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Abstract

The aim of this work was to develop a novel phantom that supports the construction of highly

reproducible phantoms with arbitrary activity distributions for PET imaging. It could offer a

methodology for answering questions related to texture measurements in PET imaging. The

basic idea is to move a point source on a 3-D trajectory in the field of view, while continu-

ously acquiring data. The reconstruction results in a 3-D activity concentration map accord-

ing to the pathway of the point source. A 22Na calibration point source was attached to a

high precision robotic arm system, where the 3-D movement was software controlled. 3-D

activity distributions of a homogeneous cube, a sphere, a spherical shell and a heart shape

were simulated. These distributions were used to measure uniformity and to characterize

reproducibility. Two potential applications using the lesion simulation method are presented:

evaluation in changes of textural properties related to the position in the PET field of view;

scanner comparison based on visual and quantitative evaluation of texture features. A

lesion with volume of 50x50x50 mm3 can be simulated during approximately 1 hour. The

reproducibility of the movement was found to be >99%. The coefficients of variation of the

voxels within a simulated homogeneous cube was 2.34%. Based on 5 consecutive and

independent measurements of a 36 mm diameter hot sphere, the coefficient of variation of

the mean activity concentration was 0.68%. We obtained up to 18% differences within the

values of investigated textural indexes, when measuring a lesion in different radial positions

of the PET field of view. In comparison of two different human PET scanners the percentage

differences between heterogeneity parameters were in the range of 5–55%. After harmoniz-

ing the voxel sizes this range reduced to 2–16%. The general activity distributions provided

by the two different vendor show high similarity visually. For the demonstration of the flexibil-

ity of this method, the same pattern was also simulated on a small animal PET scanner

giving similar results, both quantitatively and visually. 3-D motion of a point source in the

PET field of view is capable to create an irregular shaped activity distribution with high

reproducibility.
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Introduction

Positron emission tomography (PET) integrated with computer tomography (CT) is capable

to quantitatively measure the distribution of a radioactive tracer with positron decay in the

human body. The measured distribution of radioactive nuclides can reflect biological proper-

ties due to the role of the labelled molecule. Therefore, PET is a non-invasive diagnostic tool

assessing staging, treatment selection, and patient follow-up. The possibility to extract infor-

mation from the reconstructed PET images is an inevitable trend and challenge, leading to per-

sonalized medicine. According to the aspiration of radiomics [1–5], not only the presence at a

certain location, volume and standardized uptake value (SUV) of a lesion can hold diagnostic

value, but also its texture and shape. The apparent texture of a lesion on the reconstructed

image is strongly but indefinably affected by noise, partial volume effect (PVE), and recon-

struction parameter settings [6–12]. On the other hand, the number of possible parameters to

measure textural properties of a lesion are practically unlimited [13], thus the significance of

potential candidates needs to be proven in a validation process [9,14]. Conventional methods

use various types of phantoms with known geometry and activity concentrations. Very few of

them have been constructed primarily to answer methodologic questions related to the mea-

surement of texture [15]. Plastic phantoms equipped with fillable compartments, such as the

NEMA IEC body phantom and the Jaszczak phantom, are commonly used in PET [16]. The

structures within these phantoms are typically limited to relatively simple geometrical objects

(spheres, rods, cylinders) which allows straightforward and reproducible preparation. How-

ever, the results from these measurements are not easily translated to express the system’s abil-

ity to measure texture in a realistic situation, since the compartments are limited to be filled

with uniform radioactivity distributions. In a previous study, our group proposed a so called

“revolver phantom” consisting of seven 2 ml syringes to mimic a heterogeneous activity uptake

[9]. This phantom preparation was more complex, but still utilizing a relatively simple geome-

try. A heterogeneous activity distribution can be produced using phantom structures made

from zeolite [17], however, the irregular activity distribution inside the zeolite cannot be con-

trolled [18]. Another phantom type is the 2-D printed phantom [19,20], where the radioactive

isotope is mixed with the printer ink. The method requires a careful calibration of the grey

scale image the activity concentration of the image that is actually printed. The methodology

can be extended to produce a volumetric phantom where multiple layers of 2-D printed sheets

are stacked together to form a 3-D volume [21]. This method can therefore be very time con-

suming (comparable to the half-life of 18F) if large and complex distributions are to be pro-

duced. 3-D printing technology can also be used to manufacture phantoms by incorporating

the radioactive tracer in the cellulose powder used in some rapid prototyping system [22]. The

short half-life of the most common PET isotope (18F) makes it difficult to perform comparative

studies without requiring re-printing of the phantom.

