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Although platinum nanocrystals have been considered as potential electrocatalysts for methanol oxidation reaction (MOR) in fuel
cells, the large-scale practical implementation has been stagnated by their limited abundance, easy poisoning, and low durability.
Here, grain boundary-enriched platinum (GB-Pt) scaffolds are produced in large scale via facilely reducing fast cryomediated
dynamic equilibrium hydrolysates of platinum salts. Such plentiful platinum grain boundaries are originated from the fast
fusion of short platinum nanowires during reduction of the individually and homogeneously dispersed platinum intermediates.
These grain boundaries can provide abundant active sites to efficiently catalyze MOR and meanwhile enable to oxidize the
adsorbed poisonous CO during the electrocatalytic process. As a consequence, the as-synthesized GB-Pt scaffolds exhibit an
impressively high mass activity of 1027.1mAmgPt

−1 for MOR, much higher than that of commercial Pt/C (345.2mAmgPt
−1), as

well as good stability up to 5000 cycles. We are confident that this synthetic protocol can be further extended to synthesize
various grain boundary-enriched metal scaffolds with broad applications in catalysis.
1. Introduction

Direct methanol fuel cells (DMFCs) have been demonstrated
as one of the most promising power sources for electronic
mobile devices and electric vehicles due to their ultrahigh
energy densities and low pollution [1–3]. However, their
wide applications have stagnated owing to the notoriously
sluggish kinetics of methanol oxidation reaction (MOR) at
the anode [4–8]. Thus, it is inevitable to develop high active
precious metal electrocatalysts like platinum (Pt) to reduce
the energy barriers of MOR [9–11]. From the perspective
of Pt atomic efficiency [12], the precisely controlled syn-
thesis of Pt nanocrystals such as Pt irregular nanoparticles
[13, 14], nanowires [15–18], and nanorods [19] is highly
desirable since they have inherent anisotropic morphologies
with abundant low-coordinated surface atoms [20, 21],
enabling to slow down the ripening process and increase
the electrocatalytic activities for methanol oxidation.
Very recently, it is demonstrated that Pt nanocrystals
with twin defects or dislocations have shown unique electro-
catalytic behaviors for methanol oxidation, differentiating
from coarsely gained grains, single crystals, or particles
[21–23], since Pt atoms close to defects have decreased the
number of neighbors in the first coordination shell, and are
favorable to forcefully adsorb the reactants and catalyze
related bond-breaking reactions during the catalytic process
[24, 25]. Thus, the emergence of abundant defects, disloca-
tions, or grain boundaries not only reduce the activation
energy for methanol oxidation but also afford abundant
catalytic sites for the oxidation of the adsorbed CO interme-
diate, significantly improving their stabilities [26, 27].
Hence, there is great interest in Pt nanocrystals with a high
density of grain boundaries for electrocatalytic MOR [20, 26].
Unfortunately, to date, it remains a big challenge to synthe-
size grain boundary-enriched Pt nanocrystals via a facile
and cost-efficient approach [28, 29].
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Figure 1: Schematic illustration of the synthesis of 3D GB-Pt scaffolds. The procedure for preparing 3D GB-Pt scaffolds involves two steps:
(1) fast cryogenic treatment of the (NH4)2PtCl6 solution to produce fast cryogenic hydrolysates; (2) hydrogen reduction of the obtained fast
cryogenic hydrolysates.
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Here, 3D grain boundary-enriched Pt scaffolds (3D
GB-Pt scaffolds) are facilely produced via reducing fast
cryogenic hydrolysates of ammonium hexachloroplatinate
((NH4)2PtCl6) aqueous solution. These grain boundaries
are originated from the rapid coalescence of short Pt
nanowires (~13.2 nm) during reduction of the individually
and homogeneously dispersed platinum hydrolysates.
These grain boundaries can provide abundant active sites
to efficiently catalyze MOR and meanwhile enable to oxi-
dize the adsorbed poisonous CO during the electrocatalytic
process. Coupled to the 3D interconnected networks, both
mass transport and electron transfer during MOR are fast
in 3D GB-Pt scaffolds. As a consequence, the as-synthesized
3D GB-Pt scaffolds show an ultrahigh mass activity of
1027.1mAmgPt

−1 for MOR, much higher than that of com-
mercial Pt/C (345.2mAmgPt

−1), and long-term durability
up to 5000 cycles (only 9.8% loss of the initial activity).

