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Abstract

Given the scale and rapid spread of the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2, or 2019-nCoV), there is an urgent need to identify therapeutics that are effective against
COVID-19 before vaccines are available. Since the current rate of SARS-CoV-2 knowledge acquisition via traditional research
methods is not sufficient to match the rapid spread of the virus, novel strategies of drug discovery for SARS-CoV-2 infection
are required. Structure-based virtual screening for example relies primarily on docking scores and does not take the
importance of key residues into consideration, which may lead to a significantly higher incidence rate of false-positive
results. Our novel in silico approach, which overcomes these limitations, can be utilized to quickly evaluate FDA-approved
drugs for repurposing and combination, as well as designing new chemical agents with therapeutic potential for COVID-19.
As a result, anti-HIV or antiviral drugs (lopinavir, tenofovir disoproxil, fosamprenavir and ganciclovir), antiflu drugs
(peramivir and zanamivir) and an anti-HCV drug (sofosbuvir) are predicted to bind to 3CLPro in SARS-CoV-2 with therapeutic
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potential for COVID-19 infection by our new protocol. In addition, we also propose three antidiabetic drugs (acarbose,
glyburide and tolazamide) for the potential treatment of COVID-19. Finally, we apply our new virus chemogenomics
knowledgebase platform with the integrated machine-learning computing algorithms to identify the potential drug
combinations (e.g. remdesivir+chloroquine), which are congruent with ongoing clinical trials. In addition, another 10
compounds from CAS COVID-19 antiviral candidate compounds dataset are also suggested by Molecular Complex
Characterizing System with potential treatment for COVID-19. Our work provides a novel strategy for the repurposing and
combinations of drugs in the market and for prediction of chemical candidates with anti-COVID-19 potential.
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Introduction
The outbreak of the coronavirus disease 2019 (COVID-19), caused
by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) [1–6], quickly spread over 213 countries/regions, infecting
>21 930 883 individuals globally with more than 774 997 deaths
worldwide as reported of 17 August 2020. New and effective
anti-COVID-19 drugs are urgently needed, whereas a new drug
discovery takes >8 years and costs >$2.6 billion with an approval
rate of less than 12% [7]. A few medications including lopinavir-
ritonavir, remdesivir and hydroxychloroquine/chloroquine have
been used in clinics, but there are still not enough medical data
confirming these drugs work and are safe to cure COVID-19.
Although lopinavir/ritonavir shows benefit in some secondary
endpoints, no benefit is observed with treatment beyond stan-
dard care for severe COVID-19 patients [8], and future trials
will be carried out to verify this result. Moreover, a report from
France’s drug safety agency disclosed that hydroxychloroquine
can have serious cardiovascular side effects [9]. Gilead Sciences
tracked the responses to remdesivir intervention therapy for
53 patients with COVID-19 and observed a 13% death rate [10].
However, study groups were spread out across several countries
with small numbers of patients, and it is hard to draw definitive
conclusions from these data. Since most of the drugs or drug
combinations currently used in clinical trials are chosen empir-
ically, there is a critical need to leverage innovative technol-
ogy with available medical resources to rapidly repurpose FDA-
approved drugs and select drug combinations for anti-COVID-19
before vaccines are available.

SARS-CoV-2, Middle East Respiratory Syndrome Coronavirus
(MERS-CoV) and Severe Acute Respiratory Syndrome Coro-
navirus (SARS-CoV) are members of the coronavirus (CoV)
family [11]. These CoVs can all transmit from human-to-human
[12–14]. CoV infection can be as mild as the common cold
or as deadly as the SARS infection. Based on the confirmed
cases, the symptoms of SARS-CoV-2 include fever, malaise,
dry cough, shortness of breath, respiratory distress and more.
Although there are no approved medications or vaccines for
COVID-19, new information regarding SARS-CoV-2 is being
revealed daily. Recently, the SARS-CoV-2 has been sequenced
and several important proteins have been resolved [15–19],
thereby facilitating exploration and discovery of effective
treatments. The rationale for repurposing and discovery of drugs
for treatment of SARS-CoV-2 is based on the premise that: (i)
the entry of SARS-CoV-2 into human host cells relies on the
binding of spike protein (S-protein) [19] to the angiotensin-
converting enzyme 2 (ACE2) [17, 20], and (ii) the replication of
nCoV requires the viral 3C-like cysteine protease (3CLPro) [18] or
RNA-dependent RNA polymerase (RdRp) [15], with both 3CLPro

and RdRp highly conserved within the coronavirus family. These

proteins and/or enzymes are potential targets since they are
involved in the mechanism of COVID-19 infection, and drugs
or chemical agents targeting them may provide therapeutic
potential for the treatment of COVID-19.

