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Abstract

In addition to the assessment of local alterations of specific brain regions, the investigation of entire networks with in vivo 
neuroimaging techniques has gained increasing attention. In general, connectivity analysis refers to the investigation of 
links between brain regions, with the aim to characterize their interactions and information transfer. These may represent 
or relate to different physiological characteristics (structural, functional, or metabolic information) and can be calculated 
across different levels of granularity (2 regions vs whole brain). In this article, we provide an overview of different connectivity 
analysis approaches with interpretations and limitations as well as examples in pharmacological imaging and clinical 
applications. Structural connectivity obtained from diffusion MRI enables the reconstruction of neuronal fiber tracts. These 
physical links represent major constraints of functional connections, which are in turn defined as correlations between signal 
time courses. In addition, molecular connectivity approaches based on PET imaging enable the assessment of interregional 
associations of metabolic demands and neurotransmitter systems. Application of these approaches in clinical investigations 
has demonstrated novel alterations in various neurological and psychiatric disorders on a network level. Future work should 
aim for the combined assessment of multiple imaging modalities and to establish robust biomarkers for clinical use. These 
advancements will further improve the biological interpretation of connectivity metrics and networks of the human brain.
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Introduction
The possibility to assess human brain structure and func-
tion in vivo has made significant contributions to the clinical 
characterization of numerous psychiatric and neurological 
disorders. Imaging techniques like magnetic resonance imag-
ing (MRI), positron emission tomography (PET), and electroen-
cephalography are among the most used modalities. As such, 
they have substantially increased our knowledge about the 
maturation of the brain, normal physiological processes, and 
pathological alterations thereof. Traditionally, the focus has 
been on local effects and changes in certain brain regions like 
tumors or atrophy, alterations in blood flow and metabolism, 
as well as the up- or downregulation of receptors and trans-
porters of neurotransmitter systems. Particularly with the use 
of functional MRI (fMRI), cognitive functions and processing of 
certain emotions were often ascribed to specific areas. As the 
brain, however, comprises far more connections than regions, 

namely 1014 synaptic connections vs 1010 neurons, the investi-
gation of these links has always been of great interest. Invasive 
histological approaches such as cell staining and the injection 
of labeled agents for tract tracing have previously been used for 
the assessment of anatomical networks, and these represent 
the very basis for the nowadays widespread connectivity anal-
yses. One example is given by the CoCoMac database (Kötter, 
2004), which combines a multitude of anatomical tract tracing 
studies into a comprehensive data set of physical connections 
within the primate brain.

It is now well established that not a single brain area but 
rather the concert of several anatomically and/or functionally 
interconnected regions is responsible for the diverse processing 
of external and internal stimuli as well as response and adapta-
tion. The study of connectivity thus aims to model and under-
stand how such a coordinated interplay and the interactions 
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between brain regions form neuronal networks, which in turn 
maintain efficient information processing. Although current in 
vivo brain imaging approaches cannot give a complete descrip-
tion of the connectome at a cellular level, these techniques are 
well suited to investigate brain networks at the macro-scale. The 
present article aims to provide an overview of common connec-
tivity analysis strategies derived from data such as structural 
and functional imaging. We also highlight further aspects of 
connectivity obtained from PET imaging as well as multimodal 
combinations of these approaches. Following a brief description 
of each technique as well as their advantages, interpretations, 
and limitations, several examples with respect to applications 
in clinical and neuropharmacological research will be provided.

Connectivity Levels and Graph Theory

Connectivity analyses based on imaging data can be carried 
out on multiple levels of detail. The most specific analysis is 
between 2 a priori chosen brain regions yielding, for exam-
ple, a single estimate of connection strength or a fiber path-
way (seed-to-seed connectivity; Figure 1a). If one is, however, 
interested in the relation of a certain region (i.e., a seed region) 
compared with the rest of the brain, a connectivity map can 
be constructed (seed-to-voxel connectivity; Figure 1b). A more 
generalized approach covers the assessment of whole-brain 
connectivity. This can be achieved by setting up a connectivity 
matrix, where each matrix entry represents the connectivity 
between any 2 regions (Figure 1c). The approach enables the 
specific assessment of within- and between-network connec-
tions, for example, to investigate if pathological alterations are 
limited to a certain network, multiple networks independently, 
or may be specifically ascribed to between-network commu-
nications (Kaiser et al., 2015). Such connectivity matrices can 
then be further used for statistical testing, for example, with 
network-based statistics (Zalesky et  al., 2010), or they may 
be subject to network analysis using graph theory. While the 
former approach directly operates on raw connectivity matri-
ces, the appearance of the connectivity matrix regarding spar-
sity, weighting, and directionality is important for the latter. 
Usually, weak links are discarded since spurious connections 
may obscure the topology of the network (Rubinov and Sporns, 
2010), though the importance of few weak ties has also been 
highlighted (Gallos et  al., 2012). Weighted connections often 
provide a measure of “connectivity strength,” but as this in 

