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Purpose: PRDX (Peroxiredoxin) family has involved in breast cancer tumorigenesis from

the evidence obtained from cell lines, human tissues and mouse models. Nonetheless, the

diversified expression patterns, coupled with the prognostic values of PRDX family, still

require explanation. This study aimed at investigating the clinical importance and biological

of PRDXs in breast cancer.

Patients and methods: Specimens of paraffin sections used for immunohistochemistry

were collected from the hospital and the remaining patient information was retrieved from

online databases. The expression and survival data of PRDXs in patients with breast cancer

were from ONCOMINE, GEPIA, Kaplan–Meier Plotter. cBioPortal, Metascape, String,

Cytoscape and DAVID were used to predict functions and pathways of the changes in

PRDXs and their frequently altered neighbor genes. Immunohistochemistry was used to

detect the expression of PRDXs in breast cancer.

Results: We discovered the expression levels of PRDX1-5 were higher in breast cancer

tissues than in normal tissues, whereas the expression level of PRDX6 was observed as lower

in the former one in comparison with that of the latter one. There existed a correlation

between the expression levels of PRDX4, 5 and the advanced tumor stage. Survival analysis

revealed that the expression of PRDXs were all associated with relapse-free survival (RFS)

in all of the patients with breast cancer. Eventually, we discovered significant regulation of

the cellular oxidant detoxification and detoxification of ROS by the PRDX changes, together

with obtaining the core modules of genes (TXN, TXN2, TXNRD1, TXNRD2, GPX1 and

GPX2) linked to the PRDX family of genes in breast cancer.

Conclusion: The PRDX family is widely involved in the development of breast cancer and

affects the prognosis of patients. The functions and pathways of the changes in PRDXs and

their frequently altered neighbor genes can be further verified by wet experiments.
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Introduction
Peroxiredoxin (PRDX) is an antioxidant enzyme, commonly expressed in living

organisms. Its physiological action primarily involves scavenging the free radicals

and avoiding the impairment of cellular free radicals. As currently known, there are

six PRDX subtypes (PRDX1-6) in mammals, which are usually segregated into 1-

Cys as well as 2-Cys that depend on the number of cysteine remains, of which

PRDX1-5 is associated with the 2-Cys subtype, whereas PRDX6 is the 1-Cys

subtype.1,2 As indicated by the sequence homology analysis, the amino acid

sequence of PRDX1-4 shows an elevated level of similarity, while PRDX5 pos-

sesses a low similarity with the other protein amino acid sequences belonging to the

same family, the similarity between them is approximately 10%. On the other hand,
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the similarity of PRDX6 with the other protein sequences

belonging to the same family is extremely high at 40%.

There are different distributions of each subtype in cells.

PRDX1, PRDX2 and PRDX6 are highly expressed in

cytoplasm, and PRDX3 is mostly expressed in mitochon-

dria. PRDX5 does not have any specificity in the subcel-

lular localization expression, besides being expressed in a

number of organelles.

The PRDX family of proteins scavenges not just oxygen

species, but also reactive nitrogen and sulfur-free radicals,

together with safeguarding the cells from the impairment by

the reactive oxygen species by means of this phenomenon.

PRDX family proteins have a close association with the

level of malignancy, recurrence, prognosis, or considered

good therapeutic targets of a variety of tumors, for instance,

colorectal cancer,3–5 liver cancer,66–8 ovarian cancer,9,10

lung cancer,11–15 glioblastoma,16,17 prostate cancer,18,19

esophageal squamous cell carcinoma,20 bladder cancer,21

pancreatic cancer22 and so on.

