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Abstract

During the past decade, the age-adjusted mortality rate for endometrial cancer (EC) increased

1.9% annually with TP53 mutant (TP53-mu) EC disproportionally represented in advanced

disease and deaths. Therefore, we aimed to assess pivotal molecular parameters that differ-

entiate clinical outcomes in high- and low-risk EC. Using the Cancer Genome Atlas, we ana-

lyzed EC specimens with available DNA sequences and quantitative gene-specific RNA

expression data. After polymerase ε (POLE)-mutant specimens were excluded, differential

gene-specific mutations and mRNA expressions were annotated and integrated. Consequent

to TP53-mu failure to induce p21, derepression of multiple oncogenes harboring promoter p21

repressive sites was observed, including CCNA2 and FOXM1 (P < .001 compared with TP53

wild type [TP53-wt]). TP53-wt EC with high CCNA2 expression (CCNA2-H) had a targeted

transcriptomic profile similar to that of TP53-mu EC, suggesting CCNA2 is a seminal determi-

nant for both TP53-wt and TP53-mu EC. CCNA2 enhances E2F1 function, upregulating

FOXM1 and CIP2A, as observed in TP53-mu and CCNA2-H TP53-wt EC (P < .001). CIP2A

inhibits protein phosphatase 2A, leading to AKT inactivation of GSK3β and restricted oncopro-

tein degradation; PPP2R1A and FBXW7 mutations yield similar results. Upregulation of

FOXM1 and failed degradation of FOXM1 is evidenced by marked upregulation of multiple

homologous recombination genes (P < .001). Integrating these molecular aberrations gener-

ated a molecular biomarker panel with significant prognostic discrimination (P = 5.8×10−7);

adjusting for age, histology, grade, myometrial invasion, TP53 status, and stage, only CCNA2-

H/E2F1-H (P = .0003), FBXW7-mu/PPP2R1A-mu (P = .0002), and stage (P = .017) were sig-

nificant. The generated prognostic molecular classification system identifies dissimilar signal-

ing aberrations potentially amenable to targetable therapeutic options.
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Introduction

The American Cancer Society (ACS) predicted 61,880 new cases and 12,160 deaths that would

be attributable to endometrial cancer (EC) in 2019 [1]. In 2018, the ACS reported an alarming

1.9% annual increase during the decade in age-adjusted mortality for EC [2]—a trajectory

needing reversal. Standard treatment for high-risk EC is definitive surgery followed by sys-

temic platinum-based chemotherapy (PbCT) or radiotherapy, or both. Sensitivity to PbCT

positively correlates with deficiencies in the homologous recombination (HR) pathway [3].

However, the majority of ECs are HR proficient; thus, tailored molecular-based therapy needs

to be developed, which requires identifying molecular profiles that harbor targetable

aberrations.

The clinical outcomes associated with TP53 mutated (TP53-mutant [mu]) EC are strikingly

worse than those observed with POLE mutations (exonuclease domain of polymerase ε
mutant, catalytic subunit [POLE-mu]) and TP53 wild type (TP53-wt) tumors [4]. The tumor

suppressor functions of TP53 include transcription activation and repression; exemplary of

the former is the activation of CDKN1A, encoding p21, which targets promoter-repressive ele-

ments (cell-cycle–dependent elements [CDE] and cell-cycle genes homology region [CHR]

sites), resulting in transcription repression of targeted genes [5]. Mutant TP53 is unable to acti-

vate the TP53-p21-CDE/CHR axis. Thus, TP53-mu cancers have derepression of numerous

genes containing promoter CDE/CHR sites, including CDK2, CCNA2, AURKA, TPX2, PLK1,

FOXM1, MASTL, and ESPL1 [5].

Upregulated CDK2 phosphorylates pRB, releasing pRB-bound E2F1, a potent transcription

activator [6]. Mints et al [7] reported progressively increasing nuclear expression of E2F1 with

decreasing differentiation of EC. The E2F1 mode of action is predicated on CCNA2 expres-

sion; overexpression of CCNA2 has been correlated with compromised prognosis and resis-

tance to chemotherapy in EC [8–10]. CCNE1, AURKA, TPX2, PLK1, FOXM1, EZH2, CIP2A,

BRCA1, and RAD51 have E2F1 activation sites in their promoter regions [11–14]. E2F1 activa-

tion of critical genes portends increased phosphorylation of the cohesion complex with prema-

ture chromosome separation (ie, aneuploidy) as well as FOXM1 induction of several genes in

the HR pathway [15–18].