2. Results

2.1. Preparation of 3D GB-Pt Scaffolds. As illustrated in
Figure 1 and Figure S1, 3D GB-Pt scaffolds were synthesized
through reduction of fast cryogenic hydrolysates of platinum
salts in aqueous solution. Specifically, (NH4)2PtCl6 (5mg)
was dissolved in 10ml deionized water, forming a pale-
yellow solution. After standing for 10 h, the hydrolysis
of (NH4)2PtCl6 reaches a dynamic equilibrium as
follows [30, 31]:

2NH+
4 + PtCl6½ �2− + nH2O⇋2NH+

4 + PtCl6−n OHð Þn
� �2− + nCl− + nH+

ð1Þ

where the hydrolysis equilibrium could be adjusted via
tuning the pH values and the concentration of Cl− during
the hydrolysis process (Figure S2). After fast cryogenic
treatment (the treatment temperature is -196°C), a yellow
foam with equilibrium hydrated [PtCl6−n(OH)n]

2−, NH4
+,

Cl−, and nonhydrolytic [PtCl6]
2− was formed. Then, the

foam was reduced at 200°C under a mixed gas of H2 and
Ar with a v/v ratio of 1 : 9 for 2 h, affording 3D GB-Pt
scaffolds. In contrast, Pt rods were generated through
reduction of the slow cryogenic hydrolysates, since
hydrolytic equilibrium of (NH4)2PtCl6 went reversely back
during the slow cryogenic process.

2.2. Effect of Fast Dynamic Equilibrium Hydrolysates to
Guide 3D GB-Pt Scaffold Formation. To identify the
dynamic equilibrium hydrolysates of (NH4)2PtCl6 during
our fast cryogenic treatment, UV-vis absorption measure-
ment was conducted owing to its high sensitivity to
ligand-to-metal (Cl−➜Pt) charge transfer of [PtCl6]

2− and
[PtCl6−n(OH)n]

2− complexes [32, 33]. In principle, by
adjusting the pH values of (NH4)2PtCl6 solution from 0
to 12, the different dynamic equilibriums could be achieved,
as demonstrated by their UV-vis absorption spectra with
different absorbance intensities at ~262nm (Figure 2(a)),
which were originated from the charge transfer involving
orbitals with Cl ligand π-character [30, 33]. Notably, while
adjusting the pH value to 14, all the (NH4)2PtCl6 was con-
versed to [Pt(OH)6]

2−, Cl−, and NH4
+, where the hydro-

lytic equilibrium was completely broken [34]. Through
fast cryogenic treatment, the hydrolysates at the different
dynamic equilibrium states could be well maintained.
This could be clearly demonstrated via their UV-vis
absorption spectra (Figure 2(b)). On the contrary,
through slow cryogenic treatment (the treatment temper-
ature is -5°C), all the adsorption bands of the hydroly-
sates at the different dynamic equilibrium states showed
the similar absorption intensities (Figure 2(c)). It is suggested
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Figure 2: Detailed structural characterizations of fast and slow cryogenic hydrolysates. (a) UV-vis absorption spectra of (NH4)2PtCl6 aqueous
solutions (0.1mgml-1) with different pH values (from 0 to 14), clearly indicating that the [PtCl6]

2- ion undergoes deep hydrolysis with
increasing pH values. (b, c) UV-vis adsorption spectra of fast cryoequilibrium hydrolysates (b) and slow cryogenic hydrolysates (c)
obtained from the (NH4)2PtCl6 solution with different pH values (from 0 to 14), showing that the hydrolysates at the different dynamic
equilibrium states could be well maintained through fast cryogenic treatment. (d) XRD patterns of fast cryoequilibrium hydrolysates and
slow cryogenic hydrolysates confirm the existence of NH4Cl in the obtained fast cryoequilibrium hydrolysates.
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that the different levels of hydrolysate [PtCl6−n(OH)n]
2−

were recrystallized to (NH4)2PtCl6 during our slow cryo-
genic process.