Breast cancer refers to a common malignant tumor and

a leading cause of cancer-related deaths in females across

the globe. At present, the treatment methods of breast

cancer include surgical treatment, in addition to che-

motherapy, endocrine therapy, targeted therapy and com-

bination therapy. The death from breast cancer in both the

regions of North America and the European Union (EU)

has recently declined, which can be majorly ascribed to the

timely detection, coupled with the productive systemic

treatments. Nonetheless, breast cancer continues to consti-

tute the most frequent reason leading to death from cancer

in the less developed nations, together with being the

second to lung cancer in more advanced nations.23 As

known to all of us, early detection and early treatment

are the key to cancer treatment. That is why it is deemed

as extremely pivotal to detect breast cancer through the

detection of early indicators.

Till today, the role of the PRDX family in developing

and treating breast cancer has been extensively mentioned.

Fiskus W24 is of the view that breast cancer cells are more

sensitive to the ROS-induced DNA damage and cytotoxi-

city following the limitation of the antioxidant activity of

PRDX1. In accordance with Desmetz C,25 PRDX2 mani-

fested substantially augmented reactivity in the primary

breast cancer as well as CIS (carcinoma in situ) in com-

parison with healthy controls. Luthra S26 suggested that

PRDX2 gene expression has the potential to constitute a

predictor for the early or less aggressive Lump breast

cancers; in addition, higher expressed oxidative stress as

antioxidant genes GSTK1, together with PRDX2 and

PRDX3, is associated with the ER-positivity breast cancer

as well as the prediction of longer survival. Also, the

elevated expression of PRDX4 in the primary breast

tumor had a consistent relationship with metastasis at

5 years.27 Chang XZ et al28 are of the belief that upregu-

lating the peroxiredoxin 6 improved not just the prolifera-

tion but also the invasion of breast cancer cells in vitro.

To our optimal understanding, bioinformatics analysis

has yet been put to the application for the investigation of

the function of PRDXs in breast cancer. Hence, based on the

analyses of thousands of gene expression or changes in the

copy numbers that are published on the internet, we carried

out the analysis of the expression of PRDXs in those

patients, who had breast cancer, comprehensively for the

purpose of determining not just the expression patterns but

also the underlying roles, and distinguished prognostic

values.

Materials And Methods
Ethics Statement
The current research work received approval from the

Academic Committee of The Fourth Affiliated Hospital of

Anhui Medical University and was carried out in accor-

dance with the rules put forward in the Declaration of

Helsinki. The retrieval of each and every dataset was carried

out from the publishing literature, accordingly confirming

that all of the written informed consents were attained.

ONCOMINE Analysis
ONCOMINE gene expression array datasets,29 which is an

internet-based cancer microarray database, was put to use for

the analysis of the transcription levels of PRDXs in varying

cancers. The comparison of the mRNA expressions of PRDXs

in the medical cancer samples was carried out with that in the

normal controls, with the help of the Students’ t-test, aimed at

generating a p value. Both the cut-off of p value and fold

change were stated as 0.01 and 2, correspondingly.

GEPIA (Gene Expression Profiling

Interactive Analysis) Dataset
GEPIA refers to a recently created interactive webserver to

analyze the RNA sequencing expression data of 9736

tumors as well as 8587 normal specimens from the

TCGA and the GTEx projects, with the use of a standard

processing pipeline. GEPIA offers customizable roles, for

instance, tumor/normal differential expression analysis,
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profiling in accordance with the types of cancer or patho-

logical stage, the patient survival analysis, similar gene

detection, correlation analysis and dimensionality reduc-

tion analysis.30

The Kaplan–Meier Plotter
The evaluation of the prognostic value of PRDXs mRNA

expression was carried out with the use of an online

database, Kaplan–Meier Plotter,31 containing the gene

expression data, in addition to the survival information

associated with 3955 medical breast cancer patients.32

For the purpose of analyzing the relapse-free survival

(RFS), the overall survival (OS), distant metastasis-free

survival (DMFS) and post-progression survival (PPS) of

the patients having breast cancer, the patient specimens

were segregated into two cohorts in accordance with the

median expression (high vs low expression), followed by

being evaluated with the help of a Kaplan–Meier survival

plot, having the hazard ratio (HR) with 95% confidence

intervals (CI), coupled with the log-rank p value. The

JetSet best probe set of PRDXs were just selected for the

achievement of the Kaplan–Meier plots, wherein the

Number-at-risk is highlighted below the key plot.