In recent years, computational techniques have become more
common in drug design because of advantages such as time-
saving, high efficiency and high sensitivity. Many in silico tools
or approaches have been used to design and discover the poten-
tial drug candidates for COVID-19. For example, Jin et al. [18]
recently resolved the 3D complex of 3CLpro-N3. Based on this
crystal structure, they applied Glide algorithm to carry out a
virtual screening against their in-house database and identified
cinanserin (IC50: 125 μM) as a potential inhibitor for 3CLpro of
SARS-CoV-2 [18]. Similarly, Wang [21] applied virtual docking
screening using Glide and molecular dynamics simulation with
MM-GBSA to predict the potential drug candidates for 3CLpro.
Recently, Liu et al. [22] developed and applied their compu-
tational protocol SCAR (steric-classes alleviating receptors) to
discover potential covalent drugs for SARS-CoV-2. In addition,
several computational tools or databases have been developed to
meet the urgent need of drug discovery for COVID-19, including
a network-based approach for drug repurposing [23], MolAICal
[24] (a de novo approach, https://molaical.github.io/quickstart.
html), COVID-19 Docking Server (https://ncov.schanglab.org.cn/)
[25] and more. Among these methods, structure-based virtual
docking screening is a popular approach for the drug discovery
of COVID-19. However, structure-based virtual docking screen-
ing relies primarily on docking scores and does not take the
contributions of key residues into consideration of selecting the
binding pose, which may lead to a significantly higher incidence
rate of false-positive results.

We have elaborated on a scoring function-based computing
protocol Molecular Complex Characterizing System (MCCS) [26]
to aid in rational drug design. Briefly, MCCS first calculates
the energy contribution of each residue involved in the
binding, which helps in determining the key residues and
their energy contributions. Then, a (protein) sequence-based
vector embedded with individual residue energy contribution
is constructed to represent the recognition pattern or feature
between a receptor and its ligand. MCCS takes the contribution
and importance of key residue into consideration for selecting
a more accurate binding pose during the process. Finally,
the reliable energy contribution vectors are used to select
potential candidates, which may improve the accuracy of virtual
screening.

In the present work, we first determine the residue energy
contributions in the binding pocket of 3CLPro, the main viral pro-
tease required for SARS-CoV or SARS-CoV-2 replication, toward
binding an inhibitor by applying our recently developed MCCS
[26] to the 3CLPro-inhibitor co-crystal structure. Then, several
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3CLPro-ligand complexes are used to create energy contribution
vector(s) to characterize the recognition pattern of 3CLPro in
SARS-CoV/SARS-CoV-2 and virtual screening is carried out
subsequently against the DrugBank database and the CAS
COVID-19 antiviral candidate compounds dataset. Anti-HIV/
antiviral drugs (lopinavir, tenofovir disoproxil, fosamprenavir
and ganciclovir), antiflu drugs (peramivir and zanamivir) and
an anti-HCV drug (sofosbuvir) are predicted to bind to 3CLPro in
SARS-CoV-2 with therapeutic potential for COVID-19 infection.
Moreover, 10 additional antiviral chemicals from the CAS dataset
are also predicted as promising agents for COVID-19. Finally,
we also utilize our novel virus chemogenomics knowledgebase
platform [27] to identify potential combinations of medications
for COVID-19.

Materials and Methods
Scoring function

The scoring function in nature is not limited to the conforma-
tional search and optimization process in docking, but also it
is mainly used to evaluate an entire protein-ligand complex, or
more specifically, a ligand conformation inside a receptor bind-
ing site. By revisiting the atom level and aggregating the energy
per residue instead of per protein, we serve the distinguishing
characteristics of each residue in the process of protein-ligand
binding, which also further enables the feature modeling of a
protein in terms of binding.