The Cancer Genome Atlas (TCGA) for EC documented the high prevalence of PIK3CA,

PIK3R1, PTEN, PPP2R1A, and FBXW7 mutations, genes within the PI3K-AKT-FBW7 axis

[4]. Mutations in PIK3CA, PIK3R1, and PTEN facilitate the phosphorylation and activation of

AKT, which phosphorylates and inactivates GSK3β resulting in restricted FBW7-dependent

degradation of oncoproteins such as CCNE1, AURKA, PLK1, FOXM1, and others [19]. AKT

activation is modulated by protein phosphatase 2A (PP2A), but mutations in its subunit

(PPP2R1A) or upregulation of its endogenous inhibitor (CIP2A) allow unimpeded AKT phos-

phorylation [20, 21]. CIP2A is reportedly activated by E2F1 [14]. Thus, AKT inactivation of

GSK3β or mutation in PPP2R1A or FBXW7 results in restricted degradation and accumulation

of specific oncoproteins.

Integrating the above generic TP53 mechanistic information with data available from the

EC literature, we developed a working schematic (Fig 1A) for comparing the mRNA expres-

sion between TP53-mu and TP53-wt EC for numerous genes that impact cell-cycle dynamics,

apoptosis, and DNA-damage repair. We identified the seminal role of CCNA2 in 1) integrat-

ing the TP53-p21-CDE/CHR and PI3K-AKT-FBW7 pathways and 2) combining with E2F1
overexpression and mutations in FBXW7 and PPP2R1A in determining outcomes of both

TP53-mu and TP53-wt EC. An untoward commonality included induction of FOXM1 or

failed degradation of FOXM1, or both, which portends enhanced HR gene expression and

potential insensitivity to chemotherapy.
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Methods

The Cancer Genome Atlas

We obtained and analyzed TCGA (www.cancergenome.nih.gov) data as previously described

[22]. TCGA contains comprehensive genomic information including copy number variation,

single-nucleotide polymorphisms, miRNA expression, gene expression, and DNA methylation

data, as well as clinical and outcome information. Data from TCGA were downloaded,

Fig 1. Molecular schematic and oncogene expression. A, Integrated schematic of the TP53-p21-CDE/CHR and PIK3CA-AKT-FBW7 pathways in EC. B, Comparative

analysis of the mRNA expression of oncogenes regulated directly or indirectly by the TP53-p21-CDE/CHR pathway in TP53 mutant (mu) (n = 62) vs wild type (wt) EC

(n = 149) (excluding POLE mutants). C, Correlation coefficient analysis delineating relationships between differentially expressed oncogenes in TP53-mu (n = 62) and

wt EC (n = 149) (excluding POLE mutants) as a function of mRNA expression of E2F1 and CCNA2 oncogenes. CDE indicates cell-cycle–dependent element; CHR, cell-

cycle genes homology region; EC, endometrial cancer; wt, wild type.

https://doi.org/10.1371/journal.pone.0245664.g001
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normalized, formatted, and organized for integration and analysis with other biological data-

sets in accordance with TCGA data-sharing agreements. Somatic mutations and gene expres-

sion data were recorded.

All data collection and processing, including the consenting process, were performed after

approval by each of the participating institution’s local institutional review board/ethics com-

mittee and in accordance with TCGA Human Subjects Protection and Data Access Policies,

adopted by the National Cancer Institute and the National Human Genome Research

Institute.

Mutation analysis

Somatic mutation detection, calling, annotation, and validation from TCGA have been

described [23]. Somatic mutation information resulting from exome sequencing with the Illu-

mina Genome Analyzer DNA Sequencing GAIIx or HiSeq 2000 platforms (Illumina Inc) was

downloaded and formatted for analysis. Mutation information was downloaded as level 3 or

validated somatic mutations.

Of the 239 cancerous endometrial tumors included, we identified 18,388 unique genes with

138,838 validated somatic mutations, including frame-shift insertions and deletions; in-frame

insertions or deletions; and missense, nonsense, nonstop, and splice-site mutations. Silent

mutations were excluded from the analysis. The number of mutations for each selected gene

was recorded for each patient.

Gene expression

Gene expression data were downloaded from TCGA data repository as level 3 RNA sequence

data [4] created by Illumina RNA Sequencer HiSeq 2000 platforms (Illumina Inc) and anno-

tated with the HG-19 version of the human genome. Normalized and log-transformed gene

expression data from these endometrial tumors were available for analysis. Analyses were per-

formed with R statistical packages (R Foundation) for statistical computing and graphics [24]

and bioconductor packages as open-source software for bioinformatics [25]. For the front end,

we used Biometric Research Branch Array Tools, an integrated package for visualization and

statistical analysis that uses Excel (Microsoft Corp) [26].