Carles et al. [23] reported on a heterogeneous phantom study dealing with the evaluation of

the complementarity of textural features and how feature values are effected by motion and

the segmentation method. The heterogeneous 18F-FDG distribution phantom in this study

was made from alginate. A comparison of PET images obtained at multiple research sites

(multi-center study) would require to reproduce this phantom at each site, raising the question

of reproducibility. Although the coefficient of variance (COV) was > 0.3, the level of heteroge-

neity for the evaluation textual features was determined primarily by the variance of voxel val-

ues, however, the heterogeneity of spatial pattern was not controlled. In contrast, PET raw

data manipulation is an elegant, but complex way to generate arbitrary activity distributions

[24]. It assumes the scanner list mode data structure and the scanner geometry is known,

which is not always the case. Similarly, if the scanner geometry is known with high accuracy
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and mathematical anthropomorphic models are available, the Geant4 application for tomogra-

phy (GATE) Monte Carlo simulation toolkit provide the possibility to generate realistic patient

images, including heterogeneous tumors [25]. However, including detailed modeling of key

components of a PET system (basic scanner geometry, scintillator material and the related

block structure, signal generation on the used photodetector and the applied signal processing)

results in long simulation times. Furthermore, to generate the most realistic synthetic data,

simulation of the scintillation light photon transport is essential, may result in computational

times that are excessively long. In addition, the raw data should be reconstructed with the ven-

dor specific algorithm. Although the generation of synthetic PET data is beneficial to an

improved understanding of the nature of textural characterization [26,27], simulations cannot

replace measurements on actual imaging systems.

The variability of radiomics features, due to the different scanner model, acquisition proto-

cols or reconstruction settings can hide the biological effect [12,28,29], especially in case of

inter-device or multicenter studies. Our aim was to develop a method to measure the inter-

scanner variability of textural feature measurements with high accuracy while facilitating com-

parisons of phantom studies across multiple sites. In this work we present a method to create

irregular 3-D activity distributions with high reproducibility based on a controlled movement

of a point source in the PET field of View (FOV).

Materials and methods

Source positioning system

Three linear stages (Zaber Technologies, T-LSM050A motorized stage, Fig 1) were mounted

on a plastic plane holder (arrow 1) and placed on the patient bed. Three linear actuators

(arrow 4) allow motion along the x, y and z axis independently. A 1.1MBq 22Na calibration

point source (Eckert Ziegler) (arrow 3) designed for National Electrical Manufacturers Associ-

ation (NEMA) performance tests was attached to the plastic rod (arrow 2) and moved within a

volume of the PET FOV with a given step size in each direction. The motion was controlled by

an in-house developed MatLab R2016b program. The speed of each linear stage was set to a

common value in order to minimize artefacts due to the differences in positioning time. The

assembled device and flow diagram of the measurement procedure are shown in Fig 1.

The point source was moved on a continuous pathway along a 3 dimensional cubic grid,

and stopped in each of the grid points. According to the expected phantom image, a 3 dimen-

sional time matrix assigns a stoppage or dwell time for each of the grid points (dwell time

matrix DTM). The relative dwell times during the scan are converted to relative activity con-

centrations on the reconstructed image. The values of DTM was defined either mathematically

Fig 1. Positioning system (A) and the flow diagram of the measurement procedure (B) The positioning system is

consist of a plastic holder (arrow 1), plastic rod (arrow 2), 22Na point source (arrow 3), and linear stages (arrow 4).

https://doi.org/10.1371/journal.pone.0207658.g001
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(spheres, spherical shell), created manually (heart shape), or extracted from real reconstructed

PET images. Different DTM’s were created and stored in a separate library. From the aspect of

the measurement procedure (e.g. to mimic any irregular or regular images) just the total acqui-

sition time will differ according to the imported DTM, whereas all other parameters were left

constant (e.g., step size, speed of the movement). The step size of the device was optimized

based on a set of acquisitions performed on the AnyScan PET/CT. During the experiment the

point source was moved at a given transaxial plane along different lines. The step length varied

from 4 to 10 mm and the dwell time was kept constant at 1 sec for each position.