TCGA Data And cBioPortal
The Cancer Genome Atlas possesses not just the sequencing

but also the pathological data dealing with 30 different

cancers.33 The breast cancer (TCGA, Provisional) dataset

that includes the data from 1108 cases with pathology reports

was chosen for additionally analyzing PRDXswith the use of

cBioPortal.34 The genomic profiles counted on mutations, in

addition to putative copy-number alterations (CNA) from

GISTIC, mRNA expression z-scores (RNA Seq V2 RSEM)

and protein expression Z-scores (RPPA). The calculation of

the co-expression and network was carried out in accordance

with the cBioPortal’s online instruction.

Metascape, String, Cytoscape And DAVID
PRDX1-6, together with the other 22 commonly changed

neighbor genes from cBioPortal’s network online instruction,

was input into Metascape35,36 and String37 for the purpose of

gene annotation and analysis. Aimed at constructing the core

PPI network (protein interaction network), we input the

differential genes into the String database for the analysis,

together with visualizing the results with Cytoscape.38,39

Each node in the network is a representation of a single

gene, and the lines existing between the points indicate the

functional connections that exist between the two molecules

in the network, and the thickness of lines is differentiated in

accordance with the combined score. MCODE is a plugin in

cytoscape, which performs the analysis of the interrelation-

ships between different gene-encoded proteins and key mod-

ules. The plugin sets the following parameters with regard to

the tightly connected module regions in the PPI network:

MCODE score > 5, degree cut-off = 2, node score-off = 0.2,

Max depth = 100, and k-score = 2. In addition, the functions

of PRDXs and the genes significantly associated with PRDX

alterations were predicted in accordance with the Kyoto

Encyclopedia of Genes and Genomes (KEGG) in the

Database for Annotation, Visualization, and Integrated

Discovery (DAVID).40,41

Immunohistochemistry
Immunohistochemistry for PRDXs were carried out on all of

the tissue specimens. The tissue specimens were cut into 4 µm

parts on the silanised glass slides. Protein expression was

figured out using 2-step immunohistochemistry. Briefly, both

the dewaxing and hydrated parts were treated using 0.3%

hydrogen peroxide in methanol for a period of 15 mins at

the RT, aimed at blocking the endogenous peroxidase activity,

followed by washing in PBS (thrice for 3 mins each), whereby

antigen retrieval was carried out in citrate buffer (cat. no.

P0081; Beyotime Institute of Biotechnology, Haimen, China;

pH 6.0) for a period of 10 mins at a temperature of 100°C.

Subsequent to three more PBS washes (3 min each), staining

of the parts was done using PRDX antibodies (Table 1) for 2

hrs at a temperature of 37°C, followed by washing again using

PBS (thrice for 3 mins each). Thereafter, the incubation of the

parts was carried out using horseradish peroxidase (HRP) IgG

antibody polymer (Table 1) for 1 hr at a temperature of 37°C,

which proceeded to three PBSwashes (3mins each). All of the

parts underwent the treatment using 50–100 μl diaminobenza-

dine working solution (DAB Horseradish Peroxidase Color

Development kit; cat. no. ZLI 9019; Zsbio, Beijing, China) at

the RT for a period between 3 and 5 mins, which proceeded to

awash in PBS. Each and every part underwent counterstaining

using haematoxylin for 1 min at the RT to make the morphol-

ogy of the tissue possible to be observed with the use of a light

microscope.

Results
Transcriptional Levels Of PRDXs In

Patients With Breast Cancer
We carried out the comparison of the transcriptional levels

of PRDXs in cancers with those in the normal specimens
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through the use of ONCOMINE databases (Figure 1). The

significant upregulation of the mRNA expression levels of

PRDX1 and PRDX4 was carried out in the patients having

breast cancer in five and six datasets.