Cell lines and in vitro assessments

As PbCT is the predominant adjuvant therapy for high-risk EC, which are frequently insensi-

tive to therapy [2, 27–30], we chose cell lines recognized as platinum insensitive with identified

mutational anomalies associated with adverse clinical outcomes in the study population.

ARK2, a uterine serous carcinoma (USC) (type II) derived cell line, harbors mutant TP53 and

wt FBXW7 and PPP2R1A (personal communication with A. Santin, Yale University) [31].

HEC-1B cells (endometrioid endometrial carcinomas [EEC]; type I) have mutations in TP53,

FBXW7, and PPP2R1A [32]. Both cell lines were cultured in Dulbecco’s Modified Eagle’s

Medium containing 10% fetal bovine serum, 100 mcg/mL streptomycin, 100 units/mL penicil-

lin, and 2 mM L-glutamine. Cells were maintained in an incubator at 37˚C in an atmosphere

containing 5% CO2. Carboplatin and panobinostat (HDAC10 inhibitor) were purchased from

ApexBio.

Real-time polymerase chain reaction

Total RNA was isolated using RNeasy Plus MiniK (Qiagen). cDNA was synthesized using a

Reverse Transcription Kit (Applied Biosystems). Real-time polymerase chain reaction (PCR)
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was performed using the SYBR Green PCR Master Mix (ThermoFisher Scientific) on the

LightCycler 480 (Roche Molecular Systems Inc). The sequences of primers for the analyzed

genes are detailed in S1 Table.

Western blot analysis

ARK-2 cells were treated with panobinostat at 10 nM. After incubation for 3, 6, 12, and 24

hours, cell lysates were collected for protein expression analyses and compared with untreated

(time = 0) controls. Expression of p21, FOXM1, acetylated-H3, and GAPDH were measured

by Western blot. Antibodies used in this study were P21 (Cell Signaling Technology, 2947),

FOXM1 (Cell Signaling Technology, 5436), acetyl-H3 (Millipore, 06–599), and GAPDH

(Sigma-Aldrich, G8795).

MTT assay and synergy assessment

Three thousand cells per well were seeded in triplicate in 96-well plates and the cells treated

with increasing concentrations of panobinostat and carboplatin for 72 hours, respectively.

MTT-based CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega Corp) was

performed (per manual) to assess half-maximum inhibitory concentration. Constant-ratio

studies were performed to investigate the combinatory effect of carboplatin with panobinostat

in HEC-1B and ARK-2 cell lines [33].

Statistical analysis

For each candidate gene surveyed, TCGA-quantitated expression levels of the corresponding

mRNA were annotated for the 239 specimens. Comparisons between groups were evaluated

with the χ2 test for nominal variables and the 2-sample t test for continuous variables. Correla-

tions were quantified by using Pearson correlation coefficients. All calculated P values were

2-sided.

Progression-free survival analysis

Statistical methods for survival data were used to analyze progression-free survival (PFS),

defined as the time from surgery to disease recurrence. Patients without evidence of disease at

the end of follow-up were treated as censored observations. Comparisons between Kaplan-

Meier survival curves were performed with log-rank tests. For association with survival, all

clinicopathologic variables were assessed with Cox proportional hazard regression. All vari-

ables associated with survival with a univariate P value�.05 were included in an initial multi-

variate regression model. Those variables with the smallest contributory effect were excluded

with a backward elimination technique based on the Akaike information criterion (measure of

the quality of the model for a given dataset). Hazard ratios (95% CI) were reported. Analyses

were performed using R statistical computing and graphics [24].

Results

Study tumor characteristics

Using TCGA for EC, we analyzed specimens with available DNA sequences and quantitative

gene-specific RNA expression data [4]. Clinicopathologic characteristics of the tumors in the

study population (N = 239) included 47 (26, stage 3/4) USC and 192 EEC including 72 grade 1

(4, stage 3/4), 73 grade 2 (10, stage 3/4), and 47 grade 3 (16, stage 3/4). Molecular characteris-

tics included POLE-mu detected in 28 specimens (11.7%), TP53-mu in 70 (29.3%), microsatel-

lite instability-high (MSI-H) in 67 (28%), and estimated copy number variation low (CNV-L)

PLOS ONE Molecular prognostic determinants in endometrial cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0245664 January 27, 2021 5 / 16

https://doi.org/10.1371/journal.pone.0245664


(determined by 239 –[POLE-mu + TP53-mu + MSI-H]) in 92 (38.5%). TP53-mu was identi-

fied in 41 (87.2%) USC and 29 (15.1%) EEC including 4.2% in grade 1, 12.3% in grade 2, and