Below are the five core terms used by the scoring function in
Vina [28] and idock [29]:
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In a typical docking process, a computed atom pair consists
of one atom from the protein and the other from the small
molecule. Essentially the energy terms are related to three
variables: the distance between, and the van der Waals radii
of the two interacting atoms. By introducing a new variable
dij to represent the surface distance between the interacting
atoms, the functions can be reduced to unary functions of
dij. In this model, atom interactions are divided into three
kinds: regular interaction, hydrophobic interaction or hydrogen
bond interaction. The hydrophobic(dij) and the hbonding(dij)
functions evaluate to a nonzero value only if the atom pair
is of the hydrophobic interaction or the hydrogen bond,
respectively.

The weighted sum of the five terms forms the total score,
where the coefficients are also given in the original Vina liter-
ature:
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The residue energy contribution is calculated as

score_residue =
∑

i ∈ R
j ∈ L

score_atom
(
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)

where R is the set of atoms in the residue being considered,
and L is the set of atoms in the ligand whose coordinates are
either computed from Monte Carlo based docking or determined
by X-ray crystallography or cryo-EM. Since the hydrophobic and
hydrogen bond interactions are both one term more than a
regular interaction, the additional terms are the key to making a
residue prominent.

Similarity and clustering

To quantify the similarity between two vectors, a real-valued
similarity function is used in statistics and related fields. Such
similarity measures include cosine similarity, the Pearson cor-
relation coefficient (the PCC), Euclidean distance, etc. Among all
the various similarity measures, cosine similarity and the PCC
are commonly used for real-valued vectors, which are suitable
in our scenario.

Given two vectors of residue energy contribution, u and v, the
cosine similarity, cos(θ ), is represented using a dot product and
vector length as
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where θ is the angle between the two vectors and the subscript i
refers to the residue numbering under the selected scheme. The
function gives a positive value (up to one) for similar vectors and
either zero or a negative value for distinct vectors.

The PCC is defined in the same way except it subtracts the
mean from every vector element:
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With any similarity measure, protein clustering can be car-
ried out in such a way that proteins in the same group are more
alike, in terms of binding mode, to each other than to that of
other groups. In the visualization, a heatmap of an (n, n)-sized
similarity matrix is commonly used to show similarities among
a set of n vectors, with a dendrogram for demonstration of the
clustering. The grids of the heatmap use a color scale to display
a color mapped from its numeric value which represents the
similarity between two vectors. The clustering can be carried out
directly with the n vectors or with the similarity rows or columns
of the n vectors.
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Table 1. Top 10 residue energy contributions in the complex of 3CLPro with SID-24808289 (PDB: 4MDS) (kcal/mol)

Residue Total energy contribution Sum of steric
componentsa

Sum of hydrophobic
componentsb

Sum of hydrogen-bonding
componentsc

Glu166 −1.9893 −1.0839 −0.2428 −0.6626
Met165 −1.0111 −1.0088 −0.0023 0
Met49 −0.8614 −0.8246 −0.0368 0
His41 −0.8522 −0.8308 −0.0214 0
Asn142 −0.8434 −0.7487 −0.0947 0
His163 −0.7228 0.0374 0 −0.7601
Gln189 −0.5892 −0.4925 −0.0967 0
Phe140 −0.4199 −0.3856 −0.0342 0
Leu167 −0.4046 −0.4046 0 0
His164 −0.3943 −0.3943 0 0

aThe sum of steric components is the total of the weighted sum of the first three terms of the scoring function for a residue.
bThe sum of hydrophobic components is the sum of all weighted hydrophobic(dij) terms for a residue.
cThe sum of hydrogen-bonding components is the sum of all weighted hbonding(dij) terms for a residue; the three sums amount to the energy contribution.

DrugBank dataset and CAS COVID-19 antiviral
candidate compounds dataset

The DrugBank dataset (https://www.drugbank.ca/releases/late
st) with 1814 FDA-approved drugs was downloaded and fil-
tered to eliminate metals or mixtures of isotopes. Moreover, CAS
COVID-19 antiviral candidate compounds dataset with nearly
50 000 chemical substances was download via https://www.cas.o
rg/covid-19-antiviral-compounds-dataset. VEGA [30] is applied
to prepare the small molecules by adding the polar hydrogens,
Vina force field and Gasteiger charges. To determine whether the
tertiary (3◦) amide of the small molecule should be protonated,
PROPKA (version 3.1) [31] was utilized to predict the correspond-
ing pKa values. With such values, our program-MCCS [26] is able
to donorize the nitrogen atoms whose computed pKa value is
greater than or equal to the given pH (7.4 by default). Finally,
the torsions (branches) were also defined by VEGA, and the file
format was transformed into PDBQT. The PDBQT files of protein
and ligand and the pKa file of the ligand form the input of our
method.