itself can raise difficulties regarding the interpretation (see 
structural connectivity), matrices are often binarized after 
thresholding. Regarding the directionality of connections, this 
can often only be achieved by invasive tract-tracing or with 
dynamic causal modeling. Graph theory enables the extraction 
of network summary metrics like node degree and network 
efficiency reflecting the connection strength of a single region 
and the interconnectedness of the entire network, respectively. 
These have in turn been related to intelligence scores (Li et al., 
2009; Ryman et al., 2016) and cognitive performance (Hampson 
et al., 2006; Giessing et al., 2013), and alterations were identified 
in various psychiatric populations (Lord et al., 2012). A particu-
larly interesting approach is to study network economy and 
the simulation of network perturbations (Bullmore and Sporns, 
2012; Hahn et al., 2015a). This allows to assess cost-efficiency 
tradeoffs (Achard and Bullmore, 2007) and modelling of puta-
tive pathological mechanisms by inducing “lesions” in brain 
networks (Fornito et al., 2013; Gollo et al., 2018). Although these 
examples indicate that graph metrics may indeed capture 
physiologically relevant information, a recent study suggested 
caution for one of the most prominent findings, namely the 
association between intelligence and brain network efficiency 
(Kruschwitz et  al., 2018). Thus, several limitations should be 
considered when evaluating whole-brain connectivity. These 
include potential pitfalls when constructing a connectivity 
matrix (e.g., definition of nodes and edges), during the analy-
sis (thresholding, multiple comparisons, and null models), or 
when interpreting the results (when whole-brain summary 
measures are actually caused by local alterations) (Fornito 
et al., 2013). For a detailed description on graph theory and the 
corresponding outcome metrics (Rubinov and Sporns, 2010), 
please see previous seminal review articles (Sporns et al., 2004; 
Bullmore and Sporns, 2009; Fornito et al., 2013).

Structural Connectivity

At the structural level, diffusion weighted imaging approaches 
such as diffusion tensor and spectrum imaging offer the pos-
sibility to reconstruct the anatomical/physical links between 
brain regions. This is based on the anisotropic diffusion of 
water along white matter fiber tracts (for a recent review, see 
Shi and Toga, 2017). Reconstruction of fiber pathways is usually 
done with deterministic or probabilistic algorithms. The former 
reconstructs tracts based on the preferential diffusion direction 

Figure 1. Different levels of connectivity. (a) A single structural connection is shown between 2 a priori-defined brain regions: the uncinated fasciculus, connecting 

the amygdala (blue) with the frontal cortex (red, regions schematically drawn). (b) Functional connectivity map with respect to a particular seed region, the prefrontal 

cortex (illustrated by the crosshair). (c) Whole-brain connectivity matrix derived from an anatomical atlas. Each matrix entry reflects the connectivity of 2 brain regions 

as shown in a. Each column (and row) of the connectivity matrix represents a connectivity map as given in b.
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and hence yields streamlines with equal weights forming a sin-
gle tract (Figure 2a). In contrast, the latter approach models the 
uncertainty of local fiber directions. As a result, probabilistic 
tractography provides various possible fiber pathways with an 
estimate of the robustness of each tract against noise (Figure 
2b). For both approaches, great effort has been carried out to 
relate connectivity metrics to actual connectivity strength. 
Using invasive tract tracing results as reference, a moderate 
association was obtained for a deterministically defined num-
ber of streamlines (van den Heuvel et al., 2015), which was how-
ever 2-fold higher for probabilistic indices (Donahue et al., 2016). 
On the other hand, for whole-brain connectivity matrices, the 
high specificity obtained with deterministic approaches seems 
more important than the high sensitivity inherent to proba-
bilistic tractography (Zalesky et  al., 2016). Another interesting 
aspect is given by the interpretation of the commonly used 
metric of fractional anisotropy. Using the postmortem approach 
CLARITY, a relationship was found with immunofluorescence-
labeled myelin basic protein for commissural tracts with coher-
ent fiber organization (Chang et al., 2017). This association with 
fractional anisotropy was, however, not confirmed by in vivo 
MRI-based estimation of myelin content (Arshad et  al., 2017). 
Furthermore, it should be noted that the term white matter 
“integrity” may be used for disease-related changes in fractional 
anisotropy but can be misleading for interpretations related to 