36.5% in grade 3. At least 1 mutation in PIK3CA, PTEN, or PIK3R1 occurred in 83% of the

specimens; 57% had a mutation in more than 1 of these genes. Because POLE-mu was associ-

ated with ultramutated status and superior outcomes [4], POLE mutants were not included in

the subsequent molecular analyses except to use as a standard for comparing favorable out-

comes. Thus, the primary study population consisted of 62 TP53-mu and 149 TP53-wt speci-

mens. Of note, compared with the general EC population, the study population was weighted

toward more high-risk characteristics, as shown by the enhanced prevalence of advanced dis-

ease, grade 3 histology, and USC.

Comparative assessment of oncogene expression in TP53-mu and TP53-wt

To assess the validity of the proposed downstream network of TP53-mu–dependent gene alter-

ations in Fig 1A, we compared the mean mRNA expression level of the proposed gene network

in TP53-mu and TP53-wt EC, excluding POLE-mu specimens. Assessment of CDKN1A (p21)

expression in TP53-mu compared with that in TP53-wt EC showed a dramatic differential

consistent with the failure of mutated TP53 to induce CDKN1A (p21) (Fig 1B). Multiple genes

harboring CDE/CHR p21 repressive site in their promoter regions, including CDK2, CCNA2,

AURKA, TPX2, PLK1, FOXM1, ESPL1, and MASTL [5], were significantly upregulated in

TP53-mu compared with TP53-wt EC. The lack of suppression of CDK2 and marked overex-

pression of CCNE1 and E2F1 portend the observed augmentation of multiple cell cycle (ie,

AURKA, TPX2, PLK1) and other genes (ie, FOXM1, Rad51, and CIP2A [formerly KIAA1524])

harboring E2F1 transcriptional activating sites [11–14]. By contrast, the E2F1 apoptotic target

TP73 is significantly suppressed in TP53-mu tumors [8].

Oncogene expression correlation with CCNA2 and E2F1

The overexpression of E2F1 and concomitant TP73 suppression in TP53-mu EC suggested, as

previously reported, upregulation of CCNA2, which determines the mode of action of E2F1

[8, 34]. Thus, we examined the correlation between reference oncogenes (E2F1 and CCNA2)

and multiple direct or downstream targets of E2F1 in TP53-mu and TP53-wt EC (Fig 1C).

Correlation coefficients for the reference genes in TP53-mu tumors were similarly positive

with regard to cell-cycle genes, but the positivity was substantially higher for CCNA2 than

E2F1 for MASTL1, CIP2A, and HR pathway genes. Unexpected were the high positive correla-

tions in TP53-wt tumors between the expressions of CCNA2 and E2F1 targets and HR pathway

genes, which paralleled the correlations in TP53-mu tumors. These results suggested a poten-

tial role for CCNA2 in the carcinogenesis of both TP53-mu and a subset of TP53-wt tumors.

Comparative expression of oncogenes as a function of TP53-mu and TP53-

wt CCNA2 expression

The expression of multiple, upregulated oncogenes in TP53-mu EC was assessed in TP53-wt

EC with high CCNA2 expression. The upper quartile of annotated CCNA2 mRNA expression

levels among TP53-wt specimens (�2.6) was arbitrarily designated as high expression

(CCNA2-H). When the expression of multiple CCNA2/E2F1 target and HR-pathway genes in

TP53-wt CCNA2-H and TP53-mu EC was assessed, equivalency or higher expression was

shown for most assessed genes in TP53-wt CCNA2-H vs TP53-mu specimens (Table 1). Note-

worthy was the dramatic upregulation of FOXM1, CIP2A, and multiple HR genes in both

TP53-mu and TP53-wt CCNA2-H EC compared with TP53-wt with CCNA2 low expression

(CCNA2-L).

PLOS ONE Molecular prognostic determinants in endometrial cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0245664 January 27, 2021 6 / 16

https://doi.org/10.1371/journal.pone.0245664


Clinical outcomes according to EC classifications

The molecular schematic suggested that the high expression of FOXM1 observed with upregu-

lated CCNA2 expression in TP53-mu and TP53-wt (Fig 1A), combined with anticipated

restricted proteosomal degradation of FOXM1 due to PPP2R1A-mu or FBXW7-mu, would

unfavorably impact survival [35]. Accordingly, the study population was segregated into 4

cohorts including POLE-mu, PPP2R1A-mu/FBXW7-mu, CCNA2-H, and CCNA2-L (Fig 2A).