In Zhao’s dataset,42 PRDX1 is overexpressed in lobular

breast carcinoma as well as invasive ductal breast carci-

noma with a fold change amounting to 3.224 and 3.531.

PRDX4 is also overexpressed in comparison with that in

the normal specimens, which have a fold change amount-

ing to 2.035 and 2.468. Together with that, PRDX2 is also

overexpressed in invasive ductal breast carcinoma having

a fold change amounting to 2.322 in the same dataset.

PRDX1 overexpression is found in ductal breast carci-

noma in situ epithelia having a fold change amounting to

2.546 in Ma’s dataset.43 Curtis44 showed another mRNA

expression factor with augmented expression, suggesting

that PRDX1 has a fold change amounting to 2.373 in those

patients, who have medullary breast carcinoma, a fold

change amounting to 2.001 in those patients, who have

invasive ductal breast carcinoma as compared with that in

the patients having normal breast tissues. In addition,

PRDX4 has a fold change amounting to 2.008 in those

patients, who have medullary breast carcinoma in this

dataset. In addition, PRDX3 is highly expressed in inva-

sive breast carcinoma stroma having a fold change

amounting to 2.298 in Finak’s dataset.45 There are signifi-

cantly different transcriptional levels of PRDX4 in ductal

breast carcinoma (fold change = 2.103 and 2.189) from the

ones in the normal specimens in Sorlie’s dataset46 and

Richardson’s dataset47 (Table 2).

With the use of GEPIA (Gene Expression Profiling

Interactive Analysis) dataset,48 we carried out the compar-

ison of the mRNA expression of PRDX elements between

breast cancer and normal tissues. As suggested by the find-

ings, the expression levels of PRDX1-5 were observed as

higher in breast cancer tissues as compared with that in the

normal ones; on the other hand, the expression level of

PRDX6 was observed as lower in the former one as com-

pared with that in the latter one (Figure 2A and B).

Association Existing Between The mRNA

And Protein Levels Of PRDXs And The

Clinicopathological Parameters Of The

Patients Having Breast Cancer
We carried out the analysis of the expression of PRDXs

with the tumor stage for breast cancer. Moreover, the

expression of PRDX4 and PRDX5 were substantially sta-

tistically significant with the clinical-pathological stage of

breast cancer, having a p-value amounting to 0.00825 and

0.0417. Nonetheless, other cohorts did not have a signifi-

cant difference (Figure 3).

We carried out IHC for the purpose of testing the

PRDX proteins expression in breast cancer tissues as

well as their counterparts, together with examining the

expression of PRDXs. We found that PRDX1-5 proteins

were more highly expressed in the cancer tissues than in

the normal, whereas the expression level of PRDX6 was

observed as lower in the former one in comparison with

that the latter one. (Figure 4).

Table 1 Antibody Name, Company, Catalog And Concentration

For Immunohistochemistry

Antibody Company Catalog Concentration

Anti-PRDX1 Abcam ab15571 1:500

Anti-PRDX2 Abcam ab59539 1:500

Anti-PRDX3 Abcam ab222807 1:100

Anti-PRDX4 Abcam ab59542 1:500

Anti-PRDX5 Abcam ab86086 1:500

Anti-PRDX6 Abcam ab59543 1:500

Goat Anti-Rabbit IgG

H&L (HRP)

Abcam ab205718 1:5000

Figure 1 The expression of PRDX family in different types of cancers

(ONCOMINE).
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Relationship Of The Augmented mRNA

Expression Of PRDXs With The

Enhanced Prognosis Of The Patients

Having Breast Cancer
We additionally investigated the clinical productivity of

PRDXs in the survival of those patients, who have breast

cancer. The use of Kaplan–Meier Plotter tools was made

for analyzing the relationship existing between the

mRNA levels of PRDXs and the survival of 3955 clinical

breast cancer patients through the use of the publicly

accessible datasets.31 As indicated by both the Kaplan–

Meier curve and log-rank test analyses, the augmented

PRDX1/2/4/5/6 mRNA levels, coupled with the lowered

PRDX3 mRNA levels, had a significant association with

the RFS (p < 0.05) of each and every patient having

breast cancer (Figure 5). In addition, the patients, who

had breast cancer with the elevated mRNA levels of the

PRDX4/6 or low mRNA levels of PRDX3, were likely to

be predicted as having weak OS, PPS, and DMFS.