cognitive performance or learning (Jones et al., 2013). More gen-
erally, changes in diffusion metrics may reflect various biologi-
cal aspects. These include myelination, axon diameter, packing 
density, and fiber organization but also changes in astrocytes 
and vascularization (Takahashi et al., 2002; Zatorre et al., 2012). 
Although these cannot be disentangled by diffusion MRI, pre-
clinical studies have provided further insight into the underlying 
mechanisms, showing that learning-induced changes in white 
matter fractional anisotropy are related to changes in myelin 
staining (Blumenfeld-Katzir et al., 2011; Sampaio-Baptista et al., 
2013). Moreover, the introduction of neurite orientation disper-
sion and density imaging may provide an even more specific 
surrogate of microstructure, which can still be obtained in a rea-
sonable acquisition time (Zhang et al., 2012). Another issue that 
should be considered is that of crossing fibers within the brain, 
especially when considering that up to 90% of white matter 
voxels contain multiple fiber orientations (Tournier et al., 2011). 
Thus, dedicated algorithms that are able to reconstruct also 
nondominant tracts (Behrens et al., 2007) should be employed 
when investigating these brain regions.

Structural connectivity investigations greatly improved 
our understanding of brain organization and the impact of its 
wiring. For instance, using graph metrics, the posterior part 
of the default mode network was identified as structural core, 
emphasizing its importance in functional integration (Hagmann 

Figure 2. Structural connectivity obtained from diffusion tensor imaging. (a) Deterministic tractography with the seed region defined in the cerebral peduncle yields 

the corticospinal tract. Each streamline gets the same weight; color coding reflects the direction (blue, inferior-superior; green, anterior-posterior; red, left-right). (b) 

Probabilistic tractography of the same tract as in a, with each streamline reflecting the probability of how robustly a pathway can be reconstructed in the presence of 

noise (bright color: higher probability). (c) Evaluation of whole-brain structural network parameters showed increased interhemispheric connectivity in male-to-female 

transsexual subjects particularly subcortical-cortical connections, which where distinct from male and female controls (reprinted by permission from Oxford Univer-

sity Press) (Hahn et al., 2015b). (d) Tract-based spatial statistics (TBSS) enables a regional assessment of white matter microstructure. In contrast to c, the local mean 

diffusivity of transsexuals showed a transition from the biological sex to the actual gender identity (Kranz et al., 2014).
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et al., 2008). Furthermore, sex differences in behavioral abilities 
seemed to be at least partly related to differences in intra- and 
interhemispheric wiring of the brain, with connections opti-
mized for coordinated motor abilities and social skills in men 
and women, respectively (Ingalhalikar et al., 2014). This finding 
further extends to differences in transsexual subjects with net-
work parameters revealing distinct characteristics (Hahn et al., 
2015b) (Figure 2c), whereas regional values of fractional anisot-
ropy mostly reflect the transition from the biological sex to the 
actual gender identity (Kranz et  al., 2014) (Figure 2d). Further 
clinical examples include prediction of MDD response to selec-
tive serotonin reuptake inhibitors (SSRIs), which was achieved 
by modeling a specific tract between the midbrain raphe and 
amygdala (Delorenzo et al., 2013). Such a specific application of 
tractography to model certain tracts also facilitated the individ-
ual planning of electrode placement in deep-brain stimulation, 
leading to markedly high response rates in treatment-resistant 
depression (Schlaepfer et  al., 2013). Other examples include 
automated computation of tract profiles in bipolar disorder with 
the advantage to investigate regionally specific differences of 
white matter pathways (Sprooten et al., 2016) as well as norma-
tive databases and atlases of major tracts that may serve as ref-
erence for comparison with individual patient data (Oishi et al., 
2011; Figley et al., 2017).

We would like to note that the approach of tract-based spa-
tial statistics (Smith et al., 2006) (Figure 2d) is not a connectivity 
analysis in the strict sense, but merely a voxel-wise evalua-
tion of skeletonized white matter using a sophisticated spatial 
normalization algorithm. Still, the approach has been widely 
used and yielded interesting results in clinical investigations. 
For instance, an increased sensitivity to detect alterations in 
patients with major depression was demonstrated compared 
with the nonskeletonized voxel-based approach (Bergamino 
et  al., 2017). Furthermore, tract-based spatial statistics results 
yielded differences between responders and nonresponders 
to ketamine (Vasavada et al., 2016) and after electroconvulsive 
therapy (Lyden et al., 2014) in the cingulum bundle.

Another approach to investigate structural connectivity net-
works is that of computing structural covariance networks, for 
example, with voxel-based morphometry data (He et al., 2007; 
Bassett et  al., 2008). Here, a whole-brain connectivity matrix 
(Figure 1c) is compiled by calculating correlations of gray mat-
ter volumes between region pairs across an entire sample. This 
is based on the strong correlation of local MRI metrics for ana-
tomically connected regions (Mechelli et al., 2005; Lerch et al., 
2006). Although the technique indeed relates to biologically rel-
evant information (Evans, 2013), structural covariance networks 
do not fully reflect tractography-based connections (Gong et al., 
2012). The main limitations of the approach are that only a sin-
gle connectivity matrix is obtained for an entire sample (but first 
attempts to resolve this have been introduced; Foster-Dingley 
et al., 2016) and the indirect information of the underlying con-
nectivity pattern.