To further evaluate the crystalline phases of fast cryo-
genic intermediates, X-ray diffraction (XRD) measurement
was conducted and is shown in Figure 2(d). Interestingly,
in the case of fast cryogenic intermediates, except for the
characterization peaks of (NH4)2PtCl6, there are four addi-
tional XRD peaks detected at 22.9°, 32.6°, 46.9°, and 58.3°

(marked with blue diamonds in Figure 2(d)), indexed to
(100), (110), (200), and (211) planes of NH4Cl (JCPDS no.
72-2378), respectively. The typical TEM (Figure S3a-f) and
elemental mapping images (shown in Figure S4) reveal that
the product NH4Cl behaves like a matrix to accommodate
the homogeneous dispersion of the fast cryogenic Pt-
containing intermediates with sizes of 3-5 nm. Hence,
through initial hydrogen reduction treatment, numerous
individual Pt nanocrystalline structures could be produced,
derived from Pt-containing intermediates. Meanwhile,
NH4Cl would be gradually decomposed and leave gaps
between the Pt nanocrystalline structures. With further
increase of the reduction time, such gaps allow the infusion
between adjacent Pt nanocrystalline structures, generating
grain boundary-enriched Pt scaffolds as demonstrated in
Figure 3 and Figures S5 and S6. The typical TEM images
(Figure 3(b)–3(e) and Figure S7) clearly disclose that these
scaffolds are constructed from short Pt crystalline wires
with average lengths of ~13 nm and diameters of ~4.2 nm.
HRTEM images (Figures 3(d) and 3(e) and Figure S8) show
clearly the grain boundaries between two short Pt wires and
an obvious interlayer spacing of 0.223 nm, corresponding to
d(111) of Pt [35, 36]. In contrast, different levels of
hydrolysate [PtCl6−n(OH)n]

2− and Cl− were recrystallized to
single-crystalline (NH4)2PtCl6 during the slow cryogenic
treatment, without the detection of equilibrium products of
the hydrolysis (Figure 2(d) and Figure S9). After hydrogen
reduction treatments of slow cryogenic intermediates, only
Pt rods were obtained (Figures S10 and S11). This may be
ascribed to the low level of NH4Cl in the slow cryogenic
intermediates, which are unable to prevent the fast growth
of big Pt crystalline structures. Moreover, pH values of the
(NH4)2PtCl6 solution also affect the formation of 3D GB-Pt
scaffolds. As shown in Figures S12 and S13, while the pH
value is 2 and 7, the resultant GB-Pt scaffolds show
interconnected 3D networks. As the pH value is 0, all the
nanowires or particles are strongly aggregated, owing to the
less amount of the hydrolysis product NH4Cl, which cannot
efficiently prevent the aggregation during reduction
process. In contrast, as the pH value arrives to 12 and 14,
all the Pt nanocrystalline structures are separated, without
formation of good networks. This should be ascribed to
the excessive hydrolysis product NH4Cl after fast
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Figure 3: Morphological and structural characterizations of 3D GB-Pt scaffolds. (a) FESEM image of 3D GB-Pt scaffolds. (b, c) TEM images
of 3D GB-Pt scaffolds with different magnifications. (d, e) HRTEM images of 3D GB-Pt scaffolds, exhibiting clear grain boundaries
and d-spacing values of 0.223 nm (Pt (111) lattices). The grain boundaries are marked with red lines in (d) and (e). (f) SAED
patterns of 3D GB-Pt scaffolds.
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cryogenic treatment, which prevents the infusion between
the formed Pt nanocrystalline structures during the
reduction process. These results manifest that the
appropriate amount of NH4Cl plays a key role to the
formation of 3D grain boundary-enriched Pt scaffolds. To
further confirm this hypothesis, two chloroplatinates
without ammonium (Na2PtCl6 and K2PtCl6) were selected
to substitute the platinum precursor (NH4)2PtCl6 during
our fabrication processes. As shown in Figure S14a-c, only
Pt nanoparticles were generated after reduction of the fast
cryoequilibrium hydrolysates of K2PtCl6. If we deliberately
added an amount of NH4Cl into the K2PtCl6 system, 3D Pt
scaffolds could be formed again (Figure S14d-f and
Figure S15). This phenomenon appears again as Na2PtCl6
was used as the Pt precursor (Figures S16 and S17).
Therefore, the presence of a moderate amount of NH4Cl is
the essence of the production of 3D grain boundary-
enriched Pt scaffolds. In this manner, various grain
boundary-enriched metal (e.g., Pd) scaffolds could be
fabricated via our fast cryogenic treatment with the presence
of a NH4Cl additive, and the detailed characterizations of
3D GB-Pd scaffolds are shown in the Supplementary
Materials (Figure S18-S21).