Predicted Functions And Pathways Of

The Changes In PRDXs And Their

Frequently Altered Neighbor Genes In

Patients With Breast Cancer
We performed the analysis of the PRDX changes, relation-

ships, and networks through the use of the cBioPortal online

instrument for breast cancer (TCGA, Provisional). PRDXs

were altered in 425 samples out of those 1093 patients, who

had breast cancer (38.88%). The mRNA levels detected in

217 cases were observed as augmented. Among the 425

cases, 217 cases (51.06%) were detected with an increase

in the mRNA levels, whereas 84 (19.76%) were detected

having multiple alterations (Figure 6). Besides that, we per-

formed the calculation of the relationships of PRDXs with

one another through the analysis of their mRNA expression

(RNA Seq V2 RSEM) by means of the cBioPortal online

instrument for breast cancer (TCGA, Provisional), together

with including the Pearson’s correction. Also, the PRDXs

correlations are presented in Figure 6. Subsequent to that, we

developed the network for PRDXs as well as for the 22 most

frequently altered neighbor genes. As the findings suggested,

MYC, MAPK1 and GSTP1 had a close association with

PRDX changes (Figure 7).

The roles of PRDXs and the genes, which had a signifi-

cant association with PRDX changes, were predicted by

Metascape and String. We figured it out that GO:0098869

(cellular oxidant detoxification) and R-HAS-3299685

(Detoxification of Reactive Oxygen Species) had undergone

significant regulation by the PRDX changes. Hsa00480

(Glutathione metabolism), hsa05200 (Pathways in cancer),

GO:0009617 (response to bacterium) and hsa00450

(Selenocompound metabolism) also showed involvement in

the regulation caused by PRDX alterations (Figure 8).

Aimed at further capturing the associations existing

between the terms, a subset of enriched terms was chosen

Table 2 The Significant Changes Of PRDXs Expression In Transcription Level Between Different Types Of Breast Cancer And Normal

Tissues (ONCOMINE Database)

Types Of Breast Cancer vs Normal Fold Change P Value t-Test Ref

PRDX1 Lobular Breast Carcinoma vs Normal 3.224 3.12E−10 13.370 Zhao42

Invasive Ductal Breast Carcinoma vs Normal 3.531 3.92E−12 14.384 Zhao42

Ductal Breast Carcinoma in Situ Epithelia vs Normal 2.546 1.73E−7 8.385 Ma43

Medullary Breast Carcinoma vs Normal 2.373 2.47E−16 13.342 Curtis44

Invasive Ductal Breast Carcinoma vs Normal 2.001 5.59E−77 30.465 Curtis44

PRDX2 Invasive Ductal Breast Carcinoma vs Normal 2.322 1.37E−4 7.022 Zhao42

PRDX3 Invasive Breast Carcinoma Stroma vs Normal 2.298 7.50E−12 10.011 Finak45

PRDX4 Ductal Breast Carcinoma vs Normal 2.103 1.71E−5 6.948 Sorlie46

Ductal Breast Carcinoma vs Normal 2.189 1.79E−7 6.567 Richardson47

Lobular Breast Carcinoma vs Normal 2.035 3.43E−5 5.482 Zhao42

Invasive Ductal Breast Carcinoma vs Normal 2.468 3.95E−6 8.402 Zhao42

Medullary Breast Carcinoma vs Normal 2.008 5.86E−10 8.329 Curtis44

PRDX5 NA NA NA NA NA

PRDX6 NA NA NA NA NA
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Figure 2 The Boxplot (A) and Profile (B) of PRDX family’s expression in breast cancer (GEPIA).
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and rendered as a network plot, in which the terms having