Scanners

Two clinical PET/CT systems were used in this work: A Disovery MI (GE Healthcare)

equipped with digital Silicon Photomultiplier (SiPM) detectors and an AnyScan PET/CT

(Mediso Ltd.) with conventional Photomultiplier Tubes (PMTs). In addition, a nanoScan

PET/MRI (Mediso Ltd.) small animal scanner was also used in this study. Performance param-

eters of the systems relevant to this study are detailed in Table 1 [30,31].

Images were reconstructed without scatter and attenuation correction since all measure-

ments were performed with the point source in the air. The approximately 10% attenuation of

the 1cm3 cube was neglected.

Radiomics feature extraction

All image analysis was performed with the InterView Fusion Software (Mediso Ltd). The

reconstructed lesions were delineated using a 40% threshold of the maximum voxel value. No

post reconstruction processing was applied such as interpolation, filtering or other corrections.

First order statistics, like standard deviation, mean, max values, coefficient of variation (COV)

were calculated as well as higher order parameters based on grey level co-occurrence matrix

(Contrast, Correlation, Entropy, Homogeneity), grey level size-zone matrix (Low Grey-Level

Zone Emphasis (LGZE) and High Grey-level Zone Emphasis (HGZE)) and grey level run

length matrix (Short-Run Emphasis (SRE), Long-Run Emphasis (LRE) and Run Length Non-

Uniformity (RLNU)). The volumetric analyses were performed as a fully-connected 3-D vol-

ume, applying 64 bins discretization method [32]. In the case of the co-occurrence matrix,

only the closest neighbors were considered. The feature calculations match the benchmarks of

the Image Biomarker Standardization Initiative (IBSI) [13], with the exception of two termi-

nologies (Entropy called Joint Entropy, homogeneity called Inverse Difference by IBSI).

Table 1. Technical parameters and reconstruction settings.

Scanner Mediso AnyScan PET/CT Mediso nanoScan

PET/MRI

GE Discovery MI

default voxel size [mm] 4 0.4 2.73

reconstruction iteration 6 8 3

reconstruction subset 6 4 8

Point Spread Function (PSF) correction +/- + +

axial spatial resolution FWHM

at a given radial position

4.58mma

rad. pos. 10mm

0.91mm

rad. pos. 5mm

4.57mm

rad. pos. 10mm

Time of flight - - +

+ and—denotes the correction on or off
ameasured by the authors

https://doi.org/10.1371/journal.pone.0207658.t001
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Patient data

In addition to the phantom simulation, lesion image data were extracted from a human study.

The subject was included in the study reported in Ref [9]. This previous study has been

approved by the local ethics committee. The images of the human data were anonymized prior

to given to the authors of this study.

Reproducibility

To measure the reproducibility, 5 consecutive scans were acquired on the Mediso AnyScan

PET/CT. During each scan a hot sphere with 36mm diameter was simulated, positioned at the

center of a 48x48x48mm3 cube. The ratio of activity concentration between the hot sphere and

residual volume of the cube (background) was kept 3:1. Quantification of the reproducibility is

expressed as the coefficient of variation of the mean, max, min values both for the background

and for the hot sphere. The coefficient of variation was also calculated for the acquisition times

since the variance of the total time reflects the uncertainties in the movements of the position-

ing system.

Position dependency

Sampling frequency and spatial resolution of PET are not uniform across the field of view

(FOV). The textural distortion resulting from the positional dependency in the FOV was also

examined. An simulated 3-D heterogeneous lesion (size of 48x48x48 mm3) extracted from a

human image was measured at 4 different radial positions (0, 30, 50 and 100 mm off from the

center of FOV) on the Mediso AnyScan clinical PET/CT. The textural parameters and coeffi-

cient of variation were calculated after delineation of the simulated lesion by an isocontour

method. Both PSF corrected and non-corrected reconstructions were performed and

evaluated.

Scanner comparison

Textural characterization and scanner comparison were evaluated based on the measurement

of the same irregular texture activity distribution on Mediso AnyScan and GE Discovery MI.

Isocontour delineation was followed by the calculation of the textural parameters and coeffi-

cient of variation. Visual interpretation and quantitative comparison in terms of Entropy,

Homogeneity, Contrast, Correlation, COV were also performed [9].

Scale independence

To demonstrate the flexibility of the method a heterogeneous lesion was also simulated in a

nanoScan PET/MRI small animal system. In this case, the step size was reduced from 4mm to

1mm according to the difference in spatial resolutions (Table 1), the DTM matrix was kept

identical to the clinical scanner measurements.

