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Abstract

Background: Pulmonary inflammation is a major contributor to morbidity in a variety of respiratory disorders, but treatment
options are limited. Here we investigate the efficacy, safety and mechanism of action of low dose inhaled carbon monoxide
(CO) using a mouse model of lipopolysaccharide (LPS)-induced pulmonary inflammation.

Methodology: Mice were exposed to 0–500 ppm inhaled CO for periods of up to 24 hours prior to and following
intratracheal instillation of 10 ng LPS. Animals were sacrificed and assessed for intraalveolar neutrophil influx and cytokine
levels, flow cytometric determination of neutrophil number and activation in blood, lung and lavage fluid samples, or
neutrophil mobilisation from bone marrow.

Principal Findings: When administered for 24 hours both before and after LPS, inhaled CO of 100 ppm or more reduced
intraalveolar neutrophil infiltration by 40–50%, although doses above 100 ppm were associated with either high
carboxyhemoglobin, weight loss or reduced physical activity. This anti-inflammatory effect of CO did not require pre-exposure
before induction of injury. 100 ppm CO exposure attenuated neutrophil sequestration within the pulmonary vasculature as well
as LPS-induced neutrophilia at 6 hours after LPS, likely due to abrogation of neutrophil mobilisation from bone marrow. In
contrast to such apparently beneficial effects, 100 ppm inhaled CO induced an increase in pulmonary barrier permeability as
determined by lavage fluid protein content and translocation of labelled albumin from blood to the alveolar space.

Conclusions: Overall, these data confirm some protective role for inhaled CO during pulmonary inflammation, although this
required a dose that produced carboxyhemoglobin values close to potentially toxic levels for humans, and increased lung
permeability.
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Introduction

Neutrophilic pulmonary inflammation is a major contributor

to morbidity in a variety of both acute and chronic respiratory

disorders. Despite much research, therapies to modulate the

inflammatory cascade and ensuing pulmonary dysfunction

that are efficacious, safe and readily manipulable have been

elusive.

Recently, many experimental studies have shown a beneficial

effect of low dose inhaled carbon monoxide (CO) on the

progression of various types of tissue injury, with CO having

anti-inflammatory, antifibrotic, and antiapoptotic effects [1].

Inhaled agents clearly have great potential for the treatment of

pulmonary disorders, and studies have shown efficacy of CO

(typically 250–1000 parts per million (ppm)) using in vivo models

of lung injury and inflammation induced by bleomycin [2],

aeroallergens [3], mechanical stretch [4], ischemia-reperfusion

[5,6], hyperoxia [7] and acid aspiration [8]. However, there have

been several animal studies that did not find beneficial impacts of

inhaled CO [9–12]. Furthermore, in the human studies carried

out to date (involving healthy volunteers and stable chronic

obstructive pulmonary disease (COPD) patients), no significant

benefits of inhaled CO to attenuate pulmonary inflammation were

observed [13,14]. These apparent inconsistencies may reflect gaps

in our knowledge of the mechanisms of CO action, potentially

leading to inappropriate choices of models/clinical subjects, dosing

regimens, measured output variables etc. Alternatively, this may

indicate that the efficacy of CO is limited to particular species

and/or etiologies of injury/inflammation. Despite the initially

impressive pre-clinical results, considerable work clearly still needs

to be carried out to improve the chances of designing efficacious

and most importantly safe therapies using CO.
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The aim of the current study was therefore to systematically

investigate the impact of CO, including anti-inflammatory effects,

safety, efficacy, dosing requirements and mechanisms of action

within a simple model, to help shed light on the reasons behind the

inconsistencies within the literature. We previously found no

beneficial effect of CO in various models of severe acute lung

injury in mice, induced by high doses of lipopolysaccharide (LPS)

or oleic acid [10]. This may be due to the rapidly progressing

(lasting 2–3 hours) and overwhelming nature of these injury

models. For the current study we therefore utilised a mouse model

of moderate pulmonary inflammation and barrier permeability

induced by a low dose intratracheal LPS administration. The data

show that 100 ppm inhaled CO was effective to reduce neutrophil

recruitment to the lungs, via a novel mechanism linked to

decreased bone marrow mobilisation of leukocytes. However even

this dose of CO, which is lower than generally used in pre-clinical

studies, seemingly led to increased pulmonary endothelial/

epithelial barrier permeability, suggesting that while CO could

potentially be effective in treating pulmonary inflammation and

lung injury, the therapeutic window may be small.