a similarity >0.3 are linked by edges. Subsequent to that,

we chose the terms that had the best p-values. The network

is visualized with the use of Cytoscape, wherein every

node is a representation of an enriched term, together

with being colored first in accordance with its cluster ID

(Figure 9A) and with its p-value afterward (Figure 9B).

The top three terms included: cellular oxidant detoxifica-

tion, Detoxification of Reactive Oxygen Species and

Glutathione metabolism. In addition, we also calculated

the core modules of genes (TXN, TXN2, TXNRD1,

TXNRD2, GPX1 and GPX2) linked to the PRDX family

Figure 3 Correlation between PRDXs expression and tumor stage in breast cancer patients (GEPIA).

Figure 4 The expression of PRDX family in breast cancer (IHC).
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Figure 5 The prognostic value of mRNA level of PRDXs in breast cancer patients (Kaplan-Meier plotter).
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of genes in breast cancer (Figure 10) that was likely to

significantly contribute to the development of breast can-

cer associated with PRDXs.

KEGG analysis is capable of defining the pathways

associated with the roles of PRDX changes and the com-

monly changed neighbor genes. In addition, 12 pathways

associated with the roles of PRDX changes in breast cancer

were observed by means of KEGG analysis (Figure 11).

Discussion
As indicated earlier, the PRDX family is extensively

expressed in a variety of tumors. Even though the function

of PRDXs in the tumorigenesis and the prognosis of a

number of cancers has been verified partly, the further

bioinformatics analysis of breast cancer is still required

to be carried out. The current research work refers to the

first time exploring the mRNA expression as well as the

prognostic (RFS, OS, PPS and DMFS) values of varying

PRDX factors in breast cancer. As we expect, our research

is going to put forward fresh ideas for the research of

clinical diagnosis, therapeutic targets and tumor develop-

ment mechanisms of breast cancer.

An extensive study of the PRDX1 in breast cancer has

been carried out, besides its high expression in breast

cancer tissues and cell lines.49,50 In addition to that, other

research works have revealed the fact that the high mRNA

expression of PRDX1 in human breast carcinoma is perti-

nent to the higher tumor grade,51 whereas the elevated

expression of cytoplasmic PRDX1 linked to a significant

risk of local recurrence following the radiotherapy.52

In recent years, it has been discovered that PRDX1 has

dual roles of tumor suppressor and cancer promotion in

breast cancer, besides being associated with the expression

and function of estrogen receptor, having a potential value in

not just diagnosing but treating breast cancer as well.53,54

Moreover, the function of PRDX1 in tumors is extremely

Figure 6 PRDXs expression and mutation analysis in breast cancer (cBioPortal).
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intricate. It is capable of promoting the proliferation and