PFS analysis for POLE mutants was as previously reported [4], but the CCNA2-H and

PPP2R1A-mu/FBXW7-mu cohorts had substantially disparate outcomes compared to the

CCNA2-L cohort (Fig 2B). Cox proportional hazard ratio survival analysis using CCNA2-L as

the reference assigned significance for CCNA2-H (hazard ratio, 3.68; P = .0005) and

PPP2R1A-mu/FBXW7-mu (hazard ratio, 4.53; P = .0002) (Fig 2C). Adjusting for age, histol-

ogy, grade, myometrial invasion, TP53-mu status, and stage, independent significance (PFS)

was associated with CCNA2-H (P = .0016), PPP2R1A-mu/FBXW7-mu (P = .0007), and stage

(P = .0042) (Fig 2D).

Considering E2F1 activates CIP2A [14], which modulates the PI3K-AKT-FBW7 axis via

inhibition of PP2A [20, 21], we replaced CCNA2 expression with CIP2A expression (CCNA2:

CIP2A correlation coefficient, 0.893). Stratifying the molecular panel into POLE-mu,

Table 1. Comparison of the expression of multiple pathway-specific genes in TP53 wild type/CCNA2-high vs TP53 mutant vs TP53 wild type/CCNA2-low

specimens.

Cohort A Cohort B Cohort C Cohort A vs B Cohort B vs C

TP53 Mutants CCNA2-High CCNA2-Low

(n = 62) (n = 41) (n = 108)

Gene Mean (SD) Mean (SD) Mean (SD) Cohen’s da P Value Cohen’s da P Value

TP53-p21-CDK2-E2F1/CCNA2 Pathway

CDKN1A 4.141 (1.257) 5.648 (1.070) 5.826 (1.080) 1.271 < .001 0.165 .37

CDK2 3.627 (0.808) 3.867 (0.529) 2.811 (0.608) 0.337 .10 1.797 < .001

E2F1 3.292 (1.006) 2.703 (0.938) 1.462 (0.868) 0.602 .004 1.398 < .001

CCNA2 2.756 (0.894) 3.276 (0.569) 1.557 (0.793) 0.665 .001 . . . . . .

E2F1/CCNA2 Targets

CCNE1 4.207 (1.343) 2.876 (1.085) 2.084 (1.199) 1.067 < .001 0.678 < .001

AURKA 3.253 (0.780) 2.920 (0.738) 1.621 (0.765) 0.436 .03 1.715 < .001

TPX2 4.394 (0.808) 4.117 (0.654) 2.637 (0.791) 0.369 .07 1.957 < .001

PLK1 4.402 (0.870) 4.234 (0.811) 2.877 (0.872) 0.198 .33 1.585 < .001

FOXM1 4.103 (0.800) 4.229 (0.653) 2.801 (0.733) 0.169 .40 2.003 < .001

EZH2 2.834 (0.711) 2.898 (0.528) 2.098 (0.620) 0.098 .63 1.340 < .001

CIP2A 2.245 (1.078) 2.435 (0.690) 0.835 (0.956) 0.201 .32 1.794 < .001

Homologous Recombination Pathway Genes

MER11 0.975 (0.885) 1.264 (0.537) 0.624 (0.755) 0.377 .06 0.912 < .001

RAD50 1.940 (0.753) 2.461 (0.680) 2.021 (0.603) 0.719 < .001 0.704 < .001

NBS1 2.473 (0.987) 2.987 (0.644) 2.340 (0.836) 0.593 .004 0.820 < .001

BRCA1 1.168 (0.953) 1.947 (0.744) 0.778 (0.691) 0.889 < .001 1.656 < .001

BRIP1 −0.354 (1.027) 0.276 (0.805) −1.151 (0.808) 0.667 .001 1.767 < .001

EXO1 1.092 (0.919) 1.509 (0.705) 0.023 (1.027) 0.496 .02 1.563 < .001

BRCA2 −1.146 (1.355) −0.395 (0.877) −2.310 (1.200) 0.631 .002 1.708 < .001

RAD51 1.782 (0.797) 2.275 (0.679) 0.829 (0.807) 0.655 .002 1.867 < .001

a Cohen’s d = the absolute value of the difference in group means divided by the pooled standard deviation; the higher the value, the greater the difference between

groups:�0.2/<0.5, small;�0.5/<0.8, medium; and�0.8, large.