It should be noted that the grain boundary density of the
sample can bewell controlled through tuning of the hydrolysis
equilibrium by adjusting the concentrations of (NH4)2PtCl6
solution before fast cryogenic treatment. As shown in
Figure S22, a higher concentration of (NH4)2PtCl6 leads
to an increase of the length of Pt wires. Based on the
TEM analysis, we quantitatively measured the average Pt
grain length of the GB-Pt scaffolds. It is shown that the
average grain length of GB-Pt scaffolds-5 is only 13.2 nm (the
grain boundary density of 75.9 μm−1), which is the highest
grain boundary density among all the GB-Pt scaffolds
samples. (For details, see the Supplementary Materials.) In
this manner, the grain boundary density of 3D GB-Pd
scaffolds was 64.1μm−1 (Figure S23).

2.3. Structural and Compositional Analysis of 3D GB-Pt
Scaffolds. To gain further insight into the crystalline proper-
ties of 3D GB-Pt scaffolds, XRD, XPS, and nitrogen adsorp-
tion/desorption isotherm were carried out. As revealed in
Figure 4(a) and Figures S24 and S25, in the case of 3D GB-
Pt scaffolds, there are three prominent XRD peaks at 39.8°,
46.2°, and 67.7°, corresponding to the (111), (200), and
(220) planes of face-centered-cubic (fcc) platinum (JCPDS
no. 87-0647) [37], respectively, in good accordance with the
above HRTEM and SAED analyses. The XPS survey
demonstrates that there are only two main species of Pt and
O detected in our 3D GB-Pt scaffolds, without other
impurities (Figure 4(b) and Figures S26 and S27). N2
adsorption-desorption data indicates a high specific surface
area of 50.6m2 g−1, much higher than that of the Pt rods
(21.1m2 g−1) sample (Figure 4(c)).
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adsorption/desorption isotherm of 3D GB-Pt scaffolds, Pt rods, and Pt/C.

5Research
2.4. Electrocatalytic Properties of 3D GB-Pt Scaffolds for
Methanol Oxidation. The electrocatalytic activities of 3D
GB-Pt scaffolds for MOR were investigated directly via
cyclic voltammograms (CVs) in an electrolyte of 0.5M
H2SO4 and 1M methanol. As displayed in Figure 5(a)
and Figure S28, a high electrochemically active surface
area (ECSA) value of 74.8m2 gPt

−1 is obtained in the
case of GB-Pt scaffolds, much higher than in Pt rods
(26.9m2 gPt

−1) and Pt/C (35.9m2 gPt
−1) (Table S1).