Virtual screening by MCCS

Starting with the code base of the current stable version 2.2.3
of idock [29] that adopts the exact scoring function of AutoDock
Vina [28], we developed an even more efficient variant integrat-
ing the ability to calculate the residue contributions of the bind-
ing energy, named jdock [26]. MCCS is open source under Apache
License 2.0 and is freely available on GitHub at https://github.
com/stcmz/jdock/ and https://github.com/stcmz/mccsx. MCCS
was then applied to carry out the virtual screening using the
crystal structure of 3CLPro in SARS-CoV-2 against the DrugBank
dataset and the CAS COVID-19 antiviral candidate compounds
dataset.

Virus-associated disease-specific chemogenomics
knowledgebase (Virus-CKB)

On the basis of our established domain specific chemogenomics
databases [32–35] and our novel computational techniques [32,
36–39], we constructed and reported a novel virus-associated
disease-specific chemogenomics knowledgebase (Virus-CKB,
https://www.cbligand.org/g/virus-ckb) [27] and applied our
computational systems pharmacology-target mapping (CSP-
Target Mapping) to rapidly identify the FDA-approved drugs

for repurposing into new indications by fast progress into
clinical trials to meet the urgent demand due to the COVID-19
outbreak. Virus-CKB, a one-stop computing platform describes
the chemical molecules, genes, proteins and signaling pathways
involved in the regulation of virus-associated diseases. To
date, the Virus-CKB archived 65 antiviral drugs in the market,
107 virus-related proteins or enzymes with 189 available 3D
crystal or cryo-EM structures [40–42], and ∼2609 chemical agents
reported for these target proteins and enzymes. In addition,
the Virus-CKB is implemented with our developed machine-
learning computational algorithms and computing tools for
the prediction of the important protein targets, and the output
data analysis and visualization, including HTDocking [32, 36–38],
TargetHunter [32, 36–39], BBB predictor [32, 37, 38], NGL viewer
[43], Spider Plot [32, 36, 37], etc.

Results and Discussion
Workflow of MCCS protocol

We here described the general procedure of MCCS protocol as
below: (1) the first step of MCCS protocol is to prepare the
input files (PDBQTs) of both receptor and ligand, including the
ligand protonation with PROPKA [31], residues reparation of the
receptor by Chimera [44] and adding force fields and charges
to receptor and ligand by VEGA [30]; (2) the second step is to
calculate the residue energy contribution by our revised docking
algorithm named ‘jdock’, which shared the same scoring func-
tion with AutoDock Vina [28] or idock [29]; (3) sequentially, a
part of or a full-length protein sequence-based vector embedded
with individual residue energy contribution is constructed to
represent the binding recognition feature between a receptor
and its ligand, name the energy recognition vector; (4) finally,
the energy contribution vectors are explored for extensive uses
in recognition-pattern generation, protein similarity comparison
and clustering, and virtual screening. All these components have
been integrated into MCCS with ready-to-use computer scripts
developed in-house.

Residue energy contribution

After obtaining the input files, MCCS is used to calculate the
energy contribution of each residue, which can help us to under-
stand the role of binding residues for the recognition of ligand(s).
With the aggregation accomplished, a list of scores is fetched.

https://www.drugbank.ca/releases/latest
https://www.drugbank.ca/releases/latest
https://www.cas.org/covid-19-antiviral-compounds-dataset
https://www.cas.org/covid-19-antiviral-compounds-dataset
https://github.com/stcmz/jdock/
https://github.com/stcmz/jdock/
https://github.com/stcmz/mccsx
https://www.cbligand.org/g/virus-ckb
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Table 1 is the example of outputs of the 3CLPro in the SARS-
CoV complexed SID-24808289 (N-(benzo [1,2,3] triazol-1-yl)-N-
(benzyl)acetamido)phenyl)carboxamides, inhibitor) (PDB: 4MDS,
Resolution: 1.598 Å) [45].