https://doi.org/10.1371/journal.pone.0245664.t001
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PPP2R1A-mu/FBXW7-mu, CIP2A-H, and CIP2A-L (Fig 3A) produced correspondingly sig-

nificant discriminatory outcomes (Fig 3B), as judged by Cox proportional hazard ratios of 5.34

and 6.98 for CIP2A-H and PPP2R1A-mu/FBXW7-mu, respectively (Fig 3C). CIP2A overex-

pression and PPP2R1A-mu would portend PP2A deficiency and unimpeded activation of

AKT, the latter potentially augmented by upstream dysregulated elements that initiate the

PI3K-AKT kinase cascade [4, 19–21, 36, 37]. Therefore, mutant PTEN, PIK3CA, PIK3R1, and

ARID1A and ERBB2 expression were included in the univariate analysis; only PTEN-mu was

significant. Adjusting for age, grade, histology, myometrial invasion, TP53 and PTEN muta-

tional status, and stage, independent significance was associated with CIP2A-H-mu (P = .001),

PPP2R1A-mu/FBXW7-mu (P = .0003), and stage (P = .0119) (Fig 3D).

Recognizing the seminal role of CCNA2 in regulating E2F1 and indirectly CIP2A and

FOXM1 in both TP53-mu and TP53-wt EC, we postulated that high expression of either

CCNA2 or E2F1 with more modest expression of the other would further discriminate out-

comes. Slightly more restrictive levels for CCNA2 (�2.75) and E2F1 (�2.75) expression were

used. This allowed stratifying EC into 4 molecular-based distinguishable cohorts (Fig 4A)

Fig 2. Molecular classification by cohorts and outcomes (CCNA2 expression). A, Molecular classification differentiated 4 cohorts according to POLE mutations

(POLE-mu), FBXW7 and/or PPP2R1A mutations (FBXW7-mu/PPP2R1A-mu), high CCNA2 expression (CCNA2-H), and low CCNA2 expression (CCNA2-L). B, PFS as

a function of time according to molecular cohorts. C, Cox proportional model analysis of the molecular classification cohorts using CCNA2-L as the reference. D,

Multivariate analysis including the configured panel cohorts, age, grade, histology, myometrial invasion, TP53 status, and stage. HR indicates hazard ratio; PFS,

progression-free survival.

https://doi.org/10.1371/journal.pone.0245664.g002
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associated with distinct, long-term PFS outcomes (Fig 4B). Using the low-expression cohort

for CCNA2 and E2F1 (CCNA2-L/E2F1-L) as reference, Cox proportional survival analysis

showed significant hazard ratios for the FBXW7-mu/PPP2R1A-mu and CCNA2-H/E2F1-H

cohorts (Fig 4C). Adjusting for age, grade, histology, myometrial invasion, stage, and TP53 sta-

tus, Cox analysis showed independent significance for CCNA2-H/E2F1-H (hazard ratio, 5.33;

P = .0003), FBXW7-mu/PPP2R1A-mu (hazard ratio, 6.46; P = .0002), and stage (hazard ratio,

1.38; P = .0170) (Fig 4D).

Recurrences in traditional low-risk and high-risk EC according to

biomarker panel cohorts

Contemporary adjuvant therapy for low-risk EC (stage 1 or 2, grade 1 or 2) is generally limited.

These low-risk tumors significantly (P< .0001) stratified according to molecular-panel

cohorts. The estimated 5-year PFS for low-risk EC with the low-risk biomarker profile

(CCNA2-L/E2F1-L/FBXW7-wt/PPP2R1A-wt) (n = 75) was 92% compared with 31% for the

low-risk EC with the high-risk biomarker profile (CCNA2-H/E2F1-H or FBXW7-mu/

Fig 3. Molecular classification by cohorts and outcomes (CIP2A expression). A, Molecular classification differentiated 4 cohorts according to POLE mutations

(POLE-mu), FBXW7 and/or PPP2R1A mutations (FBXW7-mu/PPP2R1A-mu), high CIP2A expression (CIP2A-H), and low CIP2A expression (CIP2A-L). B, PFS as a

function of time according to molecular cohorts. C, Cox proportional model analysis of the molecular classification cohorts using CIP2A-L as the reference. D,

Multivariate analysis including the configured panel cohorts, age, grade, histology, myometrial invasion, TP53 and PTEN mutational status, and stage. HR indicates

hazard ratio; PFS, progression-free survival.

https://doi.org/10.1371/journal.pone.0245664.g003
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PPP2R1A-mu, or both) (n = 35) (S1 Fig). By contrast high-risk EC (stage 3 or 4 and/or grade

3) are frequently managed with adjuvant PbCT. Stratified by biomarker panel profiles, high-

risk patients with the low-risk biomarker profile (n = 25) appeared to respond favorably to

contemporary therapy (estimated 5-year PFS, 93%) compared with those who had the high-

risk biomarker profile (n = 76) (estimated 5-year PFS, 56%) (P = .023) (S1 Fig).