differentiation of tumor cells through the regulation of

H2O2 levels,55 and the repression of PRDX1 expression

causes the elevated levels of ROS-stimulated phosphoryla-

tion of p38 MAPKα, together with promoting the H2O2-

stimulated senescence in breast cancer cells.56 Other studies

have figured out that PRDX1 has the potential to suppresses

tumor cell death50 and promote tumor growth.57 In addition,

it was explored that the drug resistance formation accompa-

nies a substantial rise in the expression of PRDX1 gene in the

breast cancer cell strains.58

However, there are a number of reports suggesting that

PRDX1 is likely to play the role of a tumor suppressor in

breast cancer. Cao J et al59 have figured out that PRDX1

safeguards the tumor-suppressive role of PTEN

phosphatase from ROS-stimulated, besides inhibiting the

Ras-stimulated mammary tumors. Furthermore, the over-

expression of miR-510 results into the lower PRDX1 that,

as a response, augments the function of PI3K/Akt path-

way, in addition to promoting the cell and tumor growth in

breast cancer.60 With regard to our research work,

ONCOMINE datasets and TCGA datasets shed light on

the fact that the expression of PRDX1 was substantially

higher in human breast cancer as compared with that in

normal tissues. The expression of PRDX1 and TNM stage

did not have a significant statistical difference. With the

help of the Kaplan–Meier Plotter, we figured out the

prognostic value of PRDX1 in those patients, who had

breast cancer. An elevated PRDX1 expression had a sig-

nificant association with the weak RFS in each and every

patient having breast cancer, who underwent follow-up for

a period of more than 250 months.

PRDX2 manifested substantially augmented reactivity in

primary breast cancer and carcinoma in situ in comparison

with the healthy controls.25 Kurono61 puts forward that

PRDX2 levels had significant differences between nipple

discharge specimens from the patients having and not having

breast cancer. Together, Lacombe62 also confirmed the same

point between node-negative early-stage breast cancer and

ductal carcinoma in situ and the healthy individuals.

Stresing63 indicates that PRDX2 constitutes a targetable

“metabolic adaptor” driver protein that is involved in the

selective development of breast metastatic cells in the lungs

Figure 7 The network for PRDXs and the 22 most frequently altered neighbor

genes (cBioPortal).

Figure 8 Heatmap of enriched terms across PRDXs and other 22 most frequently altered neighbor gene lists, colored by p-values (Metascape).
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through their protection against oxidative stress. In accor-

dance with our report, the expression of PRDX2 in breast

cancer tissues was observed as higher in comparison with

that in normal ones. Nonetheless, PRDX2 expression did not

have a correlation with the TNM stage of those patients, who

had breast cancer. An elevated PRDX2 expression had a

significant correlation with the weak RFS and DMFS in

each and every patient having LC.

PendharkarN et al64 demonstrated the fact that PRDX3and

PRDX1 constitute a panel of markers, capable of discriminat-

ing the luminal B HER2 positive and HER2 enriched subtypes

of breast cancer, respectively. Cytoplasmic PRDX3 immunos-

taining had an approximately substantial correlation with the

poorer breast cancer-specific survival. However, PRDX3 was

not independent of the conventional prognostic factor in multi-

variate analysis.65 Moreover, the silencing of the PRDX3 gene

inhibits cell proliferation in breast cancer.66 Liu67 shed light on

the fact that the knockdown of ECHS1, as well as PRDX3 by

RNAi, augmented the apoptosis stimulated by PP2 in breast

cancer cell line MCF-7; in addition, the overexpression of

PRDX3 hampered the PP2-stimulated apoptosis in MCF-7.

As indicated in Table 2, Figure 2A and B, the expression of

PRDX3 in breast cancer tissues was observed as higher in

comparison with that in the normal ones; nonetheless, this

expression did not have a correlation with the tumor phase in

the patients having breast cancer. Nevertheless, surprisingly, a

low PRDX3 expression had a significant correlation with the

weak RFS, OS and DMFS in all of the patients, who had LC,

appearing as inconsistent with the function of PRDX3 as an

oncogene. It seems to be inconsistent with the content reported

in the above literature.64

Castellana’s qPCR data68 confirmed the fact that the

expression of PRDX4 had a significant difference in invasive

lobular breast carcinomas vs normal. Tiedemann69 has

demonstrated that secreted L-plastin, as well as PRDX4,

mediates osteoclast activation by human breast cancer cells.

In the same manner as before, the breast carcinoma cells

MCF7, together with MDA-MB-231, secreted PRDX4; also,

the elevated expression of PRDX4 in the primary breast

tumor had a consistent association with the metastasis at 5

years.27 As our report suggests, we illustrated that the expres-

sion of PRDXwas observed as higher in breast cancer tissues

as compared with that in the normal ones. Besides that, this

expression had an evident correlation with the tumor phase in

the patients having breast cancer. Interestingly, an elevated

PRDX4 expression had a significant correlation with the

weak RFS, OS and DMFS in each and every patient having

breast cancer.