Materials and Methods

Intratracheal LPS-induced pulmonary inflammation
model

All experimental protocols involving animals were approved by

the Ethical Review Board of Imperial College London, and

carried out under the authority of the UK Home Office in

accordance with the Animals (Scientific Procedures) Act 1986.

Male C57Bl/6 mice (Charles River, Margate, UK) aged 8–12

weeks were anesthetised with ketamine (60 mg/kg) and xylazine

(6 mg/kg). Animals were suspended in the upright position and an

external light source used to illuminate the larynx. A fine

polyethylene catheter (external diameter 0.61 mm, internal

diameter 0.28 mm) was then passed into the trachea via the

mouth under direct visualisation of the vocal cord, using an

adaptation of previously described methods [15]. 10 ng LPS

(Ultrapure LPS, InVivoGen) in 50 ml saline was administered into

the trachea, and animals were allowed to recover on a heated bed.

After 6 or 24 hours mice were sacrificed by pentobarbital

overdose, blood samples were obtained by cardiac puncture, and

lung lavage was performed with 750 ml saline [16].

CO exposure
Mice were exposed to air or air/CO before and/or after LPS

instillation (for detailed protocols, see Results) in a custom-made

gas exposure chamber, fed with continuous gas flows of air and a

mix of air/5000 ppm CO (Carburos Metalicos, Madrid, Spain).

Animals exposed post-LPS were placed in the chamber as soon as

adequate recovery of respiration and body temperature was

achieved (typically ,30–40 minutes after instillation). The flows

from each gas mixture were adjusted to give final CO

concentrations of 0–500 ppm, with a total flow rate of 900 ml/

min to avoid chamber hypoxia/hypercapnia. Animal numbers in

the chamber were restricted to four to ensure consistent

environmental conditions. Probes within the chamber allowed

continuous monitoring of temperature, humidity, CO and CO2

levels (Testo 650, Testo Ltd, Alton, UK). O2 levels within the

chamber were intermittently evaluated.

Assessment of intraalveolar inflammation
Lavage fluid samples were analysed for protein concentration

using BioRad assay reagent (BioRad Laboratories, Hemel

Hempstead, UK) and for cytokines including interleukin-6 (IL-

6), macrophage inflammatory protein-2 (MIP-2), keratinocyte-

derived chemokine (KC) and interleukin-10 (IL-10) using ELISA

kits (R&D Systems, Abingdon, UK). Intraalveolar neutrophil

infiltration was determined by hemacytometer and differential

cytology on lavage cell samples.

Flow cytometry
In some experiments, neutrophil numbers and activation status

in lavage, lung and blood samples were analysed by flow

cytometry, as described previously [17,18]. In brief, single cell

suspensions were prepared from excised lungs of mice by

mechanical disruption to analyse lung-marginated neutrophils.

Lavage, lung and blood cell samples were then stained with

fluorochrome-conjugated antibodies against cell-surface markers

(CD11b, F4/80, Gr-1, L-selectin) and analysed by flow cytometry

(FACSCalibur, Becton Dickinson, Oxford, UK). Microsphere

counting beads (Caltag Medsystems, Towcester, UK) were added

to enable cell quantification. Neutrophils were identified based on

forward/side-scatter properties and F4/80 and Gr-1 expression.

Neutrophil activation was assessed by surface expression levels of

L-selectin and CD11b.

Neutrophil mobilisation
In a series of experiments to ascertain the influence of CO on

neutrophil mobilisation from bone marrow, mice received an

intraperitoneal injection of 0.2 ml BromodeoxyUridine (BrdU,

10 mg/ml in saline) [18]. After 48 hours to allow incorporation of

BrdU into dividing leukocytes, mice were administered LPS and

exposed to 100 ppm CO as described above. After 6 hours, blood

and lung cell suspensions were processed and stained using a BrdU

‘Flow Kit’ according to manufacturer’s instructions (BD Pharmin-

gen, Oxford, UK). Cells were stained with appropriate neutrophil

marker antibodies and then washed, fixed, permeabilised and

treated with DNAse to reveal BrdU epitopes. BrdU incorporation

was determined by staining with an allophycocyanin (APC) anti-

BrdU monoclonal antibody, and the percentage of neutrophils

positive for BrdU was evaluated by flow cytometry.