The detailed interactions between 3CLPro in SARS-CoV and
SID-24808289 were shown in Figure 1. The total binding energy
of the crystallized small molecule-SID-24808289 in 3CLpro was
−11.7914 kcal/mol, which was calculated from the sum of
intra-ligand free energy (−0.0088 kcal/mol) and inter-ligand
free energy (−11.7826 kcal/mol). Here, the inter-ligand free
energy is the total energy of interacted atom pairs between
the small molecule (SID-24808289) and the receptor (3CLPro),
which can be computed and further divided into the energy
contribution of each residue. Moreover, each residue energy
contribution can be further decomposed into (i) the ‘sum of steric
components’ that included gauss1, gauss2 and repulsion, (ii) the
‘sum of hydrophobic components’ and (iii) the ‘sum of hydrogen-
bonding components.’ Taking Glu166 in 3CLPro (PDB: 4MDS) as
an example (Table 1), the total energy contribution of Glu166
to the complex of SID-24808289-3CLPro was −1.9893 kcal/mol,
which can be decomposed into (i) −1.0839 kcal/mol from the
‘sum of steric components,’ (ii) −0.2428 kcal/mol from the ‘sum
of hydrophobic components’ and (iii) −0.6626 kcal/mol from
the ‘sum of hydrogen-bonding components.’ Particularly, we
noted that Glu166 and His163 contributed significantly to the
recognition of ligand SID-24808289 through hydrogen-bonding
interaction (Table 1), as shown in Figure 1.

Energy contribution vectors and recognition pattern
in the ligand-binding pocket of 3CLPro in SARS-CoV

Then, a protein sequence-based vector embedded with indi-
vidual residue energy contribution was constructed to repre-
sent the recognition feature between a receptor and its ligand,
and the most important recognition feature was named as the
recognition pattern.

Using our protocol, six representative co-crystal structures
of 3CLPro in SARS-CoV complexed with different ligands were
selected to calculate the residue energy contribution, including
3SN8 [46], 1WOF [47], 2AMD [47], 2OP9 [48], 3V3M [49] and 4MDS
[45]. For each individual complex, the total energy contribution
of 73 residues within 8 Å around the co-crystal ligand was
used to construct a vector named energy contribution vector
(Figure 2).

As shown in Figure 2, the residue rows were sorted ascend-
ingly according to their average contribution and the protein
columns represent energy contribution vectors of each indi-
vidual complex. The figure consists of 73 residues within 8 Å
around the co-crystal ligand. First, our results showed that
Glu166 (Figure 2) has the greatest energy contribution to the
recognition of ligands with an average energy contribution of
−1.5442 kcal/mol. With the insight of the residue energy contri-
bution obtained from the analyses of these six complexes, we
found that one of the key contributions of Glu166 was hydrogen-
bonding interaction (Figure S1a), which was supported by the
detailed interaction shown in Figure 3. Additionally, we found
that residues including Gly143, Ser144, His163 and Gln189 also
contributed to the recognition of ligands through hydrogen-
bonding (Figure S1a). On the other hand, His41, Met49, Met165
and Leu167 contributed to the binding of ligands via hydrophobic
interactions, as shown in Figure 3 and Figure S1b. Interestingly,
our results showed that Cys145 contributed to the binding

by a covalent bond (red color in Figure 2, positive value) and
hydrophobic interactions (blue color in Figure 2, negative value).

The energy contribution vectors of proteins could be easily
compared and used to cluster similar ligands or proteins. The
dendrogram on the top of the grids demonstrated the cluster-
ing of similar columns using Pearson’s distance. As shown in
Figure 2, we found that ligands with large similarity (or binding
interactions) were clustered together, indicating our approach is
reasonable for ligands classification or clustering. For example,
we observed that the score vector of 1WOF was similar to that
of 2AMD and these two proteins were clustered together, sup-
ported by the correlation between similarities in their ligands
and interactions (Figure 3).