Results

Proof of the concept

The step size optimization (varied from 4 to 10 mm, constant 1 sec dwell time) resulted in the

reconstructed transaxial image displayed on Fig 2A. Each line corresponds to a cross-section

of a plane with a given step size (A). The line created by the 4 mm step size resulted an intensity

profile of acceptable uniformity (Fig 2B). A smaller step size could improve the uniformity,

but at the cost of scanning smaller volume or extended scan time. Panel C shows a transaxial
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slice of a 3-D uniform cube (48x48x48mm) utilizing the selected 4mm step size. Placing a 20

ml spherical volume VOI within the center of the cube resulted in a 2.34% of COV of the voxel

values. This value is significantly lower than the uniformity value obtained with a standard IQ

phantom when measured according to the European Association of Nuclear Medicine FDG

PET/CT accreditation (EARL) guideline [33].

Based on the results shown on Fig 2, the 4 mm step size was selected. Different geometrical

objects were simulated with the positioning system. A sphere, a spherical shell, and a heart

shaped 3-D activity distributions were defined with the same dwell time (1 sec at inside the

given shape and zero sec out of it) but different positioning maps in the same volume

(48x48x48mm3 cube). Representative images are shown in Fig 3.

Fig 4A shows the DTM for a cube where the dwell time was linearly increased from the sur-

face to the center. Fig 4B shows the corresponding reconstructed image and a line profile

through the image (Fig 4C). We found that the dwell time of the point source from 0 to 6 sec-

onds generated 0 to 14 kBq/ml activity concentrations for the AnyScan PET/CT.

Reproducibility

The values of the coefficient of variation of mean, max, min value of 5 consecutive measure-

ments of a 36 mm diameter sphere are shown in Table 2. In addition, the COV of the time

required to complete the source positioning was also measured as a measure of movement

precision.

Fig 2. Step size optimization results. Lines having various step size (4, 6, 8, 10 mm) of the point source (A), derived

line profiles (B) and transaxial slice of a 3-D homogeneous cube using 4mm step size between the point source

movements (C).

https://doi.org/10.1371/journal.pone.0207658.g002

Fig 3. Demonstrative axial slices of 3 dimensional images: hot sphere (A), spherical shell (B), heart (C).

https://doi.org/10.1371/journal.pone.0207658.g003
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Application 1. Position dependence

The simulated 3-D heterogeneous lesion was used to analyze the position dependence of the

AnyScan PET/CT. The related representative image slice is shown in Fig 5. Textural parame-

ters and the coefficient of variation of the voxel values within the VOI were calculated from

the acquisition of 4 different positions, where the same 3-D patterns was simulated at each

location. The reconstructions were performed with and without PSF correction. The calculated

values are summarized in Table 3.

Application 2. Scanner comparison

In the comparison of the texture imaging capability of different scanners, the simulated 3-D

heterogeneous lesion was acquired with the GE Discovery MI, the Mediso AnyScan PET/CT

and the Mediso nanoScan small animal PET/MRI. For the animal system the step size was

reduced from 4 mm to 1 mm. All images were reconstructed with the software provided by the

manufacturer. For visual comparison, a representative transaxial slice of the reconstructed

images acquired on the three systems are shown in Fig 5.

The same axial slices of the reconstructed images presented on Fig 6, but the voxel sizes

were set correspondingly to the spatial resolution of the given scanner (4, 4 and 1.2 mm for the

human and the small animal scanners respectively), while the same spline interpolation was

applied.

The quantitative comparison of the heterogeneity parameters between scanners are sum-

marized in Tables 4 and 5.

Discussion

While many plastic phantoms are available for the standardization and evaluation of PET

imaging performance and quality assessment with good reproducibility and precise geometri-

cal determination, a method to mimic an arbitrary heterogeneous activity distribution with

similar reliability and reproducibility has not yet been developed. Recent attempts include the

use of zeolite minerals [8–9], or sources made from alginate [23] as well as various printing

technologies [10–13]. These methods still have limitations, either in the complexity in produc-

ing the source distribution or having inadequate repeatability and reproducibility properties.

Fig 4. Activity concentration as the function of dwell time. The dwell time matrix in sec (A), the corresponding

activity distribution on the reconstructed PET image (B) and the line profile through the center of the image (C).

https://doi.org/10.1371/journal.pone.0207658.g004

Table 2. Coefficient of variation of mean, max, min values and the total positioning time of 5 independent measurement of the phantom imitating 36 mm diameter

sphere.

