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Abstract

Recent clinical advances with chimeric antigen receptor (CAR) T cells have led to the accel-

erated clinical approval of CD19-CARs to treat acute lymphoblastic leukemia. The CAR T

cell therapy is nevertheless associated with toxicities, especially if the CARs are not entirely

tumor-specific. Therefore, strategies for controlling the CAR T cell activity are required to

improve their safety profile. Here, by using the multiple myeloma (MM)-associated CD38

molecule as target molecule, we tested the feasibility and utility of a doxycycline (DOX)

inducible Tet-on CD38-CAR design to control the off-target toxicities of CAR T cells. Using

CARs with high affinity to CD38, we demonstrate that this strategy allows the proper induc-

tion of CD38-CARs and CAR-mediated T cell cytotoxicity in a DOX-dose dependent man-

ner. Especially when the DOX dose was limited to 10ng/ml, its removal resulted in a

relatively rapid decay of CAR- related off-tumor effects within 24 hours, indicating the active

controllability of undesired CAR activity. This Tet-on CAR design also allowed us to induce

the maximal anti-MM cytotoxic activity of affinity-optimized CD38-CAR T cells, which

already display a low toxicity profile, hereby adding a second level of safety to these cells.

Collectively, these results indicate the possibility to utilize this DOX inducible CAR-design to

actively regulate the CAR-mediated activities of therapeutic T cells. We therefore conclude

that the Tet-on system may be more advantageous above suicide-genes to control the

potential toxicities of CAR T cells without the need to destroy them permanently.

Introduction

Over the past years, the clinical successes of chimeric antigen receptor (CAR) engineered T

(CAR T) cells have evoked a tremendous enthusiasm for this new mode of immunotherapy in

the battle against cancer [1–7]. On the other hand, the increasing clinical experience with CAR

T cell therapy have made the investigators aware of the possible severe, even fatal toxicities of

this powerful approach [4,8–10]. Several currently known toxicities of CAR T cells are associ-

ated with their in vivo uncontrolled growth and excess cytokine release soon after infusion in

the patients, most probably—though not entirely- due to the on-target off-tumor activities of

CAR T cells. This is considered an important concern since virtually all CAR T cells developed

to date, including the most successful CD19 CAR T cells, are directed against tumor-associ-

ated, but not entirely tumor specific antigens [11,12].
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Set out to develop an efficient CAR T cell therapy for multiple myeloma (MM) we also have

recently investigated and demonstrated the possibility to target MM cells with CAR T cells

directed against the CD38 antigen, which is highly and uniformly expressed on MM cells [13].

Although CD38 is also expressed on normal hematopoietic cells at intermediate levels, we

have shown that CD38-CAR T therapy can be very selective for MM cells, using affinity-opti-

mized CD38-CAR T cells [14]. However, if the affinity of the CAR is not carefully optimized,

high affinity CD38-CARs, like many others, can readily cause on-target, off-tumor side effects

[8,15,16]. Therefore, an active in vivo control of CAR T cell activity is also highly desirable

for a safer CAR T cell therapy. Towards this goal, the most frequently proposed and applied

strategy is to equip therapeutic T cells with the so-called suicide genes. For instance the herpes

simplex virus thymidine kinase (HSV-TK), which converts the prodrug ganciclovir (GCV)

into a toxic product [17], or the inducible caspase9, which is dimerized by a small molecule

to induce apoptosis [18–20]. The therapeutic T cells can also be engineered to aberrantly

express surface antigens like CD20 or EGFR [21,22], which enables their specific targeting via

antibodies.

While the suicide gene approach had been proven effective in experimental and in the clini-

cal settings, it may not be the ideal strategy to control CAR T cells, since once these genes are

activated, the therapeutic effect is also lost permanently. Therefore, actively controlling the

CAR expression at the cell surface, rather than killing the CAR expressing T cells, may provide

better opportunities to improve their safety profile. Aiming at this goal, several innovative

strategies have already been proposed, such as the inducible dimerization of the intra and

extracellular domains of the CAR[23–25], or a CTLA-4 signaling-mediated shuttling to the

cell membrane [26] (different approaches reviewed in [27] and [28]). While such novel strate-

gies are in full development, a traditional way of controlling the transgene expression is

through a tetracycline or doxycycline (DOX) inducible on- (Tet-on) or off- (Tet-off) switch.