Our program generated nine different energy contribu-
tion vectors in total, including (1) Gauss, (2) Gauss1, (3)
Gauss2, (4) hydrogen-bonding, (5) hydrophobic, (6) non-steric
(hydrogen-bonding+hydrophobic), (7) repulsion, (8) steric
(Gauss1 + Gauss2 + repulsion) and (9) total energy contribution,
as shown in Figure S2. By analyzing these vectors of 3CLPro in
SARS-CoV, we found that the non-steric recognition vector may
represent the most important feature (named as recognition
pattern) of 3CLPro in SARS-CoV as shown in Figure S3, which
included Glu166 (hydrogen bond), Met165 (hydrophobic interac-
tion), Met49 (hydrophobic interaction), etc. They were involved
in the ligand-binding pocket in all co-crystal structures with
significant contributions to the binding of small molecules.
The recognition pattern of 3CLPro in SARS-CoV has taken
the contribution of key residues into consideration that will
benefit the accuracy of virtual screening, as the traditional
docking algorithms are based on docking scores and neglects
the importance of key residues.

Repurposing FDA-approved drugs for COVID-19
by recognition pattern-based computing

Using the same method, we first generated the non-steric recog-
nition pattern (including both hydrogen-bonding and hydropho-
bic components) of 3CLPro in SARS-CoV-2 based on its co-crystal
structure (PDB:6 LU7, inhibitor N3) [18]. Then the structure of
3CLPro in SARS-CoV-2 was used to perform a virtual screening
against the prepared DrugBank library with 1814 FDA-approved
drugs. Finally, the recognition patterns of each drug were used to
compare with that of N3 (inhibitor in co-crystal structure), and
the pattern similarity between drugs and N3 was used to select
the potential hits.

Our results in Table 2 shows 10 FDA-approved drug can-
didates may bind to 3CLPro with therapeutic potential for
COVID-19. Table S1 shows the ranking and pattern similarity
of the top 100 drug candidates. For comparison, Table S2
shows the results of 10 drug candidates with the lowest
pattern similarity when compared to the N3. From Table 2, we
found that four anti-HIV/antiviral drugs (lopinavir, tenofovir
disoproxil, fosamprenavir and ganciclovir), two antiflu drugs
(peramivir and zanamivir) and one anti-HCV drug (sofosbuvir)
were predicted to bind to 3CLPro in SARS-CoV-2, which could
be the possible treatments for COVID-19. These drugs shared
a high pattern similarity with a reported N3 inhibitor in
the co-crystal complex, especially in lopinavir which shared
up to 89.7% pattern similarity with N3. The comparison of
detailed interactions between lopinavir and N3 in SARS-
CoV-2 was shown in Figure 4. Our results showed that these
two compounds shared very similar non-steric interactions
(hydrogen-bonding and hydrophobic interactions), indicating

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
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Figure 1. Detailed interactions and top 10 residue energy contributions of 3CLPro-SID-24808289 (PDB: 4MDS, SARS-CoV). (A) The detailed interactions between 3CLPro

in SARS-CoV and SID-24808289. The binding pocket in 3CLPro is highlighted in purple surface on the left side. Top 10 residues with higher energy contributions are

highlighted in stick on the right side. (B) The energy contribution of top 10 key residues involved in the binding pockets of 3CLPro.

that lopinavir may bind to 3CLPro in SARS-CoV-2 with ther-
apeutic potential for the treatment of COVID-19, which is
consistent with the current clinical trial of lopinavir/ritonavir for
COVID-19.

In addition, recent studies [50, 51] showed that type II dia-
betes patients with COVID-19 develop a more severe condition
compared to those without diabetes. From Table 2, we also
predicted three antidiabetic drugs (acarbose, glyburide and
tolazamide) with the potential to treat COVID-19 coexisting
with type II diabetes [52]. Our predictions are consistent
with recent work on COVID-19. For example, Wang et al.
[53] suggested the roles of 21 drugs included acarbose in
inflammatory response prevention in patients with COVID-
19 for the first time. In addition, Paniri et al. [54] proposed
that glyburide might be a useful drug to combat SARS-CoV-

2 by blocking the wide spectrum of molecules related to
inflammatory cascade. Certainly, these in silico predictions
will require the in vitro target validation experiments in the
future.