Pulmonary barrier permeability
To determine the influence of inhaled CO on pulmonary

barrier permeability, mice (without LPS treatment) were exposed

to either air or 100 ppm CO in the exposure chamber. After

5 hours, mice received a tail vein injection of 100 ml (0.1 mg)

fluorescence-labelled albumin (Alexa-Fluor 594-labelled albumin,

Invitrogen) and were returned to the exposure chamber. After one

further hour, mice were terminated by anesthetic overdose, and

blood and lung lavage fluid samples taken. Permeability was

estimated by the ratio of lavage fluid : plasma fluorescence [19].

CO-Hb association/dissociation in mice
In a separate series of experiments, anesthetised and tracheos-

tomised mice were ventilated with a custom-made mouse

ventilator (8–9 ml/kg tidal volume, 2.5 cmH2O positive end-

expiratory pressure (PEEP), respiratory rate 120), with a carotid

arterial line inserted for blood sampling, fluid infusion (0.4 ml/hr

saline containing 10 U/ml heparin) and monitoring arterial blood

pressure [16]. A polyethylene catheter was introduced into the

intraperitoneal cavity for maintenance of anesthesia (ketamine

36 mg/kg : xylazine 3.6 mg/kg bolus every 20–25 minutes). To

assess carbon monoxide-hemoglobin (CO-Hb) association kinetics,

mice were initially ventilated with air, a blood sample removed for

determination of baseline carboxyhemoglobin % (COHb), and

then the inspired gas was switched to 500 ppm CO. Ventilation

Inhaled CO and Lung Injury
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was continued for 80 minutes with blood samples taken every 20

minutes. For dissociation kinetics, a separate set of mice were

instrumented and ventilated with 500 ppm CO for 80 minutes,

following which a baseline blood sample was taken, the inspired

gas changed to air, and ventilation continued for a further 80

minutes with blood sampling every 20 minutes. Blood sample

volume (,70 ml) was replaced with saline following each sampling

to ensure stable blood pressure and hemodynamics throughout

experiments.

Statistical Analysis
Data are expressed as mean6SD. Statistical comparisons were

made by t-tests or ANOVA with Bonferroni tests, using GraphPad

Prism software. Statistical significance was defined as p,0.05.

Results

Impact of CO on LPS-induced neutrophil infiltration
No animals died after randomisation to treatment groups in any

of the experimental protocols. Initial experiments were carried out

using prolonged exposure to CO, to determine the maximal

impact of CO both in terms of anti-inflammatory consequences

and potential side-effects. Recruitment of neutrophils into the

alveolar space was determined in animals exposed to 0–500 ppm

CO for 24 hours both before and after LPS (fig. 1). LPS induced a

substantial intra-alveolar neutrophil infiltration compared to

untreated mice, while inhaled CO of 100 ppm or more

significantly reduced this by ,40–50%.

Side-effects of CO exposure
To investigate possible side-effects, COHb levels in cardiac

puncture blood were determined in LPS-challenged animals, using

a hemoximeter with inbuilt algorithms for mouse blood (OSM3,

Radiometer, Crawley, UK). As opening the chamber to remove

mice inevitably caused a decrease in atmospheric CO, only the

data from the first mouse removed from the chamber were

compared (fig. 2A). A clear dose response was apparent with

increasing CO, with 500 ppm CO producing .50% COHb.

500 ppm CO was also associated with greater weight loss

following LPS instillation (fig. 2B), lower CO2 levels within the

chamber (fig. 2C) and an observed reduction in physical activity.

Because CO2 was not present in the gas supplied, chamber levels

are a reflection of CO2 production by the animals. Taken

together, these indicate substantial undesirable side-effects of CO

exposure at 500 ppm.

In vivo kinetics of CO-Hb association/dissociation
The kinetics of CO-Hb association/dissociation were found to

be very rapid in ventilated mice (fig. 3). Blood COHb levels

reached 50% of steady-state value (defined as COHb% after

24 hours inhalation) within 20 minutes of exposure, and .90% of

steady-state value by 80 minutes. COHb dissociation was similarly

rapid, with a half-life of 30–40 minutes after discontinuation of

CO.

Timing of CO exposure
To determine whether efficacy of inhaled CO required pre-

exposure, mice were exposed to 100 ppm CO (as the lowest dose

which produced consistent attenuation of neutrophil infiltration)

for 24 hours either before or after LPS challenge, and sacrificed

for analysis at 24 hours after LPS. The beneficial effect of CO

could be attributed entirely to the period following LPS,

demonstrating that pre-exposure was unnecessary (fig. 4). Thus,

exposure to CO after LPS challenge was utilised for the

subsequent experiments.