Coefficient of Variation [%] of

Meanhot Meanbg Maxhot Maxbg Minhot Minbg Total positioning time

0.68 3.65 1.57 2.23 1.52 3.65 0.038

https://doi.org/10.1371/journal.pone.0207658.t002
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In this work we present a novel method which can produce arbitrary irregular shaped distribu-

tions of activity concentrations in the field of view of a PET scanner by using a point source

that is moved by a precise robotic system. The point source application and the use of a robotic

positioning system has been proposed previously although this was used to measure and ana-

lyze scanner spatial resolution without continuously moving the source during the acquisition

[34–37].

A 22Na point source was used in all of our measurements. Although 22Na is not used in clin-

ical PET studies, it has several properties that makes it suitable for this particular application

and is a good surrogate for clinical PET isotopes such as 18F. An accurately calibrated sealed

long-lived source as the one used in this work makes the source readily available without the

need cumbersome preparation and calibration procedures. The long half-life (2.602 years)

allows a distribution to be generated without a significant change in activity during the mea-

surement. The average positron range from a 22Na source embedded in an acrylic cube is also

very close to 0.66 mm the range of 18F positrons in water [36].

The 22Na calibration point source was attached to the ensemble of three linear stages and

was moved in a 3-D trajectory controlled by Matlab code. Reconstructing the raw data

acquired continuously during the motion of the point source resulted in an image of the 3-D

activity concentration. The differences of activity concentrations along the trajectory are

related to the varied dwell time of the point source. First, using a constant dwell time at each

position, the optimization of the step size was performed. Different step size of positioning

forms separate dots or connected lines as shown in Fig 2A and 2B. The optimal step sizes have

two benefits: 1) the positioning device can generate homogeneous activity distributions in the

image; 2) the larger step size holds the potential to create larger volume of the expected distri-

bution during equivalent time. An axial slice of a homogeneous 3-D cube stepped by the

selected 4 mm step size is shown in Fig 2C. The coefficient of variation of the voxels within the

Fig 5. Representative transaxial slices of the same imitated lesion: measured and reconstructed by GE Discovery

MI PET/CT (A), Mediso AnyScan PET/CT (B), Mediso nanoScan PET/MRI (C).

https://doi.org/10.1371/journal.pone.0207658.g005

Table 3. The value of heterogeneity parameters of the same texture acquired in different positions in the field of view.

Distance [mm] PSF correction Entropy Homogeneity Correlation Contrast SRE LRE RLNU LGZE HGZE COV [%] Volume

[cm3]

0 on 6.87 0.29 0.69 80.99 0.63 4.17 0.39 6.73x10-4 1830.8 32.4 101.2

off 6.86 0.27 0.73 65.50 0.63 3.85 0.39 6.46x10-4 1875.8 30.4 96.1

30 on 6.89 0.28 0.69 79.74 0.63 3.98 0.39 6.6x10-4 1909.1 31.6 103.3

off 6.98 0.26 0.75 70.45 0.65 3.66 0.41 6.66x10-4 1899.8 32.8 103.7

50 on 6.82 0.29 0.69 73.03 0.64 4.05 0.40 7.16x10-4 1720.1 31.8 101.8

off 6.99 0.26 0.73 79.54 0.64 3.64 0.40 6.49x10-4 1953.6 32.8 103.7

100 on 6.84 0.29 0.72 68.46 0.66 4.01 0.41 6.42x10-4 1882.3 30.2 99.2

off 6.99 0.27 0.72 80.23 0.64 3.71 0.41 6.34x10-4 2000.5 32.0 103.87

https://doi.org/10.1371/journal.pone.0207658.t003

Activity painting

PLOS ONE | https://doi.org/10.1371/journal.pone.0207658 January 25, 2019 8 / 14

https://doi.org/10.1371/journal.pone.0207658.g005
https://doi.org/10.1371/journal.pone.0207658.t003
https://doi.org/10.1371/journal.pone.0207658


homogeneous cube is 2.34%, indicating the ability to reliably simulate a homogeneous volume.

A set of different geometrical objects like a spherical shell and a heart shape were simulated

and reconstructed to highlight the feasibility of creating arbitrary PET image patterns (Fig 3).