Functional Connectivity

Functional connectivity computed from resting-state fMRI is 
by far the most-used approach to assess brain networks. This 
was first described by Biswal and colleagues for the motor sys-
tem (Biswal et al., 1995) and required another 10 years until it 
experienced a dramatic increase in its use, for example with the 
1000 functional connectomes project (Biswal et  al., 2010). The 
approach is based on the calculation of statistical metrics of 
signal time courses between brain regions (mostly correlation 

analysis, but also coherence or phase-locking) (Figure 3a). 
Hence, functional connectivity is highly time dependent and 
connectivity patterns may change even within few millisec-
onds, which can be captured by electroencephalography or 
magnetoencephalography. In contrast, structural connections 
are stable at shorter time scales of minutes but may be subject 
to changes at longer intervals, such as after prolonged training 
(Zatorre et al., 2012) or treatment (see above). Functional con-
nectivity “at rest” implies the acquisition of spontaneous fluc-
tuations in brain activity (Fox et al., 2005), which in turn means 
that subjects are awake but do not perform a certain task with 
common instructions to “let thoughts come and go freely” or “do 
not think of anything in particular” (Smith et al., 2013). Studying 
brain activity in the absence of a task, or historically the deacti-
vation during task performance also identified with PET (Raichle 
et al., 2001), led to the robust identification of the default mode 
and various other brain networks (Yeo et al., 2011). These func-
tional networks can also be obtained during anesthesia (Liu 
et al., 2017) or deep sleep, though characterized by decoupling 
(Horovitz et  al., 2009) and specific network changes related to 
varying levels of arousal and consciousness (Tagliazucchi and 
van Someren, 2017). In addition to these networks, functional 
connectivity has been widely used to refine the parcellation of 
the human cortex (Glasser et al., 2016; Gordon et al., 2016), offer-
ing highly homogeneous areas and identification of individual 
neuroanatomical fingerprints.

Functional connectivity is usually computed by seed-based 
correlation analyses or independent component analysis, each 
with different aspects to keep in mind such as seed selection 
bias or the optimal number of independent components to be 
estimated (Cole et  al., 2010). Regardless of the used method, 
data preprocessing is an essential step for functional connec-
tivity. It is important to account for potentially confounding 
signals such as scanner drifts and artifacts or those with physi-
ological origin, including motion, respiratory, and cardiovas-
cular noise. Common approaches to minimize their influence 
are motion scrubbing (Power et  al., 2012), nuisance regression 
against motion parameters, and signals obtained from sepa-
rately acquired data (Glover et  al., 2000) or white matter and 
cerebrospinal fluid signals (Weissenbacher et al., 2009), as well 
as bandpass filtering. For specific details, the reader is referred 
to seminal previous work (Murphy et  al., 2013; Shirer et  al., 
2015; Bright et al., 2017; Caballero-Gaudes and Reynolds, 2017). 
Of note, motion may represent an issue that requires thorough 
attention, especially when investigating children, the elderly, or 
certain clinical populations (Power et  al., 2012). Another issue 
that may require further investigation in the future is to include 
white matter signal in the nuisance regression due to similar 
activation in gray and white matter (Courtemanche et al., 2018; 
Ding et al., 2018). Global signal regression, on the other hand, 
has been demonstrated to introduce potentially spurious anti-
correlations (Weissenbacher et  al., 2009; Cole et  al., 2010) and 
renders the interpretation of group comparisons difficult (Saad 
et al., 2012) and is therefore rarely used anymore.

Functional connectivity also enables a dynamic assessment 
over short time scales and in response to pharmacological treat-
ment. It has been demonstrated that functional connectivity is 
not a static phenomenon, but connections may rapidly switch 
between repeatedly occurring states (Hutchison et  al., 2013; 
Calhoun et al., 2014) and these are hierarchically organized in 
time (Vidaurre et  al., 2017). The evaluation of such dynamic 
states has also revealed novel aspects of mental disorders. For 
instance, combining topological properties of static and dynamic 
connectivity differentiated major depression patients with and 
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without suicidal ideation (Liao et al., 2018), and dynamic con-
nectivity may even have the potential to outperform the static 
connectivity analysis as, for example, in posttraumatic stress 
disorder (Jin et al., 2017).