Repurposing CAS COVID-19 antiviral candidate
compounds dataset for COVID-19 by recognition
pattern-based computing

MCCS was also used to predict the potential candidates
from CAS COVID-19 antiviral candidate compounds dataset
(https://www.cas.org/covid-19-antiviral-compounds-dataset).
Among 50 000 compounds, 44 665 small molecules were
successfully docked into 3CLPro. Table 3 shows top 10 antiviral

https://www.cas.org/covid-19-antiviral-compounds-dataset
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Figure 2. Energy contribution vector (using total energy contribution) in the ligand-binding pocket of 3CLPro in SARS-CoV. The dark blue color in the energy contribution

vectors represented that the energy contribution of residue was negative value (≤−1 kcal/mol), while the dark red color represented that the energy contribution of

residue was positive value (≥1 kcal/mol). The residues in the energy contribution vectors were sorted by the average residue energy contribution ascendingly.
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Figure 3. The detailed interactions between SARS-CoV and ligands. The hydrogen-bonding was highlighted in red. The key residues were highlighted in sticks. The

structures of small molecules were shown in the bottom.

candidates may bind to 3CLPro with therapeutic potential for
COVID-19. These drugs also shared a high pattern
similarity with a reported N3 inhibitor in the co-crystal
complex, especially the top compound (2,7,10,12-Tetraazapentad
ecanoic acid, 4-hydroxy-14-methyl-12-[[2-(1-methylethyl)-4-thiazolyl]
methyl]-8,11-dioxo-3,6-bis(phenylmethyl)-, 5-thiazolylmethyl ester,
(3S,4S,6S)-) which shared up to 97.8% pattern similarity with
N3. The planning experiments will be carried out for further
validations.

Moreover, we applied our method to explore the details of
other reported SARS-CoV-2 inhibitors, including ebselen and
tideglusib from the work of Jin et al. [18] (Nature volume 582,
pages289–293(2020)). Based on the detailed docking results and
residue energy contribution from Figure S4, we found that
several key residues in 3CLPro in SARS-CoV-2 contributed to
the binding of these two ligands, including Cys145, His163,
Leu141, Met49, Phe140, Asn142, His164, His41, Met165, Gln189
and Glu166. Importantly, we found that their inhibitory activities

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
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Table 2. 10 FDA-approved drugs with therapeutic potential for COVID-19

(Continued)
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Table 2. Continued

Figure 4. The comparisons between N3 (co-crystal inhibitor) and Lopinavir in SARS-CoV-2. The hydrogen-bonding was highlighted in red. The key residues were

highlighted in sticks.

against COVID-19 may mainly attribute to a potential covalent
bond formation with the thiol group of the Cys145, as shown in
Figure S4a and S4b. Our results are consistent with the finding
from Jin’s work [18].

Virus-CKB to accelerate drug combinational therapy for
COVID-19 treatment

Recently, COVID-19 patients who met the criteria for hospital
discharge or discontinuation of quarantine show positive

reverse transcriptase polymerase chain reaction test results
even after 5 to 13 days after recovery. This suggests that at
least a proportion of recovered patients may still be virus carriers
[55]. In addition, co-existing diseases such as diabetes, hyperten-
sion and cardiovascular disease are found in about one-third to
one-half of reported COVID-19 patients and tend to worsen the
patients’ prognosis [56]. These findings indicate that COVID-
19 is a complex disease involving simultaneous production of
signals from a multitude of transduction pathways. Therefore, a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa260#supplementary-data
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Table 3. Top 10 CAS antiviral candidate compounds with therapeutic potential for COVID-19

(Continued)
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Table 3. Continued

(Continued)
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Table 3. Continued

traditional single-target drug, though it may be highly selective
and potent, may not be sufficient to effectively treat and cure
COVID-19. An alternative strategy is to seek simultaneous
modulation at multiple nodes in the network of virus signaling
pathways through either a multi-target drug or drug–drug
combinations.

On the basis of our established domain specific chemoge-
nomics databases [32, 35] and our novel computational
techniques, we constructed a virus-associated disease-specific
chemogenomics knowledgebase (Virus-CKB, https://www.cbli
gand.org/g/virus-ckb) [27] and applied our computational
systems pharmacology-target mapping (CSP-Target Mapping)
to accelerate drug combinational therapy to meet the urgent
demand due to the COVID-19 outbreak.

To first validate our Virus-CKB, we predicted potential FDA-
approved drugs that may bind to 3CLpro. As shown in Figure 5, our
results showed that eltrombopag (for thrombocytopenia), anidu-
lafungin (for fungal infections), imatinib (for cancer) and proscil-
laridin (anti-cardiovascular) were predicted to bind to 3CLpro

(Node: PR_SARS2) of SARS-CoV-2. Our findings is supported by
a recent study, which eltrombopag, anidulafungin, imatinib and
proscillaridin exhibited antiviral efficacy (0.1 μM < IC50 < 10 μM)
against SARS-CoV-2 [57, 58].