Mechanisms underlying attenuated neutrophilic
inflammation

To examine whether the observed decrease in neutrophil

infiltration into the alveolar space following inhaled CO was

related to local production of inflammatory mediators, levels of the

proinflammatory cytokines IL-6 and MIP-2, and the anti-

inflammatory cytokine IL-10 were assessed in lavage fluid of mice

exposed to 100 ppm CO for 24 hours after LPS instillation. The

level of each of these mediators, with or without CO, was

effectively negligible, suggesting that inflammatory mediator

Figure 1. Alveolar neutrophil recruitment 24 hours after LPS.
Impact of carbon monoxide (CO) exposure on neutrophil (PMN)
percentage (A) and number/ml (B) in lung lavage fluid of untreated
animals (no LPS or CO), or mice treated with 10 ng intratracheal LPS.
LPS-challenged mice were exposed to either 0 (air), 50, 100, 200, or
500 ppm CO for 24 hours both before and after LPS. *p,0.05, **p,0.01
***p,0.001 vs LPS +0 ppm CO; n = 19 for LPS +0 ppm CO, and 8–12 for
all other groups (numbers are higher in the LPS+0 ppm CO group
because, as our primary control, we ran 1–2 of these animals alongside
the experiments for each of the other groups).
doi:10.1371/journal.pone.0011565.g001
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response within the alveoli had passed its peak and already

returned to baseline by this point in the model. We therefore

studied lavage fluid levels of cytokines in mice exposed to 100 ppm

CO at 6 hours after LPS instillation. At this earlier time point in

the progression of pulmonary inflammation, much higher levels of

the proinflammatory mediators (including the addition of KC)

were detected, although IL-10 levels were again negligible. There

was however no effect of CO exposure on any of the mediators

studied (fig. 5).

As the attenuation of alveolar neutrophilia was seemingly not

associated with changes in soluble mediator levels, we investigated

whether CO influenced early neutrophil activation and seques-

tration within the lung microvasculature, which has been shown to

peak between 4–12 hours following intratracheal LPS [20]. This

was assessed using flow cytometry to determine neutrophil

Figure 2. Indicators of side-effects with low dose inhaled carbon
monoxide. A. Carboxyhemoglobin (COHb) level in blood of animals
exposed to carbon monoxide (CO) for 24 hours both before and after
lipopolysaccharide (LPS) instillation. Only COHb data from the first mouse
removed from the chamber are shown to minimise the confounding
effects of dropping the CO concentration upon opening the chamber.
***p,0.001 vs 0 ppm CO, n = 4–5/group. B. Percentage weight loss in
the 24 hours following LPS instillation, in mice exposed to 0, 100, 200 or
500 ppm. ***p,0.001 vs 0 ppm CO, n = 8–12/group. C. CO2 level in
chamber. CO2 levels were recorded every 30 minutes: data represent
average level in the 24 hour period prior to LPS instillation (to avoid
potential confounding effects of anesthetic/LPS). ***p,0.001 vs 0 ppm
CO, n = 3–5 experiments, with 4 mice in the chamber each experiment.
doi:10.1371/journal.pone.0011565.g002

Figure 3. Carboxyhemoglobin association and dissociation
kinetics. Time course for association (A) and dissociation (B) of blood
carboxyhemoglobin (COHb) in ventilated, instrumented mice. For
association kinetics, mice were ventilated from time 0 with 500 ppm
carbon monoxide (CO) and arterial blood samples taken every 20
minutes. For dissociation kinetics a separate set of mice were ventilated
for 80 minutes with 500 ppm CO, then at time 0 inspired gas was
switched to 0 ppm CO and samples were taken every 20 minutes
thereafter. n = 4/time point.
doi:10.1371/journal.pone.0011565.g003
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numbers and adhesion molecule expression in blood, lung tissue

and lavage fluid. 6 hours of LPS treatment induced a significant

increase in neutrophil numbers in each of these compartments.

100 ppm CO tended to reduce neutrophil numbers in lavage fluid,

although this was not significant at this early point (fig. 6A).