As a limitation, and similar to structural connectivity 
assessed with diffusion imaging, functional connectivity is non-
directional, that is, more sophisticated models are required for 
inference on the direction of information flow. This can, however, 
be used as an advantage for certain investigations. It is particu-
larly difficult to define small subcortical structures and nuclei 
of the brainstem and the thalamus, although their anatomical 
projections are well known. Using the above characteristic of 
nondirectionality, one can use large cortical projection areas as 
seed regions to functionally (or anatomically) (Behrens et  al., 
2003) identify thalamic nuclei. The approach has been proven 
useful in an investigation of schizophrenia patients. Where 
previous studies only suggested general thalamic dysfunction 
in these patients, the approach showed that alterations spe-
cifically include thalamic connections to the prefrontal, motor, 
and somatosensory cortices (Woodward et  al., 2012). Using 
i.v. application of ketamine in healthy subjects as a model for 
schizophrenia, similar changes were observed for the thalamic 
projections to the somatosensory cortex (Figure 3b–c) (Hoflich 
et al., 2015), emphasizing the involvement of the NMDA receptor 
and potential secondary glutamatergic effects in schizophrenia.

Resting-state fMRI has also been used to model acute drug 
effects during the measurement (pharmaco fMRI). Although 
most of the work to date has not employed connectivity analyses 

per se, this may represent an interesting future opportunity 
to study drug effects on a network level (Schwarz et al., 2007; 
Hoflich et al., 2015). Current applications have already demon-
strated great insight into the association between brain response 
and neurotransmitter system actions specific to pharmacologi-
cal effects. These include studies of amphetamine and SSRIs in 
rodents (Schwarz et al., 2007) as well as human investigations of 
SSRIs (McKie et al., 2005) and ketamine (Deakin et al., 2008). The 
latter has also received particular interest due to its rapid anti-
depressant effects (Zarate et al., 2006) with models derived from 
previous data (De Simoni et al., 2013) or directly from ketamine 
plasma levels (Höflich et al., 2017). Regardless of the model, all 
of these investigations identified important nodes of ketamine 
action such as the thalamus and insula as well as a negative 
response in the subgenual anterior cingulate cortex (Figure 3d). 
This is in line with a large body of literature showing the impor-
tance of the subgenual anterior cingulate and its connectivity 
in the pathophysiology (Murrough et  al., 2016) and treatment 
of major depression (Dunlop et al., 2017). In this context, func-
tional connectivity has been successfully used to model anti-
depressant effects of ketamine (Scheidegger et al., 2012) and to 
predict treatment response to psilocybin (Carhart-Harris et al., 
2017). Interestingly, these 2 treatment agents elicited decreased 
and increased functional connectivity, respectively, which may 
be related to their different modes of action via NMDA and 
serotonin-2A receptors. Another therapy option for treatment-
resistant patients is given by electroconvulsive therapy, which 
showed changes predominantly in various regions of the default 

Figure 3. Functional connectivity obtained from functional MRI. (a) Resting-state signal time course of 2 different brain regions from the default mode network (red, 

posterior cingulate cortex; blue, medial prefrontal cortex). The temporal correlation of these signals is used as index of functional connectivity. (b) Anatomical seed 

regions of large cortical regions (here the somatosensory cortex) can be used to map small thalamic nuclei. (c) Using the seed region in b, changes in functional con-

nectivity following an acute i.v. challenge of ketamine compared with placebo reflect those seen in schizophrenia patients (reprinted by permission from Springer) 

(Hoflich et al., 2015). (d) Pharmacological functional MRI (fMRI) shows that neuronal activation followed that of ketamine plasma levels in the insula, anterior cingulate, 

and thalamus. Scatterplot shows an exemplary time course of the insula with ketamine and placebo response in blue and red, respectively (reprinted by permission 

from Oxford University Press) (Hoflich et al., 2017).
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mode and executive control networks (Perrin et al., 2012; Mulders 
et al., 2016; Wang et al., 2018). Particularly interesting findings 
have also been obtained for invasive (deep-brain stimulation) 
and noninvasive brain stimulation (transcranial magnetic and 
transcranial direct current stimulation), showing that differ-
ent effective sites for both stimulation types were part of the 
same functional networks (Fox et al., 2014). Moreover, functional 
connectivity between different transcranial magnetic stimula-
tion sites and the subgenual anterior cingulate cortex predicted 
its effectiveness in depression (Fox et al., 2012). These findings 
demonstrate the usefulness of connectivity analyses in clini-
cal populations, further improving patient care and treatment 
success. This is supported by recent advances to use functional 
connectivity for individual prediction of behavioral or clinical 
scores (Shen et  al., 2017), identification of patient subtypes in 
major depression, as well as response to transcranial magnetic 
stimulation (Drysdale et al., 2017).