PRDX5 is extensively reported in a number of tumors,

for instance, endometrial cancer,70 colon cancer,71 gastric

cancer72 and so on. Nonetheless, there have not been an

expression and prognosis role in PRDX5 reported in breast

Figure 9 Network of enriched terms: (A) Colored by cluster ID; (B) Colored by p-value (Metascape).

Figure 10 The core modules of genes associated with the PRDXs.
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cancer. Kim’s research work72 shed light on the fact that

the expression of PRDX5 had a significant correlation with

not just the size of the tumor but also the depth of tumor,

and lymphatic invasion in the patients having gastric can-

cer. Also, the overexpression of PRDX5 improved carci-

nogenicity through the increase in the proliferation as well

as invasiveness of gastric cancer cells by means of the

upregulation of Snail. In addition, PRDX5 is likely to

constitute a latent determinant, which may make a con-

tribution to the weak prognosis of gastric cancer by means

of the enhancement of the mesenchymal phenotype. In the

current report, we illustrated the fact that the expression of

PRDX5 in breast cancer tissues was higher as compared

with that in the normal ones; together with that, this

expression had an apparent correlation with the phase of

the tumor in those patients, who had breast cancer.

Furthermore, a higher PRDX5 expression had a significant

correlation with the weak RFS in each and every patient

having breast cancer.

Goncalves’s data73 put forward that MCF-7 cells express

the same kinds of levels of PRDX6 in comparison with

MCF-10A cells. Besides that, they also verify the cytopro-

tective function of peroxiredoxins in normal cells, in addition

to revealing a nonredundant synergistic impact of both Prdx1

and Prdx6 on MCF-10A cells. The overexpression of

PRDX6 results into a more invasive phenotype as well as

the metastatic capability of human breast cancer.28 Seibold’s

findings74 provide evidence that the genetic variant in

PRDX6 is likely to alter the prognosis in breast cancer

patients. In accordance with our report, we illustrated the

fact that the expression of PRDX6 was observed as lower in

breast cancer tissues as compared with that in the normal

ones. Moreover, there exists no correlation with the TNM

stage. A higher PRDX6 expression had a significant correla-

tion with the weak RFS, and OS in all of the patients, who

had breast cancer.

Conclusions
Peroxiredoxins (PRDXs) refer to a pervasive family of anti-

oxidant enzymes, which is termed as catalyzing the peroxide

reduction, aimed at balancing the levels of cellular hydrogen

peroxide (H2O2) that is considered as necessary for the

purpose of cell signaling and metabolism, besides acting as

a regulator of redox signaling.75 Redox signaling is termed as

a crucial part of cell signaling pathways that have involve-

ment in regulating not just the cell development but also

metabolism, hormone signaling, immune regulation and

numerous physiological roles.76,77 In the current research

work, we carried out the systemic analysis of the expression

as well as the prognostic value of PRDXs in breast cancer. In

addition, we offer a comprehensive understanding of not

only the heterogeneity but also the intricacy of the molecular

biology of breast cancer. By means of the analysis of various

online databases, we finally discovered the fact that the

cellular oxidant detoxification and detoxification of ROS

underwent significant regulation by the PRDX changes,

attained the core modules of genes (TXN, TXN2,

TXNRD1, TXNRD2, GPX1 and GPX2) correlated with the

Figure 11 The functions of PRDXs and genes significantly associated with PRDXs alterations were predicted by analysis of KEGG (DAVID).
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PRDX family of genes in breast cancer. Subsequent to that,

we are going to further clarify the molecular mechanisms of

PRDXs in breast cancer with the use of wet experiments.

Data Availability
All data included in this study are available upon request

by contact with the corresponding author.
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