Clinical outcomes according to biomarkers in MSI-H and CNV-L EC

Considering the reported emphasis on MSI-H and CNV-L in TCGA for EC [4], we assessed

PFS associated with MSI-H (excluding POLE-mu) and CNV-L for CCNA2-L/E2F1-L/FBXW7-

wt/PPP2R1A-wt vs CCNA2-H/E2F1-H or FBXW7-mu/PPP2R1A-mu, or a combination. The

biomarker panel cohorts separate both MSI-H (estimated 5-year PFS, 95% and 42%, respec-

tively) and CNV-L (estimated 3-year PFS, 92% and<50%, respectively) into 2 diverse prog-

nostic subgroups (S2 and S3 Figs, respectively), suggesting an inclusive applicability for the

molecular biomarker classification panel.

Fig 4. Molecular classification by cohorts and outcomes (CCNA2/E2F1 Expression). A, Molecular classification differentiated 4 cohorts according to POLE mutations

(POLE-mu), FBXW7 and/or PPP2R1A mutations (FBXW7-mu/PPP2R1A-mu/), high CCNA2 and E2F1 expression (CCNA2-H/E2F1-H), and low CCNA2 and E2F1
expression (CCNA2-L/E2F1-L). B, PFS as a function of time according to molecular cohorts. C, Cox proportional model analysis of the molecular classification cohorts

using CCNA2-L/E2F1-L as the reference. D, Multivariate analysis including the configured panel, age, grade, histology, myometrial invasion, TP53 status, and stage. HR

indicates hazard ratio; PFS, progression-free survival; Ref, reference.

https://doi.org/10.1371/journal.pone.0245664.g004
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HR pathway gene expression as a function of adverse biomarkers

FOXM1 transcription was dramatically increased in the CCNA2-H/E2F1-H cohort compared

with the CCNA2-L/E2F1-L cohort. Moreover, the expression of CIP2A (formerly KIAA1524)

and the genes in the HR pathway (EXO1, BRIP1, Rad51, BRCA1, and BRCA2) reportedly

induced by FOXM1 [18] were significantly upregulated in both the CCNA2-H/E2F1-H and

FBXW7-mu/PPP2R1A-mu cohorts compared with the CCNA2-L/E2F1-L cohort (S2 Table).

Induction of p21 and repression of panel-specific targets

The molecular schematic (Fig 1A) predicts that CDKN1A (p21) induction in TP53-mu tumors

would repress multiple oncogenes with downstream suppression of corresponding targets.

Histone deacetylase inhibitors (HDACi) have been reported to induce p21 in TP53-mu cell

lines [38]. The platinum-insensitive cell lines ARK-2 and HEC-1B were exposed to panobino-

stat, an HDAC10 inhibitor, and qPCR expression of targeted genes analyzed. Increased expres-

sion of CDKN1A (p21) with downregulation of CCNA2, E2F1, CIP2A, FOXM1, and EXO1 was

observed in both cell lines (Fig 5A and 5B).

ARK-2 cells were treated with 10 nM panobinostat and protein expression assessed via

Western blot. Increased expression of p21 and acetyl-H3 and down-regulation of FOXM1

Fig 5. In vitro assessment of ARK-2 and HEC-1B cell line response to HDAC inhibitor. A and B, After 24-hour

exposure to panobinostat or vehicle, target-specific gene expression was determined by quantitative polymerase chain

reaction in ARK-2 and HEC-1B cell lines. C, ARK-2 cells untreated or treated with 10 nM panobinostat and protein

expression assessed at indicated time points (Western blot). D and E, Cell viability assays in ARK-2 and HEC-1B cell

lines after exposure to panobinostat or carboplatin alone and in combination, assessed to determine synergism. Carbo

indicates carboplatin; ctrl, control; pano, panobinostat.

https://doi.org/10.1371/journal.pone.0245664.g005
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expression occurred in a time-dependent manner (Fig 5C). The stimulatory effect on p21 and

the inhibitory effect of FOXM1 expression in response to panobinostat are consistent with the

results observed in real-time PCR analysis (Fig 5A).

Synergism with HDACi and carboplatin in platinum-insensitive cell lines

The downregulation of FOXM1 and HR pathway EXO1 with panobinostat in platinum-insen-

sitive cell lines suggested the potential for HDACi to enhance platinum sensitivity. Synergism

occurred in ARK-2 and HEC-1B cell lines exposed to varying concentrations of carboplatin

and panobinostat (Fig 5D and 5E). These observations suggested that suppression of FOXM1

and HR pathway components might enhance platinum sensitivity in high-risk HR-proficient

EC.

