benign and HCC lesions. Their results 
indicate high accuracy, sensitivity, and specificity with 96%, 100%, and 
81.3%, respectively [14]. The development of machine-learning models 
for predicting pathology in cancers, such as HCC, which are trained with 
quantitative characteristics derived from MRI with/without radiomics, 
has been a hotbed of research [25]. In 2021, Starmans et al. developed a 
machine-learning model based on radiomics to distinguish benign from 
HCC lesions based on T2-weighted MRI. They achieved an accuracy of 
78% in the internal validation of the dataset and a similar AUC in the 
external validation [26]. Some studies use MRI imaging to classify liver 
lesions as benign or HCC by employing deep learning algorithms. The 
U-net is used to differentiate HCC lesions from non-HCC lesions in a 
study by Oestmann et al. (2021). Accordingly, their accuracy, sensi-
tivity, and specificity were 87.3%, 92.7%, and 82%, respectively [27]. In 
Yuan Wu’s (2020) study, the AlexNet convolutional neural network was 
trained using CE-MRI images labeled by radiologists to distinguish LR-3 
and LR-4,5. Their results achieved a high accuracy of 0.9, a sensitivity of 
1, a precision of 0.835, and an area-under-curve (AUC) of 0.95, refer-
encing the expert human radiologist report [28]. Mokrane et al. (2019) 
developed machine-learning algorithms using radiomics features and 
pathology-proven CT datasets to diagnose HCC in intermediate-risk liver 
nodules. Their results showed an accuracy of 0.8 for predicting pathol-
ogy response using CT and radiomics-driven features [19]. In a recent 
study conducted by Yang Xu et al. (2023), a deep learning algorithm was 
trained to automatically classify liver lesions in LR3-LR5 classes. The 
findings revealed that the model achieved an accuracy rate of 83%, 
slightly lower than the 86% accuracy rate achieved by radiologists. This 
suggests that LIRADS-based features have the potential for use in 
decision-making models when compared to deep-based features. Addi-
tionally, they trained their model to differentiate between hepatocel-
lular carcinoma (HCC) and non-HCC lesions, achieving a test validation 
accuracy of 86.5% and an external validation accuracy of 71.5%. It is 
worth noting that CT images were utilized for training the model, 
resulting in lower accuracy compared to models trained using MRI im-
ages, particularly DCE-MRI images [29]. 

Our study has several limitations. First, the size of our train/test 
sample was not very large compared to those of big databases, which 
may have impacted the generalizability of our findings. In order to 
mitigate the impact of this effect, we tested the generalizability of the 
technique by using an external dataset obtained from a different MRI 
unit. Second, when constructing our model, we relied solely on DCE MRI 
visual characteristics; however, alternative sequences can be included to 
conduct further tests and evaluate the model’s resilience. In further 
research, it may be possible to investigate the efficacy of further merging 
various imaging modalities, such as diffusion-weighted imaging, in an 
effort to achieve higher rates of diagnostic precision. One additional 
constraint of this study pertained to the unavailability of pathology re-
sults for patients initially classified in the LR-3 category but subse-
quently reclassified as LR-4 or LR-5 during 6–12 month follow-up and 
awaiting biopsy. By obtaining access to the longitudinal data for these 
patients, it would be possible to develop predictive models capable of 
forecasting pathology results during the early stage. 

5. Conclusion 

Our study demonstrates that machine learning algorithms can 
accurately predict HCC using LI-RADS visual features assessed on DCE- 
MRI. Our study also highlighted the significance of mass and mass-like 
features in addition to LI-RADS categorization. Despite its good perfor-
mance on training data, it was not sufficiently powered to pick up sig-
nificant difference patterns in the new test dataset. However, it was the 
most important feature to recognize the optimal pattern for the HCC 
prediction. These findings should be interpreted with caution given the 
several limitations of this study, but they encourage future studies to 
investigate new optimal features with higher importance rates to 

enhance the robustness and generalizability of decision-making models. 
Deep learning/radiomics-based features will be crucial for future studies 
to improve accuracy. 
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