Accurately, as shown in Figures 5(b) and 5(c), an
ultrahigh peak with current density of 203.8mAcm−2 is
achieved, corresponding to 1027.1mAmgPt

−1 for 3D GB-
Pt scaffolds in mass activity, much higher than that of
the Pt/C sample (345.2mAmgPt

−1) (Figure S29). Moreover,
the onset potential of 3D GB-Pt scaffolds is only 217mV,
much lower than those of Pt rods (257mV) and the Pt/C
catalyst (356mV). Associated with the above TEM and
HRTEM analyses, such high electrocatalytic activities of
3D GB-Pt scaffolds should be attributed to the large
presence of grain boundaries of Pt. This can be further
demonstrated by the different 3D GB-Pt scaffolds with
tunable intensities of grain boundaries, in which their
activities are linearly proportional to the densities of grain
boundaries of Pt (Figure 5(d)). The electrocatalytic activity
of 3D GB-Pt scaffolds obtained at different pH values was
also systematically investigated (Figure S30). Among them,
3D GB-Pt scaffolds-pH(7) exhibit a very high value of
1027.1mAmgPt

−1, much higher than other samples
(368.9, 586.9, 485.6, and 166.6mAmgPt

−1 for 3D GB-Pt
scaffolds-pH(0), (2), (12), and (14), respectively).

To further investigate the electrocatalytic stability of
3D GB-Pt scaffolds for MOR, we conducted a stability test
in 0.5M H2SO4 and 1M methanol. Remarkably, even after
5000 cycles, there is only 9.8% loss of the initial activity
for 3D GB-Pt scaffolds (Figure 5(e)). This value is much
lower than that of the Pt/C catalyst (66.5% loss of the
activity), clearly confirming the excellent durability of 3D
GB-Pt scaffolds for electrocatalytic MOR. To gain insight
into the reason of the excellent durability performance of
3D GB-Pt scaffolds, CO-stripping measurement was con-
ducted [38]. As demonstrated in Figure S31, the peak
potential of 3D GB-Pt scaffolds is only 0.54V (vs. SCE),
much lower than that of Pt/C (0.61V vs. SCE),
suggesting that 3D GB-Pt scaffolds have an enhanced
antipoisoning (CO) property [39]. This should ascribe to
the presence of large Pt grain boundaries that can
efficiently oxidize the adsorbed COads [40]. Furthermore,
after durability measurement, both the configurations and
grain boundaries of 3D GB-Pt scaffolds were well
preserved (Figure S32). The electrochemical impedance
spectroscopy (EIS) of the 3D GB-Pt scaffolds, Pt rods,
and Pt/C electrocatalysts was carried out to investigate the
kinetics of methanol oxidation. As shown in Figures S33
and S34, typical methanol oxidation behaviors catalyzed by
the Pt-based catalyst are observed at a series of potentials
from 0.1 to 1.0V [11]. Among them, 3D GB-Pt scaffolds
have a much smaller semicircle diameter than Pt rods and
Pt/C electrocatalysts at 0.4V (Figure 5(f)), demonstrating
the high methanol oxidation rate of 3D GB-Pt scaffolds
[41], in accordance with the electrocatalytic MOR results
(Figure 5(b)). In addition, 3D GB-Pd scaffolds also exhibit
remarkably high activity of 1117.9mAmgPd

−1 (Figure S35)
and good stability (9.0% loss of the initial activity after 5000
CV cycles) towards MOR (Figure S36).

3. Discussion

In summary, grain boundary-enriched platinum scaffolds
were produced in large scale via simply reducing fast cryome-
diated dynamic equilibrium hydrolysates of (NH4)2PtCl6.
Such plentiful platinum grain boundaries are ascribed to
the fast fusion of short platinum nanowires during reduc-
tion of the individually and homogeneously dispersed
platinum-containing intermediates in the NH4Cl matrix,
which is the essence of the production of grain
boundary-enriched Pt scaffolds. These grain boundaries
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can provide abundant active sites to efficiently catalyze
methanol oxidation, with an ultrahigh mass activity of
1027.1mAmgPt

−1 for MOR, much higher than that of
commercial Pt/C (345.2mAmgPt

−1). Moreover, the mass
activities of 3D GB-Pt scaffolds are linearly proportional
to the densities of grain boundaries of Pt. And these grain
boundaries enable oxidization of the adsorbed poisonous
CO during the electrocatalytic process, leading to a long
stability up to 5000 cycles. We are confident that such a
simple synthetic protocol can be extended to produce var-
ious grain boundary-enriched metal scaffolds with broad
applications for catalysis and sensors.