Nevertheless, the proposed method cannot create real, continuous activity patterns in the FOV

but results in inhomogeneous or even homogenous textures on the reconstruction image.

Using our method, the calculated numerical values of a given texture index using different

PET/CT scanners should be the same and any dissimilarity could give information about the

reliability of the actually investigated textural indexes.

In Fig 4 it is demonstrated how the varied dwell time (from 0 to 6 sec) is translated to differ-

ent activity concentrations (0 to 14 kBq/ml). The reproducibility exceeds what is observed in

measurements using conventional phantom which can be attributed to the high precision of

the positioning device. The positioning accuracy is 20 μm, the timing accuracy is typically in

the range of msec. Moreover, the 22Na source is a calibration point source with precisely

known activity, geometry and long half-life (2.602 years). Together these individual compo-

nents and the software control results in a high overall reproducibility. The coefficient of varia-

tion of the mean, min, max and the total positioning time from 5 consecutive measurements

of a 36 mm diameter hot sphere are summarized in Table 2. The COV for the Maxhot, Meanhot

and Meanbg values were less than 2%, 1% and 4% respectively, suggesting the high reliability of

this new method compared to the consecutive study performed by Akamatsu et al. [24] Their

findings revealed COV of Maxhot, Meanhot and Meanbg values between 2.1–3.1, 1.5–2.3 and

9.8–16.5, respectively. The calculated COV of the measurement has to be related to the sto-

chastic nature of acquisition and the reconstruction method, since the reproducibility of the

positioning is high.

The sampling frequency across the PET FOV is non-uniform, and the ability to measure

and reconstruct a given distribution can therefore be influenced by the radial position of the

source. Table 3 summarizes the values extracted from the reconstructed images acquired in 4

different positions with and without PSF correction. The percentage changes caused by the

position were generally less than 5%, excluding the Contrast parameter showing 15.5% and

18% with and without PSF correction, respectively.

Fig 6. Representative axial sizes of the lesion measured and reconstructed by different scanners: Mediso AnyScan

PET/CT (panel A), GE Discovery MI (4mm voxel size) on panel B, Mediso nanoScan PET/MRI (1.2mm voxel size) on

panel C using spline interpolation.

https://doi.org/10.1371/journal.pone.0207658.g006

Table 4. The values of the heterogeneity parameters of the same pattern measured in three PET scanners.

Entropy Homogeneity Contrast Correlation SRE LRE RLNU LGZE HGZE COV [%] Volume

[cm3]

Mediso AnyScan PET/CT 6.72 0.29 68.09 0.68 0.62 4.29 0.38 6.68x10-4 1834.3 28.1 101.57

GE Discovery MI 6.37 0.35 31.4 0.78 0.5389 5.46 0.32 7.85x10-4 1507.1 25.4 96.81

Mediso nanoScan PET/MRI 6.66 0.32 31.74 0.85 0.54 4.72 0.33 7.3x10-4 1608.0 31.7 1.42

https://doi.org/10.1371/journal.pone.0207658.t004
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As we have shown, this method of phantom simulation is capable to produce any irregular

shape activity distribution with excellent reproducibility and repeatability. This makes this

method an accurate tool to perform comparison between different scanners, especially for tex-

ture characterization investigations. As an illustration of this, the same lesion was simulated

on two clinical PET/CT systems (GE Discovery MI, and Mediso AnyScan PET/CT) and on a

dedicated small animal PET system (Mediso nanoScan PET/MRI). A representative slice of

the reconstructed data is shown in Fig 5. The pattern or texture is visually similar in terms of

the global intensity distributions for all three images. The smaller voxel size of GE Discovery

MI (2.73 mm wide voxels) results in an qualitatively better image quality compared to the

Mediso PET/CT (4 mm wide voxels), however, the overall intensity distributions are very simi-

lar. In the image acquired on the small animal system (Fig 5C) more texture details appear and

more intensity details are visualized. For quantitative comparison, Table 4 presents the corre-

sponding values of radiomics features. Comparing the two clinical scanners, the texture fea-

tures show greater than 15% differences (except for the Entropy), the Contrast values indicate

the highest bias, where the difference is about a factor of 2. After harmonizing the image voxel

size, the differences in the textural features from two different clinical systems are reduced to

less than 10%, except the Contrast showing a 15% difference (Table 5). Interesting to notice is

the application of the spline interpolation (just for visualization, without any manipulation of