Neutrophil sequestration within the lung tissue was however

significantly attenuated by CO (fig. 6B). Similarly, the increase in

blood neutrophils following LPS was almost completely abrogated

by CO (fig. 6C). To determine whether this latter finding was

related to an effect of CO to inhibit neutrophil mobilisation from

bone marrow (as opposed to other ‘marginated’ pools), mice were

dosed with BrdU 48 hours before LPS administration. LPS

induced a clear increase in the number of BrdU-containing (i.e.

newly released from bone marrow) neutrophils in the blood at

6 hours, which was significantly attenuated by 100 ppm CO

Figure 4. Impact of CO exposure either pre- or post- LPS
challenge on alveolar neutrophil recruitment. Neutrophil (PMN)
% (A) and number/ml (B) in lung lavage fluid of mice exposed to
100 ppm carbon monoxide (CO) for 24 hours either before or after
lipopolysaccharide (LPS) instillation. *p,0.05, **p,0.01 vs 100 ppm CO
pre-LPS; n = 8/group. For comparison, data from Figure 1 of the animals
exposed either to 0 ppm or 100 ppm CO for 24 hours both pre- and
post-LPS are shown (but not included in statistical analysis).
doi:10.1371/journal.pone.0011565.g004

Figure 5. Lavage fluid cytokine concentrations 6 hours after
LPS challenge. Concentration of cytokines IL-6 (A), MIP-2 (B), and KC
(C) in lung lavage fluid of untreated mice (no LPS or CO), and mice
exposed to 0 or 100 ppm carbon monoxide (CO) for 6 hours after LPS
instillation. *p,0.05, **p,0.01 ***p,0.001 vs LPS +0 ppm CO; n = 7–8/
group for IL-6 and MIP-2; n = 14–15/group for KC.
doi:10.1371/journal.pone.0011565.g005

Inhaled CO and Lung Injury
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exposure (fig. 7). A similar pattern was observed in the lung

although changes were not significant.

We also investigated potential changes in the levels of neutrophil

activation in terms of surface expression of L-selectin and CD11b

(fig. 8). LPS induced a significant activation of lung-marginated

neutrophils, promoting shedding of L-selectin (i.e. reduced

expression), and upregulation of CD11b. CO had no impact on

L-selectin expression, but tended to reduce CD11b expression on

lung-marginated neutrophils. Neither LPS nor CO had a

significant impact on activation of circulating neutrophils.

Impact of CO on pulmonary barrier permeability
To assess whether the attenuated pulmonary inflammation

following CO exposure was associated with a corresponding

Figure 6. Tissue neutrophil numbers 6 hours after LPS,
determined by flow cytometry. Neutrophil (PMN) number in lavage
fluid (A), lung tissue (B) and blood (C) from untreated mice (no LPS or
CO), or mice exposed to 0 or 100 ppm carbon monoxide (CO) for
6 hours after LPS instillation. Single cell suspensions were prepared
from excised lungs of mice by mechanical disruption. Lavage, lung and
blood cell samples were stained with fluorochrome-conjugated
antibodies against cell-surface markers (CD11b, F4/80, Gr-1, L-selectin)
and analysed by flow cytometry. Microsphere counting beads were
added to enable cell quantification. Neutrophils were identified based
on forward/side-scatter properties and F4/80 and Gr-1 expression.
*p,0.05, **p,0.01 vs LPS +0 ppm CO; n = 9–10/group.
doi:10.1371/journal.pone.0011565.g006

Figure 7. Neutrophil mobilisation. Percentage of newly released
BrdU containing neutrophils in blood (A) and lung tissue (B) from
untreated mice (no LPS or CO), or mice exposed to 0 or 100 ppm
carbon monoxide (CO) for 6 hours after LPS instillation. Neutrophils
were identified as described previously, and BrdU incorporated into
DNA was detected by flow cytometry using an APC-labelled anti-BrdU
antibody. Data are expressed as percentage of neutrophils within tissue
positive for BrdU staining. *p,0.05 vs LPS +0 ppm CO; n = 6–7/group.
doi:10.1371/journal.pone.0011565.g007
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improvement in pulmonary barrier permeability, we initially

determined lavage fluid total protein concentration at 6 and

24 hours after LPS (fig. 9A, B). Lavage fluid protein was

significantly increased at both time points after LPS compared

to untreated control mice. Somewhat unexpectedly, mice exposed

to 100 ppm CO for 24 hours after LPS showed a further increase

in total protein. To clarify that this was an effect of CO on barrier

dysfunction, permeability was directly assessed in animals exposed

to CO alone (i.e. no LPS) for 6 hours. Permeability, in terms of the

lavage fluid to plasma ratio of fluorescence-labelled albumin, was

significantly enhanced by CO inhalation (fig. 9C).