Indeed, this strategy has recently been successfully applied for controlling the CD19-CAR

expression [29].

Due to its relative convenience, we here investigated the utility of the Tet-on inducible CAR

design to effectively and timely control the cytotoxic activity of CD38-CAR T cells. Our results

demonstrate that the Tet-on CAR design can indeed control the expression of even high affin-

ity CD38-CARs to effectively allow their CD38-dependent cytotoxic activity in a DOX-dose-

dependent manner. Using a carefully defined dose of DOX the CD38-CAR expression and

thereby all associated effector functions decayed rapidly upon DOX removal, whereby mini-

mizing the undesired off-tumor effects. Our results thus indicate the feasibility of actively and

timely controlling the CD38-CAR T cell activity in case of undesired toxicity associated with

on-target, off-tumor effects.

Material and methods

Retroviral vector construction

The Tet-on 3G inducible system (Clontech) consists of, the pRetroX-TRE3G vector with the

PTRE3GV inducible promoter and the Mock or CAR together with the pRetroX-TET3G for the

transactivator protein. The high affinity CD38-CAR028, (KD = 1.8 nM, binding kinetics on

CD38+ cell line: EC50 = 0.3 ng/ml) [13,14] and low affinity CD38-CARB1 (KD = not applicable.

EC50 = 4.3 ng/ml) and CARA4 (KD = 1915 nM. EC50 = 3.3 ng/ml) genes [14] were amplified

with primers containing the SgrAI and ClaI restriction sites, (forward 5’GGTCCAATCGATA
TGGCGCTGCCTGTGAGCTC -3’, reverse 5’- CGTTACTAGTGGA CACCGG CGTCCTCA
TCTAG -3’). PCR products were purified using gel-clean up (Bioké) and were subsequently

ligated into the pRetroX-TRE3G vector with a T4 ligase (Sigma).

Tet-on inducible CD38-CAR T cells
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Generation of retroviral particles and transduction of T cells

GP2 293 packaging cells (Clontech) were calcium phosphate transfected with 10 μg pRetroX-

TRE-CAR or Mock and pRetroX-TET3G constructs + 5 μg gag-pol (pHIT60) (Roche), and

5 μg envelope (pAmpho) vectors (Clontech). 16 hours post-transfection complete medium

(DMEM + 10% FBS (Clontech)) was refreshed, and two and three days after transfection, cell

free supernatants containing retroviral particles were collected and directly used for

transduction.

Peripheral blood mononuclear cells (PBMCs) from healthy donors were stimulated with

lectin-like phytohemagglutinin (PHA-L) (Sigma) in a 6 well plate in culture medium (RPMI-

1640, 10% Tet-approved FBS, penicillin; 10.000 U/ml, streptomycin; 10,000 μg/ml). After 48

hours, cells were transferred to retronectin (Takara) coated 6-well plates (Falcon). Retroviral

transduction was performed by addition of 1 ml TRE-CAR/Mock virus + 1 ml TET virus per

well followed by spinoculation (3000 rpm, 1 hour at room temperature) in the presence of

4 μg/ml Polybrene. A second transduction was conducted after 16 hours. 6–8 hours after the

second hit, half of the cell supernatant was replaced by fresh culture RPMI-1640 + 10% tet-

approved FBS + 50 IE/ml rhIL-2 (Proleukin1, Novartis).

Transduced T cell selection and expansion

3 x 106 T cells were selected with neomycin (80 ug/ml) for 1 week and puromycin (5 ng/ml)

for 3 days after transduction. Based on the fraction of surviving cells after neomycin and puro-

mycin selection, the initial double transduction efficiency was estimated to be around 15–

30%). ~0,5–1 x 106 selected T cells were expanded in RPMI-1640 (Invitrogen) + 10% Tet-

approved FBS (Clontech) + antibiotics (penicillin; 100 U/ml, streptomycin; 100 μg/ml) using a

feeder cell/cytokine mixture consisting of irradiated EBV cell lines of 2 donors (50 Gy) and

allogeneic PBMCs of 3 donors (25 Gy),100 U/ml IL-2 and 1 ng/ml PHA-L.