4. Materials and Methods

4.1. Materials.Ammonium hexachloroplatinate ((NH4)2PtCl6),
potassium hexachloroplatinate (K2PtCl6), sodium hexa-
chloroplatinate (Na2PtCl6), and ammonium hexachloro-
palladate ((NH4)2PdCl6) were purchased from Alfa Aesar.
Ammonium chloride and sodium chloride were purchased
from Beijing Innochem Technology Co., Ltd.

4.2. Synthesis of 3D GB-Pt Scaffolds. For the synthesis of 3D
GB-Pt scaffolds, a certain amount of (NH4)2PtCl6 was ini-
tially added in DI water (10ml) to form a pale-yellow solu-
tion. The solution was stirred for 60min and then frozen at
-196°C in liquid nitrogen for 30min; after that, the obtained
frozen product was further dried under vacuum conditions at
-60°C for 48h, and a three-dimensional yellow foam was
obtained. The foam was further reduced at 200°C for 2 h
under 10% H2/Ar gas, generating 3D GB-Pt scaffolds. 3D
GB-Pt scaffolds-X were fabricated, where X represents the
amount of (NH4)2PtCl6 in the 10ml solution before fast
cryogenic treatment. 3D GB-Pt scaffolds-pH(Y) were also
fabricated, where Y represents the pH value of the
(NH4)2PtCl6 solution before fast cryogenic treatment.
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4.3. Synthesis of Pt Rods. The synthetic procedure of Pt
rods was similar to that of 3D GB-Pt scaffolds except that
the fast cryogenic treatment was replaced by slow cryo-
genic treatment (the freezing temperature changed form
-196°C to -5°C).

4.4. Synthesis of 3D GB-Pd Scaffolds. The synthetic procedure
of 3D GB-Pd scaffolds was similar to that of 3D GB-Pt
scaffolds except that the (NH4)2PtCl6 was replaced by
(NH4)2PdCl6, and 5mg of NH4Cl should added into the
(NH4)2PdCl6 solution before fast cryogenic treatment.

4.5. Characterization Methods. Nanostructures and mor-
phologies of all the samples were carried out through
FESEM (JEOL-7500) and HRTEM (JEOL, NEM-2100F).
Nitrogen sorption isotherms and BET surface area were
measured with Quadrasorb at 77K. The powder X-ray
diffraction patterns were conducted by a Rigaku
D/max2500PC diffractometer with a Cu Kα radiation
over the range 35-80°. XPS data and chemical bonding
nature of Pt and O elements were acquired using Thermo
Scientific ESCALAB 250Xi X-ray photoelectron spectros-
copy (XPS).

4.6. Electrocatalytic Measurements. Electrocatalytic proper-
ties of our samples were investigated by using an AutoLab
workstation in a three-electrode setup cell. Typically, 3mg
of sample and 80 μl of 5wt% Nafion solution was dispersed
in 1ml of 4 : 1 v/v deionized water/ethanol by sonication,
forming a black dispersion. Next, 5μl of the as-prepared dis-
persion was casted onto a glass carbon electrode 3mm in
diameter as the working electrode. Meanwhile, a saturated
calomel electrode (SCE) was applied as the counter electrode
and a Pt sheet was applied as the reference electrode. The typ-
ical electrochemically active surface area (ECSA) measure-
ment of our samples was tested in nitrogen-saturated 0.5M
H2SO4 electrolyte at 10mVs−1. The MOR electrocatalytic
activity was recorded in 0.5M H2SO4 and 1M methanol
electrolyte at 20mVs−1. For Pd-based catalysts, the MOR
electrocatalytic activity was recorded in 1M KOH and 1M
methanol electrolyte. The chronoamperometry (CA) test
was conducted for a period of 1 h at room temperature. The
electrochemical impedance spectra (EIS) were recorded at
the frequency range from 100000Hz to 0.01Hz with an
amplitude of 10mV.
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Supplementary Materials