Discussion

A number of studies, although not all, have shown protective

effects of low dose CO exposure in various animal models of tissue

inflammation and dysfunction [21]. As human trials to date have

been relatively less successful than these pre-clinical experiments,

Figure 8. Neutrophil adhesion molecule expression, determined by flow cytometry. Surface expression of L-selectin (A–C) and CD11b (D–
F) on neutrophils from lavage (A,D), lung tissue (B,E) and blood (C,F) from untreated animals (no LPS or CO), or mice exposed to 0 or 100 ppm
carbon monoxide (CO) for 6 hours after LPS instillation. Data are expressed as mean fluorescence intensity (MFI). The data of lavage neutrophils in
untreated animals were not included because the numbers of cells recovered were too small to allow for accurate analysis. *p,0.05 vs LPS +0 ppm
CO; n = 9–10/group.
doi:10.1371/journal.pone.0011565.g008
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PLoS ONE | www.plosone.org 7 July 2010 | Volume 5 | Issue 7 | e11565



the current study was designed to investigate the efficacy, safety,

timing of administration, and mechanisms of action of low dose

inhaled CO in a simple model of pulmonary inflammation and

barrier permeability induced by intratracheal LPS instillation. The

data demonstrate that CO delivered after the initiating insult has a

moderate but significant effect in attenuating LPS-induced

pulmonary inflammation. This was associated with decreased

neutrophil mobilisation from bone marrow, though produced no

improvement but rather some exacerbation in pulmonary

permeability.

Previously, we have assessed the impact of inhaled CO on a

variety of more severe models of pulmonary inflammation/injury

than used here [10]. Intratracheal administration of a high dose of

LPS (20 mg) induced substantially greater lavage fluid protein (2–

36 greater) and MIP-2 (some 206 greater) than found in the

present study, but these were unaffected by CO. In an alternative

model of injury induced by intravenous oleic acid, we found

extremely high lavage fluid protein levels (,106 greater than in

the current study), associated with substantial deteriorations in

respiratory system mechanics and gas exchange, but again no

effect of CO on these parameters. In light of these data, the model

chosen for this study was designed specifically to produce

pulmonary inflammation and increased alveolar epithelial/endo-

thelial permeability of moderate degree, as such changes were felt

more likely to be modifiable by low doses of inhaled CO. Although

there were no outward clinical manifestations of respiratory

distress, the low dose intratracheal LPS instillation used induced

substantial increases in alveolar neutrophil infiltration (,40–60%

alveolar leukocytes as neutrophils) and lavage fluid protein (,0.4–

0.45 mg/ml) in these mice. While direct comparisons between

animal studies and human patients are difficult, such data are not

dissimilar from the lower end of the range reported in human

acute lung injury/acute respiratory distress syndrome (lavage

neutrophils 70–80%, total protein 0.5–1 mg/ml [22]).

We first exposed mice to 50–500 ppm CO for 24 hours both

before and after LPS to explore the maximal likely impact of CO.

Intraalveolar neutrophil infiltration was attenuated to a moderate

degree (40–50%) by inhaled CO of 100 ppm and above (at

50 ppm any effect of CO was variable and not significant

compared to air exposed animals, so was discounted from further

investigation). Such changes are less striking than other impressive

results reported in the literature for CO, or the effects of more

common anti-inflammatory treatments such as glucocorticoids

[23], N-acetylcysteine [24] or anti-chemokine antibodies [25]. We

did however observe that delivery of CO after the challenge was

both necessary and sufficient for efficacy, indicating that

prophylaxis may not be a requirement for inhaled CO to be of

benefit.

As CO is well known for its toxic effects, it is crucial that animals

(and by extension patients) should not be exposed to higher levels

than necessary [26]. We therefore carefully evaluated potential

side-effects of inhaled CO by examining blood COHb levels as
Figure 9. Impact of CO on pulmonary barrier permeability. A.
Lung lavage fluid total protein concentration from untreated animals