Similar to the above stimulation techniques, functional 
connectivity changes can also be provoked by mood induction 
paradigms, where data acquisition is carried out right after spe-
cific stimulation (Figueroa et al., 2017; Krause et al., 2018). These 
applications are likely to yield important clinical information 
since they are between resting-state and task-specific connec-
tivity. Furthermore, task-relevant connectivity can be obtained 
during continuous stimulation or task performance rather than 
afterwards (Shirer et  al., 2012; Hahn et  al., 2018), which may 
capture stimulation effects even more precisely. Although con-
nectivity estimates from conventional task fMRI block designs 
also gained attention (Fair et al., 2007; Braun et al., 2015), these 
may include potential difficulties in the interpretation due to 
the alternation of rest and task. Such designs exhibit high-fre-
quency components not seen in continuous resting-state and 
hence also significant differences (Ganger et  al., 2015), which 
needs to be kept in mind when investigating patient popula-
tions (Loitfelder et al., 2014).

Molecular Connectivity

Analogous to structural covariance networks (see Structural 
Connectivity above), it is possible to compute interregional 

associations based on molecular information from PET imaging. 
The approach reaches back to early work in the 1980s and is 
based on the observation that brain regions with similar meta-
bolic demands are also functionally coupled (Macko et al., 1982; 
Horwitz et al., 1984). Using the radioligand [18F]FDG has led to 
important insights into the brain’s organization on a metabolic 
level (Lee et al., 2008). Interestingly, direct comparison between 
networks identified on the basis of glucose metabolism and 
functional connectivity revealed mixed findings, either with 
high overlap (Savio et  al., 2017) or divergence (Di and Biswal, 
2012) especially for the default mode network. The approach 
has further been used, for example, in Alzheimer’s disease 
showing reduced metabolic connectivity (Morbelli et  al., 2012) 
but also the potential of cognitive reserve in bilingual patients 
with increased connectivity despite more pronounced hypome-
tabolism (Perani et al., 2017). Furthermore, metabolic networks 
exhibited a compensatory mechanism in the nonaffected hemi-
sphere in unilateral temporal lobe epilepsy (Vanicek et al., 2016), 
which parallels findings of functional connectivity (Bettus et al., 
2009).

The technique has also been extended to a neurotransmit-
ter level using known anatomical connections. For instance, 
serotonergic neurons have their cell bodies in the raphe nuclei, 
projecting to almost the entire brain. There, 2 key players of ser-
otonergic neurotransmission and cell firing are the serotonin-1A 
receptor and transporter (Figure 4a), exhibiting an autoinhibi-
tory function (Evans et  al., 2008) and regulating extracellular 
serotonin (Tao et al., 2000), respectively. Such changes in cell fir-
ing, and presumably serotonin release, may in turn affect the 
expression of binding sites in cortical and subcortical regions. 
Hence, the well-known neurotransmitter pathways can be used 
as a priori hypothesis to map the association of serotonergic 
binding proteins between the raphe nuclei and projections 
areas. This approach has shown a strengthened association of 
the serotonin-1A receptor between the dorsal raphe nucleus 
and the amygdala and hippocampus after SSRI administration 
(Hahn et al., 2010), complementing regional changes in patients 
with anxiety disorder after treatment (Spindelegger et al., 2009) 
on a network level. Similarly, in patients with major depression, 
an altered association of the serotonin transporter was found 

Figure 4. Molecular connectivity obtained from PET imaging. (a–b) Interregional associations were assessed on the basis of known serotonergic projections. (a) Sero-

tonin transporter (SERT) binding of the dorsal raphe nucleus (indicated by crosshair) was used as seed region. (b) Decreased SERT associations between the dorsal 

raphe and the ventral striatum were observed in patients with major depression (reprinted by permission from Wiley) (Hahn et al., 2014). (c) The approach was further 

extended to various SERT-rich brain regions, showing a decreased association between the precuneus and hippocampus in patients with attention deficit/hyperactivity 

disorder (reprinted by permission from Wiley) (Vanicek et al., 2017).
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specifically in the ventral striatum (Hahn et al., 2014) (Figure 4b),  
suggesting a serotonergic involvement (Kranz et  al., 2010) of 
diminished reward processing in these patients.

Similar to connectivity mappings of glucose metabolism, 
interregional associations of neurotransmitter systems have 
also been calculated across several regions and entire brain 
maps (Bose et  al., 2011). For instance, longitudinal characteri-
zation of serotonin transporter occupancy induced by SSRIs 
showed increased correlations in networks of the anterior 
cingulate cortex and the insula in patients with major depres-
sion (James et  al., 2017). The usefulness of such an investiga-
tion was also evident in attention deficit/hyperactivity disorder 
with altered interregional associations between the precuneus 
and hippocampus despite no difference in regional seroto-
nin transporter binding (Vanicek et  al., 2017) (Figure 4c). This 
links changes of the default mode network in these patients 
(Castellanos et al., 2008; Sudre et al., 2017) to a specific seroton-
ergic contribution. Further expanding the approach to a whole-
brain investigation, it has been suggested that interregional 
correlations of amyloid-β binding may be used to assess disease 
progression in Alzheimer’s disease (Son et al., 2015; Pereira et al., 
2018) and novel relationships between the serotonin and opi-
oid neurotransmitter systems were revealed in healthy subjects 
(Tuominen et al., 2014).