Discussion

To our knowledge, this is the first report of a classification system for EC that appears to corre-

late with oncologic outcomes independent of patient age, histology, tumor grade, myometrial

invasion, and TP53 mutational status. The discriminatory PFS value of the cohorts in the

molecular biomarker panel was predicated on the overexpression of CCNA2 and E2F1 or

mutations in FBXW7 or PPP2R1A. These observations constitute a mechanistic commonality

regardless of TP53 status that is equally applicable in MSI-H and CNV-L cohorts. Pivotal is the

interactive role of CCNA2 and E2F1 in upregulating FOXM1 transcription and inducing

CIP2A activation, predictably leading to PP2A inhibition and likely restriction of FOXM1 deg-

radation [19–21, 35, 39, 40]. The latter is likewise anticipated with FBXW7 and PPP2R1A
mutations. FOXM1 reportedly induces multiple HR genes such as BRIP1, BRCA2, EXO1, and

Rad51 [18], all of which were overexpressed in the poor prognostic molecular biomarker

cohorts. The mechanistic molecular distillate from our observations suggests that the overex-

pression of multiple HR-pathway genes expectedly limits responses in the majority of HR-pro-

ficient ECs treated with DNA-damaging agents.

The 1.9% annual increase in age-adjusted mortality for EC observed over the past decade

warrants reappraisal of contemporary therapeutic algorithms [2]. Our recent institutional

assessments coupled with subgroup analyses in select randomized clinical trials suggest that

PbCT has suboptimal efficacy for managing high-risk EC [27–30]. Considering that most EC

is HR proficient [4], augmenting HR components, several of which are induced by FOXM1,

would presumably enhance DNA-damage repair, yielding insensitivity to DNA-damaging

agents such as platinum [18]. This study confirms the marked upregulation of HR components

in high-risk EC.

The integrated signaling pathways shown in Fig 1 illustrate the mechanisms that lead to

simultaneous upregulation of FOXM1 and downregulation of FOXM1 degradation in TP53-

mu and TP53-wt with CCNA2-H and/or E2F1-H. The failure of TP53-mu to induce CDKN1A
(p21) derepresses FOXM1, and with the upregulation of E2F1, FOXM1 expression is further

augmented [18]. The mechanism of action of E2F1 is predicated on CCNA2; high CCNA2

projects a proliferative E2F1 mode [8]. E2F1 and CCNA2 were both upregulated in TP53-mu

and a subset of TP53-wt EC. Overexpression of CCNA2 has previously been correlated with

TP53 expression, chemoresistance, and poor prognosis in EC [9, 10]. We showed for the first

time that TP53-wt EC with high CCNA2 expression is associated with molecular aberrations

and clinical outcomes similar to TP53-mu EC. The mechanism responsible for high expression

of CCNA2 in the subset of TP53-wt EC is unknown.

The prognostic biomarker panel that incorporates CCNA2/E2F1 upregulation and

PPP2R1A/FBXW7 mutations is highly discriminatory. Without these molecular aberrations,
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clinical outcomes are very favorable and appear to be similar to those of POLE-mu tumors.

Importantly, the majority of EC is HR proficient, which predicts a high prevalence of platinum

insensitivity in biomarker panel–positive patients. Suppressing the induction of FOXM1 or

enhancing degradation of FOXM1, or both, thereby downregulating HR components, might

potentially facilitate conversion to platinum sensitivity. Exemplary exposure of platinum-

insensitive TP53-mu EC cell lines to panobinostat [38], an HDACi currently in clinical trials,

resulted in induction of CDKN1A (p21), suppression of CCNA2, CIP2A, FOXM1, and EXO1,

and synergism with carboplatin at nM levels of panobinostat.

The strengths of this study include the robustness of TCGA annotated database, which

includes specimens obtained at cancer centers dedicated to definitive management of patients

with EC. The study is limited by the lack of biomarker-panel validation in a similar, sizeable

population having definitive staging, central pathology review, standardized treatment,

extended surveillance, and focused molecular analysis. The unavailability of detailed treatment

algorithms and reliable long-term disease-specific survival documentation limited correlations

of molecular irregularities to PFS and clinicopathologic parameters.

In summary, the integration of CCNA2 and E2F1 overexpression and POLE, PPP2R1A and

FBXW7 mutations generated a molecular EC classification that projects prognostic risk, plati-

num insensitivity, and potential targetable therapeutic options.
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