(no LPS or CO), or mice exposed to 0 or 100 ppm carbon monoxide
(CO) for 6 hours after LPS instillation. *p,0.05 vs LPS +0 ppm CO; n = 8
for untreated animals and 15–16 for LPS treated groups. B. Lung lavage
fluid total protein concentration from untreated animals or mice
exposed to 0 or 100 ppm CO for 24 hours after LPS instillation.
***p,0.001 vs LPS +0 ppm CO; n = 7–8/group. C. Permeability was also
assessed in both untreated mice (no LPS or CO) and animals receiving
100 ppm CO alone for 6 hours (no LPS) by determining translocation of
a fluorescence-labelled albumin from plasma to alveolar space over a
1 hour period. Data are expressed as a ratio of fluorescence between
lavage fluid and plasma. *p,0.05 vs untreated group; n = 6–7.
doi:10.1371/journal.pone.0011565.g009
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well as any objective clinical signs. We found that 500 ppm CO

over 24 hours was clearly toxic, associated with unacceptably high

(.50%) blood COHb levels, substantial weight loss and reduced

CO2 production, presumably reflecting hampered physical

activity. Such a dose of CO has previously been reported to

induce apoptosis within the brain [9], although over a longer

timescale (60 hours) than used currently. Animals exposed to

200 ppm CO showed high (,31%) blood COHb levels with a

tendency, though not significant, to greater weight loss and lower

CO2 production than mice breathing air. Mice exposed to

100 ppm CO did not show obvious clinical signs so this dose was

used for subsequent experiments, although it still induced

moderately high blood COHb levels of ,17%. These levels are

around the so-called ‘‘biological threshold’’ for CO tolerance in

humans (15–20% COHb), i.e. the levels which in the majority of

cases are not detrimental, but beyond which severe CO-mediated

injury is likely [27].

The precise mechanisms of action of CO, in particular the

downstream ‘physiological’ mechanisms, still remain unclear. The

multitude of reported effects include altered cGMP signaling [6],

up/down-regulation of signal transduction pathways [4,28,29],

altered trafficking of toll-like receptors [30] and mediating their

interaction with Caveolin-1 [31]. One of the primary physiological

end-points of these upstream signal regulation processes is reduced

neutrophil infiltration into tissue [4,29], but how the ‘molecular’

processes affected by CO link to this endpoint is unknown. CO

exposure has previously been shown to induce alterations in locally

produced cytokines [4,28,29], including reduced production of

tumor necrosis factor (TNF), IL-6 and IL-1b, and increased

production of IL-10. However, in this study CO inhalation had no

impact on lavage fluid IL-6, IL-10, or the CXC chemokines MIP-

2 and KC. This is somewhat surprising given that the CXC

chemokines are major neutrophil chemoattractants, but is

consistent with data from a mouse model of acid-induced acute

lung injury [8], and isolated RAW 264.7 macrophages exposed to

LPS [28].

In contrast, our results demonstrated that inhaled CO

attenuated early neutrophil sequestration within the lung vascu-

lature, and almost entirely abrogated LPS-induced neutrophilia.

The increased circulating neutrophils following LPS may represent

mobilisation of either newly released cells from bone marrow, or

cells ‘demarginated’ from other organ beds. Using BrdU to label

dividing cells we demonstrated, for the first time to our knowledge,

that CO inhibits neutrophil mobilisation from bone marrow

(others have suggested that neutrophil activation status may be

decreased by CO [8], a finding we did not reproduce here). How

this effect of CO on neutrophil mobilisation occurs is unclear - we

considered that it may be a consequence of decreased production

of granulocyte macrophage colony-stimulating factor (GM-CSF)

following CO exposure, which has previously been demonstrated

in LPS-stimulated macrophages in vitro [32]. However we were

unable to detect GM-CSF in either lung lavage fluid or plasma

following LPS instillation (data not shown). Considering the

absence of CO-induced changes in CXC chemokine production

within this and other studies, these ‘non-specific’ effects of inhaled

CO on neutrophil mobilisation and pulmonary neutrophil

sequestration may be the primary mechanism by which CO

exerts its effects in response to intratracheal LPS.

We also investigated whether the observed attenuation in

neutrophil infiltration and mobilisation following LPS was

associated with signs of attenuated pulmonary barrier dysfunction.

Unexpectedly, even at 100 ppm we found that inhaled CO led to

increased, rather than decreased, pulmonary barrier permeability.