As mentioned in the section of structural covariance net-
works, the main limitation of the method is that inference can 
only be drawn at the group level as covariance matrices can-
not be obtained for individual subjects. Hence, the observed 
associations may reflect molecular connections only indirectly. 
In this context, the term “connectivity” may be used with care 
when compared with that of other modalities and should not be 
used synonymously with, for example, structural connectivity. 
While molecular connectivity of glucose metabolism has been 
well characterized, the biological interpretation for interregional 
associations, especially whole-brain applications, of other radi-
oligands may require further investigations. Another limita-
tion of the approach is that correlated noise between regions 
may introduce falsely increased correlations. Furthermore, the 
potential issue of differences in input functions or nonspecific 
binding should be considered, especially when performing 
group comparisons, for example, with random permutations. 
Randomly mixing 2 groups with different average regional val-
ues may introduce inflated correlations for random permuta-
tions, which will finally yield false negative results.

Mulitmodal Combinations

A particular appealing approach is given by the combination 
of various imaging modalities to study connectivity from dif-
ferent complementary perspectives. Among these, structure-
function relationships have been investigated most intensively. 
Functional connections can theoretically be obtained independ-
ent of (i.e., without) direct anatomical/structural connections, 
since the former are usually calculated as correlations. However, 
missing structural connections markedly affect functional ones, 
probably best described in surgical sections of the corpus cal-
losum (Johnston et al., 2008; Roland et al., 2017), demonstrating 
that physical links represent important constraints of func-
tional connectivity. As such, major resting-state networks are 
connected by well-known anatomical links (van den Heuvel 
et al., 2009). On the other hand, functional connectivity can also 
result from indirect anatomical connections (Greicius et  al., 
2009), which underlines that structural and functional connec-
tions do not resemble in a simple one-to-one mapping (Ajilore 

et al., 2013). Furthermore, functional connectivity is subject to 
a larger variability across subjects than structural connectiv-
ity (Chamberland et  al., 2017). More importantly, functional 
connectivity is most similar to the underlying anatomy during 
anesthesia, whereas wakefulness is characterized by rich func-
tional configurations that deviate from structural connections 
(Barttfeld et al., 2015). These issues may explain why previous 
assessments of structure-function relationships with simply 
correlation analysis showed varying degrees of associations 
(Hagmann et  al., 2008; Brown et  al., 2012) and more sophisti-
cated models are required to predict brain function from the 
underlying anatomy. Examples include nonlinear neuronal 
mass models (Honey et al., 2009), structurally-derived measures 
of network communication (Goñi et al., 2014), and anatomi-
cally weighted functional connectivity (Bowman et  al., 2012). 
Structure-function relationships have also been investigated for 
specific brain regions and networks such as the medial temporal 
lobe (Shah et al., 2018), angular gyrus and intraparietal sulcus 
(Uddin et al., 2010), supplementary motor area (Johansen-Berg 
et al., 2004), posterior cingulate cortex (Khalsa et al., 2014), and 
the thalamus (D. Zhang et al., 2010), demonstrating the useful-
ness of combined analyses, for example, to refine parcellation of 
brain regions as well as their interactions.

In addition to the combined assessment of brain structure 
and function, it is of further importance to evaluate which other 
physiological characteristics such as neurotransmitter distribu-
tion may affect or constrain connectivity. For instance, it has been 
demonstrated that brain regions with overall higher excitatory 
than inhibitory receptor expression showed higher functional 
connectivity (van den Heuvel et al., 2016). Specific associations 
have also been reported for the serotonin-1A receptor subtype 
with distinct influence on the posterior default mode network, 
depending on its effect with respect to autoinhibition on sero-
tonergic cell firing or local inhibition (Hahn et al., 2012). Similar 
associations have been reported for the anterior part of this 
network with dopamine D1/D2 receptors (Nagano-Saito et  al., 
2009), the cathechol-O-methyltransferase genotype (Liu et  al., 
2010), and gamma aminobutyric acid during emotional process-
ing (Northoff et al., 2007). This multitude of interactions draws 
a complex picture of how functional connectivity is regulated 
in healthy subjects. Beyond that, altered associations between 
neurotransmitter binding proteins and functional connectivity 
have been reported in several mental disorders. Recent exam-
ples include an opposite correlation of the serotonin transporter 
in mild cognitive impairment (Barrett et al., 2017) and of seroto-
nin-2A receptor gene variants in posttraumatic stress disorder 
(Miller et al., 2016) compared with controls.