Cell lines

Unmodified or luciferase (Luc-GFP)-transduced human MM cell lines, UM9 [30] and

RPMI8226 [31] were cultured in RPMI-1640 (Invitrogen) + 10% FBS (Invitrogen) + antibiotics

(penicillin;100 U/ml, streptomycin; 100 μg/ml) as described [13,14].

Primary cells from MM patients and healthy individuals

Bone marrow mononuclear cells (BM-MNC) containing ~20% malignant plasma cells were

isolated from bone marrow aspirates of MM patients through Ficoll-Paque density centrifuga-

tion and either used directly or cryopreserved in liquid nitrogen until use. PBMCs/MNCs

were isolated from Buffy coats of healthy blood-bank donors by Ficoll-Paque density

centrifugation.

Production of soluble CD38 extracellular (sCD38) domain and CAR

staining with sCD38

Cloning, expression and purification of recombinant CD38 protein was executed as previously

described [14]. In brief, cell were washed twice in PBS + 4% human serum albumin, followed

by the first staining with sCD38 (30 minutes), washed twice and stained with a PE-conjugated

anti-His antibody (Biolegend) for 15 minutes.

Tet-on inducible CD38-CAR T cells
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Flow cytometry

Flow cytometry assays were performed on BD LSRFortessa. Viable cells were determined with

live/dead cell marker (LIVE/DEAD1 Fixable Near-IR; Life Technologies L10119). Transduc-

tion efficiency and associated CAR expression was measured with an monoclonal antibody

towards NGFR-APC (CD271) (clone ME20.4 Biolegend). Monoclonal antibodies used for

cytotoxicity assays: CD3-Fitc (clone SK7), CD14-PerCP (clone MoP9), CD19-PerCP (clone

SJ25C1) and CD38-PE (clone HB7) (BD Bioscience). CD56-PC7 (clone N901) and CD138-

APC (clone BA38) (Beckman Coulter). To distinguish Mock/CAR T cells from target cells, tar-

get cell were stained with 0.5 μM Violet tracer (Thermo Fisher C34571) for 25 minutes and

washed before cytotoxicity assay co-cultures. Flow cytometry data analysis was performed

with FACS Diva 6.1 software.

Cytokine measurements

To determine cytokine production by TRE-Mock and TRE-CAR T cells, cell supernatants

were harvested 24 hours after co-culture with MM-BM at an E:T ratio of 3:1. The cytokine

content of the supernatants was measured by Cytokine Bead Array (CBA) Human Th1/Th2/

Th17 cytokine kit (BD) according to manufacturer’s protocol. Beads were washed and ana-

lyzed by a standardized flow cytometry assay.

Bioluminescent and flow cytometry-based cytotoxicity assays

One to three days after transduction, selection and expansion, inducible CD38-CAR T cells

were incubated with Luc-GFP-transduced human malignant cell lines or violet tracer (Thermo

Fisher) labeled primary BM-MNC for 24 hours. The luciferase signal produced by surviving

malignant cell lines was determined after 24 hours with a GloMax1 96 Microplate Lumin-

ometer (Promega) within 15 minutes after the addition of 125 μg/mL beetle luciferin (Pro-

mega). % lysis cells = (1 − (BLI signal in treated wells / BLI signal in untreated wells)) × 100%.

To analyze surviving primary BM-MNCs Flow-Count™ Fluorospheres (Beckman 7547053)

were added, cells were harvested and stained for different CD markers (see above). Viable cells

were then quantitatively analyzed through Flow-Count-equalized measurements. Percentage

cell lysis was calculated as % lysis cells = (1 − (absolute number of viable target cells in treated

wells / absolute number of viable target cells in untreated wells)) × 100%.

Ethical statement

Bone marrow samples from MM patients and peripheral blood from healthy controls (all> =

18 years of age) were taken after written informed consent in accordance with the declaration

of Helsinki. Whenever necessary, the study design, including blood/ bone marrow sampling

procedures was submitted to and approved by the VU university medical ethical committee,

Amsterdam.