the voxel values) results in a significantly reduced visual difference between the images acquire

on the three scanners (Fig 6). Furthermore, the numerical values of textural indices extracted

from the small animal system are very close to the values calculated from phantom data mea-

sured in human PET. The easy translation of the phantom size from the human scanner to the

small animal system underline the flexibility to scale the distribution of the activity concentra-

tion according to the actual PET system. An additional important aspect is that this method

also eliminates the so called cold wall effect [38] occurring due to the comparable width of the

plastic wall of conventional phantoms to the spatial resolution of small animal systems. It is

also essential in the radiomics field to improve the reporting quality and the reproducibility of

radiomics studies. Therefore we followed the recommendations available from a recent edito-

rial publication which presented guidelines aiming at the standardization of the image-pro-

cessing steps before feature extraction and the computation of these features [39].

Beyond well-known multi-device effects on radiomics features in clinical studies, recent

publications have investigated these variations in a more refined manners. Multi-device scans

were simulated by varying the reconstruction settings and the time per bed positions [28,29].

Furthermore, Orlhac et al. introduced a harmonization method for multicenter radiomics

studies in PET [40]. Two different PET/CT systems were used in their study, while a third

scanner was simulated by post-filtering one of the acquired data set. Moreover, difficulties

arise when considering repeated patient scans because of the physiologic variation in the

lesions between scans [41]. Our proposed phantom method is able to overcome the limitations

mentioned above, and could support studies involving with multi-device radiomics.

Table 5. The values of the heterogeneity parameters of the same pattern measured in three PET scanners after the harmonization of voxel sizes.

Entropy Homogeneity Contrast Correlation SRE LRE RLNU LGZE HGZE COV [%] Volume

[cm3]

Mediso AnyScan PET/CT 6.72 0.29 68.09 0,68 0.62 4.29 0.38 6.7x10-4 1834.26 28.13 101.57

GE Discovery MI 6.89 0.28 78.77 0.67 0.65 3.84 0.41 6.5x10-4 1890.78 30.5 101.95

Mediso nanoScan PET/MRI 7.3 0.22 126.15 0.63 0.721 3.19 0.48 6.3x10-4 1969.73 41.65 1.56

https://doi.org/10.1371/journal.pone.0207658.t005
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This novel phantom method and the current study includes some limitations. All activity

distributions were created in air, while the utilization of additional scattering and attenuating

material would result in a more realistic scenario similar to an actual patient scan. Our phan-

tom realization is similar to spatial resolution measurements defined by the NEMA perfor-

mance protocol, prescribing the activity distribution to be placed in air without any

surrounding attenuating and scattering matter. However, phantom simulation methodology

could typify radiomics features according to their inter-scanner variability, furthermore can

provide data for scanner harmonization process. A textural parameter appearing to be unsuit-

able according to the protocol in this work without real scattering and attenuating medium

will most likely prove to be inadequate according to the more advanced procedure where scat-

ter and attenuation is included. Introducing additional features (scattering and attenuating

material, hot background and external activity) may also result in larger deviation between

parameter values measured by different scanners and can make the procedure more effective

to identify inappropriate indices. Currently we are working to extend our method to better

meet to a realistic imaging situation, including adding background activity, attenuating and

scattering material and activity elsewhere in and out of the FOV. In addition, the time to simu-

late a structure is directly proportional to the physical dimension and the complexity of the

activity distribution and could potentially be very time consuming.

Recent research in tumor heterogeneity quantification is heavily focused on PET imaging.

Under these circumstances, the determination of inter-scanner and inter-vendor differences is

one of the most challenging methodological questions. Inter-scanner variations are extremely

important in multicenter studies. However, only highly reproducible texture phantom mea-

surements could provide adequate comparison, and to the best of our knowledge there is no

appropriate heterogeneity phantom available for this purpose. We also believe that our pro-

posed method could facilitate to develop similar or other kind of texture phantom concepts

capable to play a key role in the field of PET radiomics.

Conclusion

Creating of arbitrary irregular shaped intensity distribution by precise positioning of a point

source in the PET scanner field of view is feasible with superior reproducibility. The capability

of this concept was demonstrated by simulating a homogeneous cube, a sphere, a spherical

shell, a heart shape, and an actual lesion extracted from reconstructed human data. The evalua-

tion of the phantom measurements directly characterizes a PET system allowing to perform

comparative studies using different PET scanners.
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