Another interesting approach is to investigate the relation-
ship between functional connectivity and metabolic demands 
(Tomasi et al., 2013; Aiello et al., 2015; Nugent et al., 2015; Passow 
et  al., 2015; Soddu et  al., 2016). It is however worth mention-
ing that most work evaluated this association with a focus on 
spatial dependency (i.e., across brain regions), hence, report-
ing correlations with high significance, but this was some-
times reached by using a vast amount of voxels in the brain. 
In contrast, investigations across subjects showed a different 
picture with lower associations (Tomasi et al., 2013; Aiello et al., 
2015). The latter is also in line with a partial mismatch regard-
ing the activated regions and connectivity during stimulation 
in rodents (Wehrl et al., 2013). Despite a similar lack of correla-
tion between glucose metabolism and functional connectivity in 
humans, regional metabolic changes during task performance 
were accompanied by changes in functional connectivity and 
white matter microstructure of the corresponding connections, 
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identifying specific brain networks involved in stimulus pro-
cessing (Hahn et al., 2018). Combining local metabolic informa-
tion with functional connectivity may further enable to draw 
inferences on hierarchical information processing (bottom-up 
vs top-down) between brain regions (Riedl et al., 2016).

Finally, genetic variants have been shown to be associated 
with brain connectivity. For instance, global graph metrics are 
considerably heritable (Sinclair et  al., 2015), and functional 
connectivity differences between adolescents and adults are 
dependent on genetic variations (Meyer et al., 2016). Moreover, 
functional connectivity is reflected by transcriptional variation 
of gene expression specifically for genes enriched in the upper 
cortical layers (Krienen et  al., 2016) and for those involved in 
ion channel and synaptic activity (Richiardi et  al., 2015). The 
influence of genetic variations on brain connectivity has also 
been shown in clinical populations, where the genetic risk pro-
file for schizophrenia correlates with functional connectivity 
(Rashid et  al., 2019) and serotonin 2A receptor gene variants 
moderate default mode connectivity in posttraumatic stress 
disorder (Miller et al., 2016). As in most studies using imaging 
genetics, a high sample size is required to demonstrate the 
often small effects sizes of genetic variants. Thus, the approach 
may particularly benefit from the recently growing data sharing 
initiatives.

Conclusions and Future Directions

To summarize, connectivity approaches provide important 
information on the organization of the human brain on a net-
work level. Investigating the connections and interactions 
between brain regions offers additional knowledge that cannot 
be obtained from regional analyses alone. The different con-
nectivity methods contain complementary information about 
brain structure and function as well as metabolic and molecular 
insights. That is, structural methods offer delineation of physical 
neuronal pathways, which has been successfully used as guide 
for individual neurosurgery plans for deep brain stimulation 
(Schlaepfer et al., 2013). On the other hand, functional connec-
tivity reflects the correlation between signal time courses across 
brain regions. Resting-state connectivity represents a particu-
larly promising approach for clinical use due to the rather simple 
data acquisition. That is, no complex paradigms or stimulation 
are required and there is no bias induced by task performance; 
however, potential pitfalls in data processing should be taken 
into consideration (Shirer et al., 2015; Bright et al., 2017). As the 
assessment of dynamic functional connectivity is a growing 
field, an important aspect of future work will be to harmonize 
procedures to capture such temporal variations. For instance, 
these include the computation of connectivity (instantaneous 
phase synchrony, independent component analysis, sliding 
window with challenges regarding the window type, length, 
and overlap), choice of appropriate null models for validation, 
and interpretation of different brain states (Keilholz et al., 2017; 
Preti et  al., 2017). Such advancements will improve the repro-
ducibility of dynamic connectivity and thus the discrimination 
of patient populations. Finally, molecular approaches based on 
PET imaging provide information on interregional associations 
of metabolic demands and neurotransmitter systems. The lat-
ter technique may be particularly useful to further investigate 
the complex regulation of functional connectivity by different 
neurotransmitters. These techniques may be particularly use-
ful to determine the underlying neurotransmitter actions of 
the otherwise unspecific functional connectivity obtained from 
BOLD imaging. Further advances in this direction are important 

to improve the biological interpretation of the different connec-
tivity approaches.

With respect to clinical applications, alterations of brain 
connectivity have been successfully demonstrated in various 
patient populations and in response to pharmacological treat-
ments. A major objective of future work should be to establish 
robust biomarkers to aid clinical diagnose and choice of ther-
apy. Most studies focus on a single imaging modality; however, 
the multimodal assessment such as the dissociations between 
structural and functional connectivity may reveal novel path-
ological aspects of psychiatric and neurological disorders 
(Vega-Pons et al., 2016). Furthermore, a recent study reporting 
connectivity-based subtypes of major depression (Drysdale 
et  al., 2017) could not be replicated (Dinga et  al., 2018). Such 
attempts for replication and methodological developments for 
individual prediction (Shen et  al., 2017) represent important 
advancements to enable the future use of connectivity metrics 
in clinical settings.
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