Statistical analysis

Statistical analyses were performed using Graphpad Prism software version 7.0. For normal

distributions parametric student’s t-tests were used. In analyses where multiple groups were

compared, either a parametric ANOVA with bonferroni posthoc test or nonparametric Krus-

kal-Wallis test were used with subsequent multiple comparison. A p value <0.05 was consid-

ered significant.
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Results

DOX dependent induction of CD38-CAR expression

To evaluate the controllability of CAR expression with an inducible design, we first generated

a Tet-on inducible second generation CD38-CAR, which contained single chain variable frag-

ments (scFv) with a high CD38 affinity, including the 4-1BB and CD3z signaling domains.

This CAR gene was put under the regulation of a third generation pTre, containing seven tet-

racycline responses elements (TRE) followed by a minimal CMV promotor (Fig 1). The con-

struct also contained the low affinity nerve growth factor receptor (LNGFR), separated from

the CAR gene by a P2A sequence. The control mock vector contained only the LNGFR marker

gene (Fig 1A). Upon retroviral transduction with this inducible construct (TRE-CD38-CARs),

the T cells showed no detectable CAR expression in the absence of DOX (Fig 1A) but

expressed high levels of the CAR within 48 hours of exposure to a high dose[32] of DOX (Fig

1B). All transduced cells, including the mock-transduced cells also expressed the LNGFR

marker gene (Fig 1B).

We then determined the cytotoxic activity of T cells transduced with this inducible CD38-

CAR against two CD38+ MM cell lines UM9 and RPMI8226 with or without pre-treatment with

a high concentration (1000ng/ml) of DOX (Fig 2A). We also compared the results with those

obtained from T cells that constitutively expressed the high affinity 028 CD38-CAR. As expected,

there was no CAR expression and no CAR-mediated lysis in the absence of DOX. In contrast,

DOX- treatment induced CAR expression and resulted in the effective lysis of both MM cell

lines within 16 hours (Fig 2A) at similar levels observed from constitutive CAR expressing T

cells, indicating the efficacy of the inducible CAR design. The lysis levels further increased

Fig 1. DOX induced CD38-CAR expression. (A) Schematic overview of constructs. The pRetroX-TRE3G vector with

the PTRE3GV inducible promoter controlling the transcription of Mock containing the marker LNGFR or the

CD38-CAR (shown is high affinity scFv 028; the same vector design is also used for low affinity CARs A4 and B1),

consisting of the single chain variable fragments, 4-1BB and CD3z and a LNGFR separated by a P2A sequence. These

vectors were co-transduced with the pRetroX-TET-On 3G containing the transcription site for the transactivator

protein rTta. (B) Representative flow cytometry density plots and histograms to determine CAR expression of the

inducible CAR T cells, after 48 hours incubation with 0 or 1000 ng/ml DOX. The expression of the marker LNGFR was

measured with an APC-conjugated antibody. CAR expression was measured by binding of his-tagged (HHHHHH)

soluble CD38 (sCD38) protein to the ScFv domain, stained with PE-conjugated anti-His tag antibody.

https://doi.org/10.1371/journal.pone.0197349.g001
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during longer (>120 hours) co-incubations (S1A Fig). Furthermore, it appeared possible to re-

induce functional CAR expression with DOX after an initial DOX withdrawal (S1B Fig).

DOX dose-dependency of CD38-CAR expression and cytotoxic activity

We next evaluated whether the level of CD38-CAR expression and the CD38-dependent cyto-

toxic activity of TRE-CD38-CAR T cells could be regulated by the dose of DOX, by incubation

with serial concentrations of DOX ranging from 1–1000 ng/ml for 48 hours (Fig 2B)[32,33].

The CAR expression was maximal at 1000 ng/ml of DOX, but gradually decreased by lowering

the dose, which was also reflected in the cytokine production (S2 Fig). A 5-fold lower expres-

sion level was reached at a DOX dose of 10 ng/ml (Fig 2B). The cells showed a very low CAR

expression at a dose 1 ng/ml, which was not distinguishable from DOX untreated conditions.