Then, combinations of drugs with therapeutic potential for
the treatment of COVID-19 are identified by our Virus-CKB
and systems pharmacology-mapping program. As shown in

Figure 6, our Virus-CKB platform reveals that one green node,
representing a drug target NA_INFB (Neuraminidase, Influenza
B virus), connects to an antiflu drug oseltamivir with green
solid lines, which is congruent with the fact that oseltamivir
shows high biological activity at its known target NA_INFB.
Moreover, bictegravir (anti-HIV drug) and paritaprevir (anti-HCV
drug) are also identified through Virus-CKB data analysis and
computing, showing that these two drugs bind to a target of
PR_SARS2, which is3CLpro of SARS-CoV-2, as highlighted by the
yellow color node in Figure 6. Thus, a plausible combinational
therapy is made by combining oseltamivir (antiflu medication)
with bictegravir (anti-HIV drug) and paritaprevir (anti-HCV drug)
as they are targeting NA_INFB and PR_SARS2, respectively. Such
combination will create a drug synergy in clinical treatment. As
proof-of-evidence, some of the predictions are congruent with
ongoing clinical trials registered at ClinicalTrials.gov, such as
ASC09F + Oseltamivir and Ritonavir+Oseltamivir (https://clinica
ltrials.gov/ct2/results?cond=2019nCoV&term=&cntry=&state=&
city=&dist).

Conclusion
To overcome the limitation of structure-based virtual screening,
we here applied our new in silico recognition pattern-based
approach for repurposing FDA approved drugs, combining

https://www.cbligand.org/g/virus-ckb
https://www.cbligand.org/g/virus-ckb
ClinicalTrials.gov
https://clinicaltrials.gov/ct2/results?cond=2019nCoV&term=&cntry=&state=&city=&dist
https://clinicaltrials.gov/ct2/results?cond=2019nCoV&term=&cntry=&state=&city=&dist
https://clinicaltrials.gov/ct2/results?cond=2019nCoV&term=&cntry=&state=&city=&dist
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Figure 5. Spider Plot for data virtualization and analysis for four antiviral drugs. The average docking scores are displayed as connection labels and the protein targets

on which the query compound is active are displayed as circular discs.

potential drug candidates, or designing new chemical candi-
dates. We identified four anti-HIV/antiviral drugs, two antiflu
drugs, one anti-HCV drug and three antidiabetic drugs for
potential treatments of COVID-19. Moreover, by using our virus
chemogenomics knowledgebase and CSP-Target Mapping tools,
we also proposed that combinations of different types of drug
candidates may be useful for the treatment of SARS-CoV-2
infection. Of course, drugs identified for repurposing and/or

in combination using in silico approaches will require in vitro
target validation experiments as well as human clinical studies,
which are currently underway via collaborations. To achieve
this goal, bioassay experiments are under way for anti-2019-
nCoV testing to identify the approved drugs or chemical agents
with therapeutic potential for COVID-19. Biotesting is performed
using: (i) the viral cytopathic effect (CPE) inhibition, (ii) virus yield
reduction (VYR) assays and (iii) toxicity assay.
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Figure 6. The predicted drug combinations for COVID-19 by CSP-Target Mapping that was implemented in our Virus-CKB. The green circles and solid lines represented

the known targets and the interacted drugs, while the purple circles and dash lines represent the predicted targets and interaction, https://www.cbligand.org/g/virus-

ckb.

Key Points
• MCCS is a scoring-function based method for charac-

terizing the recognition pattern between protein and
ligand to aid in the rational drug design.

• MCCS distinguishes itself from molecular dynamics
(MD) simulation-based energy decomposition in its
ability to generate the residue energy contribution and
the binding recognition feature with reduced time-
consumption and high accuracy.

• Recognition pattern-based method in MCCS protocol
takes the importance of key residues into considera-
tion, which helps to improve the accuracy of structure-
based virtual screening.

• The use of MCCS and Virus-CKB can facilitate rapid
drug development to meet the urgent demand of the
COVID-19 outbreak.

Supplementary Data

Supplementary data are available at https://academic.oup.
com/bib.
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