Figure S1: photograph of the synthesis process of 3D GB-Pt
scaffolds with (a) 0.3mg/ml, (b) 0.5mg/ml, (c) 1mg/ml, (d)
2mg/ml, and (e) 3mg/ml of (NH4)2PtCl6 solution as the Pt
precursor. Figure S2: changes of the electronic absorption
spectrum of the (NH4)2PtCl6 with a different amount of
NaCl, clearly indicating that the [PtCl6]

2− ion undergoes
deep hydrolysis with less amount of NaCl. Figure S3: mor-
phological characterizations of the fast cryoequilibrium
hydrolysates. (a–c) TEM and HRTEM images of the fast
cryoequilibrium hydrolysates (pH(2)) with an inset image
of SAED patterns. (d–f) TEM and HRTEM images of the fast
cryoequilibrium hydrolysates (pH(7)) with an inset image of
SAED patterns. (g–i) TEM and HRTEM images of the fast
cryoequilibrium hydrolysates (pH(12)) with an inset image
of SAED patterns. Figure S4: (a, e) STEM images and (b–d
and f–h) corresponding elemental mapping images of the fast
cryoequilibrium hydrolysates. Figure S5: FESEM images of
3D GB-Pt scaffolds-X. (a, b) GB-Pt scaffolds-30. (c, d) GB-
Pt scaffolds-20. (e, f) GB-Pt scaffolds-10. (g, h) GB-Pt
scaffolds-5. (i, j) GB-Pt scaffolds-3. Figure S6: SEM images
of the products obtained by hydrogen reduction of fast
cryoequilibrium hydrolysate intermediates with different
time: (a) 0min, (b) 40min, (c) 80min, and (d) 120min.
Figure S7: TEM images of 3D GB-Pt scaffolds-X. (a, b)
GB-Pt scaffolds-30. (c, d) GB-Pt scaffolds-20. (e, f) GB-Pt
scaffolds-10. (g, h) GB-Pt scaffolds-5. (i, j) GB-Pt scaffolds-3.
Figure S8: (a–d) HRTEM images of 3D GB-Pt scaffolds
with marked grain boundaries. Figure S9: morphological
characterizations of slow cryogenic hydrolysates. (a–c)
TEM and HRTEM images of the slow cryoequilibrium
hydrolysates (pH(7)). (d–f) TEM and HRTEM images of
the slow cryoequilibrium hydrolysates (pH(2)). Figure S10:
(a–c) SEM images of Pt rods. Figure S11: (a–c) TEM images
of Pt rods. Figure S12: FESEM images of GB-Pt scaffolds
derived from hydrogen reduction of fast cryoequilibrium
hydrolysates with different pH values. (a–c) 3D GB-Pt
scaffolds-pH(0). (d–f) 3D GB-Pt scaffolds-pH(2). (g–i) 3D
GB-Pt scaffolds-pH(7). (j–l) 3D GB-Pt scaffolds-pH(12).
(m–o) 3D GB-Pt scaffolds-pH(14). Figure S13: TEM images
of GB-Pt scaffolds derived from hydrogen reduction of fast
cryoequilibrium hydrolysates with different pH values.
(a–c) 3D GB-Pt scaffolds-pH(0). (d–f) 3D GB-Pt scaf-
folds-pH(2). (g–i) 3D GB-Pt scaffolds-pH(7). (j–l) 3D GB-
Pt scaffolds-pH(12). (m–o) 3D GB-Pt scaffolds-pH(14).
Figure S14: SEM images of reduced fast cryoequilibrium
hydrolysates of K2PtCl6 without and with additional
NH4Cl. (a-c) SEM images of reduced fast cryoequilibrium
hydrolysates of K2PtCl6 solution. (d–f) SEM images of
reduced fast cryoequilibrium hydrolysates of K2PtCl6 and
NH4Cl solution. Figure S15: (a–c) TEM images of reduced
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fast cryoequilibrium hydrolysates of K2PtCl6 with addi-
tional NH4Cl, with marked grain boundaries in (c). Figure
S16: SEM images of reduced fast cryoequilibrium hydroly-
sates of Na2PtCl6 without and with additional NH4Cl.