The cytotoxic activity of the T cells also significantly and proportionally decreased by lowering

the dose of DOX, from 95% of lysis at 1000 ng/ml to 63% of lysis at 10 ng/ml DOX at an effec-

tor: target ratio of 10:1 (Fig 2C). Again here, no CD38-mediated cytotoxic activity above non-

specific (mock) levels was observed from DOX untreated TRE-CD38-CAR T cells, indicating

that there was no functional “leakage” in this inducible system, despite the fact that a very low

level of CD38-CAR was detectable on the cell surface (Fig 2B).

Fig 2. DOX dose-dependent induction of CD38-CAR expression and anti-MM cytotoxicity. (A) Lysis of luciferase-transduced CD38+ MM cell lines UM9

and RPMI8226 after co-incubation with Mock and inducible, high affinity (028) CD38-CAR, after treatment with no or 1000 ng/ml DOX for 48 hours. Grey

lines indicate the lysis by constitutively expressed high affinity (028) CD38-CAR T cells The BLI signal from surviving MM cells was measured after 16 hours

using a luminometer and the percentage lysis was calculated as indicated in the material & methods. Presented is the pooled data from 2 independent

experiments. Error bars indicate the mean +/- SD (B) Mean fluorescent intensity (MFI) of the CAR measured by staining with soluble CD38-his after 48 hours

incubation with 0, 1, 10, 100 or 1000 ng/ml DOX, Presented is the pooled data from 2 independent experiments. Error bars indicate the mean +/- SD. (C) The

cytotoxic activity of untreated or DOX treated inducible CD38-CAR T cells against luc+ MM cell line UM9 after 16 hours. Presented is the pooled data from 2

independent experiments. Error bars indicate the mean +/- SD. In all panels � indicates p value<0.05 and �� <0.01 using one-way analysis of variance and

subsequent multiple comparison.

https://doi.org/10.1371/journal.pone.0197349.g002
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Decay kinetics of CAR expression and CD38-dependent on-tumor

cytotoxic activity of TRE-CD38-CAR T cells after DOX removal

After showing the DOX dose-dependency of CAR expression, we studied the induction and

decay kinetics of the CD38-CARs upon exposure and after the withdrawal of serial concentra-

tions of DOX (S3 Fig). We also evaluated the CD38-dependent cytotoxic activity of the cells

against MM cells in these assays. The experimental set-up is depicted in Fig 3A and time and

concentration-dependent CAR expression levels in Fig 3B. Six hours of DOX treatment

Fig 3. Induction and decay kinetics of CD38-CAR expression. (A) schematic overview of CAR induction and decay assay. Black bars indicate the DOX

incubation times, gray bars indicate the period of decay after the removal of DOX. (B and C) Representative results of five independent experiments of mean

fluorescent intensity (MFI) of the CAR measured by staining with soluble his-tagged CD38 after 6, 24 or 48 hours incubation with (B) 10 or 1000 ng/ml DOX or

6, 24, 48 or 120 hours after washing of DOX (C) (an MFI of 600, observed by Mock cells was considered background expression). (D) A MM patient bone

marrow sample with 20% MM cells was co-incubated with inducible, high affinity (028), CD38-CAR T cells (E:T ratio 3:1) treated with DOX according to the

schedule depicted in Fig 3A. are the CAR-dependent % lysis of CD138+/CD38+ MM cells (% lysed by CAR—% lysed by Mock). Presented is the representative

data of n = 5. (E) Significant Pearson correlation of MFI of CAR expression as detected with soluble CD38 (sCD38) with % lysis of MM cells. High dose DOX R2

= 0.60 and p = 0.012, low dose DOX R2 = 0.61 and p = 0.015.

https://doi.org/10.1371/journal.pone.0197349.g003
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induced a slight to moderate CAR expression, even with 1000 ng/ml of DOX. This moderate

expression did not translate immediately into a specific lysis but CAR expression retained

until 48 hours after DOX removal (Fig 3C left panel). Remarkably, after DOX removal, we

observed a maximal 30% CD38-CAR-mediated lysis of MM cells above the mock control at 48

and 120 hours (Fig 3D left panel), possibly due to a relatively slow rate of transcription induced

by short term DOX incubation.