There was a small but statistically significant exacerbation of

lavage fluid protein 24 hours after LPS in animals exposed to

100 ppm CO, consistent with a recent study showing that 50 ppm

CO alone induced small increases in protein levels in lavage fluid

of rats [33]. This accumulation of protein within lavage fluid over

24 hours represents a combination of increased barrier perme-

ability with the process of alveolar fluid clearance. Currently there

is no consensus on the impact of CO on lung fluid clearance. One

study using mouse (renal) epithelial cells demonstrated an

enhancement of sodium channel activity following addition of a

CO donor [34], which theoretically may imply an enhancement of

fluid clearance following CO. In contrast, inhaled CO has been

shown to impair alveolar fluid clearance in isolated perfused rabbit

lungs [11], which would tend to dilute and thus underestimate the

differences in lavage fluid protein levels observed. In order to more

directly evaluate whether CO induced barrier permeability, we

assessed the movement of a fluorescence-labelled albumin across

the endothelial and epithelial barriers. This was done in animals

exposed to CO only (i.e. no LPS) for 6 hours. The data indicate

that 100 ppm CO alone increased pulmonary barrier permeabil-

ity. While the clinical significance of such relatively small changes

is unclear, these findings provide a caution of potential undesirable

effects of CO within the lungs even at low doses, which may have

previously been overlooked.

The reasons for the discrepancies between those studies

suggesting limited benefits of inhaled CO (such as the current

study and those involving human subjects) compared to many pre-

clinical studies showing very impressive results are not known. We

speculate that these may be related to either i) the etiology of

pulmonary inflammation/injury, or ii) the dose of CO used, and

subsequent levels of COHb achieved. Although one previous study

noted efficacy of inhaled CO as low as 10 ppm in a model of

systemic inflammation [35], the vast majority of in vivo studies

have utilised inhaled CO of 250–500 ppm or higher [4,6–

8,21,28,36]. Such doses have been justified on the basis that these

concentrations are below that used for lung diffusion capacity

measurements in humans (3000 ppm) [7]. However, this justifica-

tion may need re-evaluation considering the observed CO-Hb

association/dissociation kinetics in mice. We found that the in vivo

association kinetics for CO-Hb in mice are much more rapid than

in humans; COHb% in blood reached ,45% within 1 hour of

exposure to 500 ppm CO, whereas the same level would not be

reached until ,3 hours in humans [37]. Thus, a short exposure to

CO would produce much higher COHb levels in mice than

humans. Consistent with the reported in vitro half-life of mouse

COHb of 30 minutes [38], which is much shorter than that of

human COHb (,5 hours) [39], we found that COHb levels were

almost halved 20 minutes after discontinuation of CO in vivo. This

rapid dissociation may have inadvertently led to significant

underestimation of the true blood COHb levels in mice in

previous studies.

Such species differences in CO-Hb association/dissociation

kinetics may at least partly explain why human trials of inhaled

CO have been less successful than pre-clinical models. In one trial

of healthy volunteers, 500 ppm CO for 1 hour failed to attenuate

LPS-induced systemic inflammation [13], but this was associated

with blood COHb levels of only 7%, well below that expected in

rodents with similar exposure times. For comparison, in the

current study 50 ppm CO for 24 hours, which showed variable

efficacy, induced a similar COHb of 7.661.1% (n = 3). Consistent

with such speculation, a study in endotoxin infused pigs

demonstrated that when CO was administered to produce a

blood COHb concentration of 5% (which the investigators used

specifically as a non-toxic dose), there was no beneficial effect to

attenuate inflammation [12]. The precise concentrations of CO
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within the tissue necessary to exert cytoprotective effects are

unclear, and the relationship between blood COHb and tissue

concentration of CO is highly complicated [39]. If blood COHb

levels indeed reflect the amount of CO delivered to peripheral

tissues, it is possible that inhaled CO would only be efficacious in

humans once COHb reaches ‘close to toxic’ levels comparable to

those achieved in rodent studies (e.g. 15–30%).

In summary, the current data support the concept that inhaled

CO is capable of reducing inflammation to a moderate degree in a

mouse model of relatively slowly progressing pulmonary inflam-

mation/barrier dysfunction induced by a low dose of intratracheal

LPS. In an attempt to explore the potential therapeutic

applicability of inhaled CO, we determined 100 ppm CO to be

efficacious and with few obvious side-effects. However, even this

dose seemingly led to enhanced pulmonary epithelial/endothelial

permeability. It remains possible that lower doses of CO,

administered in a more chronic and/or intermittent manner,

may have some therapeutic benefit for pulmonary disorders,

although our data indicate that species differences in COHb

dissociation/association kinetics make extrapolation from previous

pre-clinical studies to human therapies difficult, and must be

carefully considered when designing clinical trials. Overall, our

data suggest a word of caution against the use of inhaled CO for

the clinical treatment of pulmonary inflammatory diseases, until

such complexities are better understood.
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