(a–c) SEM images of reduced fast cryoequilibrium hydro-
lysates of Na2PtCl6 solution. (d–f) SEM images of reduced
fast cryoequilibrium hydrolysates of Na2PtCl6 and NH4Cl
solution. Figure S17: (a–c) TEM images of reduced fast
cryoequilibrium hydrolysates of Na2PtCl6 with additional
NH4Cl, with marked grain boundaries in (c). Figure S18:
FESEM and TEM images of 3D GB-Pd scaffolds. (a, b)
FESEM image of 3D GB-Pd scaffolds with different magni-
fications. (c, d) TEM images of 3D GB-Pd scaffolds with dif-
ferent magnifications. (e) HRTEM images of 3D GB-Pd
scaffolds, exhibiting d-spacing values of 0.234nm (Pd (111)
lattices). (f) SAED patterns of 3D GB-Pd scaffolds. Figure
S19: (a–d) HRTEM images of 3D GB-Pd scaffolds with
marked grain boundaries. Figure S20: XRD patterns of the
3D GB-Pd scaffolds and Pd/C. Figure S21: (a) nitrogen
adsorption/desorption isotherm of 3D GB-Pd scaffolds. (b)
Nitrogen adsorption/desorption isotherm of Pd/C. Figure
S22: grain length distribution of the 3D GB-Pt scaffolds.
(a–e) Grain length distribution of GB-Pt scaffolds-3, GB-
Pt scaffolds-5, GB-Pt scaffolds-10, GB-Pt scaffolds-20,
and GB-Pt scaffolds-30, respectively. (f) Average grain
length and grain boundary density of the 3D GB-Pt scaf-
folds. Figure S23: grain length distribution of the 3D
GB-Pd scaffolds. Figure S24: XRD patterns of the 3D
GB-Pt scaffolds. Figure S25: XRD patterns of the 3D GB-
Pt scaffolds prepared from different pH values of the
(NH4)2PtCl6 solution. Figure S26: XPS spectra of the 3D
GB-Pt scaffolds. Figure S27: Pt 4f spectra of the 3D GB-
Pt scaffolds, Pt rods, and Pt/C samples. Figure S28: cyclic
voltammetry curves of the 3D GB-Pt scaffolds in the
0.5M H2SO4 electrolyte at a sweep rate of 10mVs−1.
Figure S29: electrocatalytic MOR properties of (a) 3D
GB-Pt scaffolds and (b) Pt rods and Pt/C catalysts. Figure
S30: electrocatalytic MOR properties of the 3D GB-Pt
scaffolds-pH(0), (2), (7), (12), and (14). Figure S31: CO
tolerance of 3D GB-Pt scaffold and Pt/C catalyst
measurement by stripping voltammetry of adsorbed CO,
indicating that 3D GB-Pt scaffolds have enhanced antipoi-
soning (CO) property. Figure S32: (a) TEM and (b)
HRTEM images of 3D GB-Pt scaffolds after 5000 cycles.
Figure S33: Nyquist plots for the 3D GB-Pt scaffolds, Pt
rods, and Pt/C electrocatalysts. (a–c) Nyquist plots for
(a) 3D GB-Pt scaffolds, (b) Pt rods, and (c) Pt/C in elec-
trochemical methanol oxidation at different potentials.
(d) Nyquist plots of 3D GB-Pt scaffolds, Pt rods, and
Pt/C electrocatalysts for methanol oxidation at 0.4V.
Figure S34: (a–c) Nyquist plots of 3D GB-Pt scaffolds, Pt
rods, and Pt/C electrocatalysts for methanol oxidation
before and after stability test. Figure S35: (a, b) compara-
tive Pd specific activity and mass activity of 3D GB-Pd
scaffolds and Pd/C (10wt%) in 1M KOH and 1M metha-
nol electrolyte. Figure S36: CVs of 3D GB-Pd scaffolds
before and after 5000 cycles in 1M KOH and 1M metha-
nol electrolyte. Table S1: electrochemical surface area
(ECSA) of 3D GB-Pt scaffolds, Pt rods, and commercial
Pt/C electrocatalysts. (Supplementary Materials)
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