A 24-hour DOX-treatment resulted in substantial CAR expression (Fig 3C middle panel)

and effective CD38-CAR mediated lysis of MM cells (Fig 3D middle panel). The CAR decay

upon DOX removal occurred in a linear fashion, with a slightly faster decay kinetics for the

cells incubated with 10 ng/ml of DOX as compared to 1000 ng/ml. The cells expressed very

low but detectable levels of CARs 24 hours after DOX removal, but no CAR expression was

detectable 48 hours after DOX removal (Fig 3C middle panel). The cytotoxic activity of the

cells decreased in a significantly faster kinetics after 10 ng/ml DOX incubation. No significant

CAR mediated lysis of MM cells above mock control could be observed 24h after of removal of

10 ng/ml DOX (Fig 3D, middle panel).

As expected, the CAR expression was highest after 48-hour DOX treatment. The CAR

decay kinetics was similar to 24-hour incubated cells but the cells still expressed intermediate

to moderate levels of CAR for longer periods, since the initial levels were higher (Fig 3C right

panel). Consequently, the cells treated with 1000 ng/ml DOX did not significantly downregu-

late their high anti-MM activity, while a 30–40% CAR mediated cytotoxic activity against MM

cells remained even 48–120 hours after the removal of 10 ng/ml DOX (Fig 3D right panel).

When we correlated the CAR expression levels and the lysis levels in these assays, we observed

a correlation between CAR expression and CAR-mediated lysis of the MM cells for both 1000

(Fig 3E top panel) and 10 ng/ml of DOX (Fig 3E lower panel).

Decay kinetics of CD38-dependent off-tumor cytotoxic activity of

TRE-CD38-CAR T cells after DOX removal

An important aim of the inducible CAR-design is to effectively and rapidly control the on-tar-

get off-tumor mediated toxicities of high affinity (028) CD38-CAR T cells. Therefore, in the

further evaluation of TRE-CD38-CAR T cells we not only tested their anti-MM activity but

also evaluated the potential off-tumor toxicities against CD38int normal hematopoietic cells

upon exposure and after removal of DOX. To test this in a most relevant way, we used BM

samples from MM patients, which contain not only CD38hi MM cells but also CD38int normal

hematopoietic cells as target cell populations. After the induction of CAR expression the

TRE-CD38-CAR T cells were incubated with BM-MNC and the CAR-dependent lysis of vari-

ous cell subsets was determined by flow cytometry-mediated assays as described previously

[13,14]. An illustrative example of such an assay is depicted in Fig 4A. As depicted in Fig 4B,

both 24h and 48h stimulation with 10 or 1000 ng/ml DOX of TRE-CD38-CAR T cells resulted

in substantial CAR-mediated of MM cells. As expected from the high affinity (028) CD38-

CAR T cells there was also considerable lysis of CD38+ non-MM cells in the bone marrow.

After the removal of DOX, however, the TRE-CD38-CAR T cells which were treated with 10

ng/ml DOX rapidly lost their off-tumor effects within 24 hours, while there was still 50%-MM

activity left especially of CAR T cells that were exposed to DOX for 48 hours. 120 hour after

DOX removal only the cells that were exposed to 1000 ng/ml DOX retained some anti–MM

activity; all off-tumor activity was lost. These results indicated that the off-tumor activities of

high-affinity CD38-CAR T cells can be readily and rapidly down-regulated after exposure of

the cells even 48 hours to relatively low doses of (10ng/ml) DOX, while some anti-MM reactiv-

ity still retained.

Tet-on inducible CD38-CAR T cells
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Low-affinity inducible CD38-CAR T cells

The experiments addressing the on- and off-tumor effects of inducible high affinity (028)

CD38-CAR T cells indicated that gradual decay of CAR expression after DOX removal not

only allows the rapid and effective control of the off-tumor toxic effects, but may also generate

a small, albeit a temporary therapeutic window in which the anti-tumor effects can be main-

tained. Thus not only optimally lowering the affinity of CD38-CARs, as we have recently

shown [14] but also lowering the CAR expression on the cell surface seemed to result in dis-

crimination of CD38high MM cells from CD38int normal hematopoietic cells. Therefore we

finally questioned whether these two strategies can be combined to make much safer CAR T

cells. Hence we generated inducible CD38-CAR T cells from (two) a low affinity CARs (CAR

A4 and B1), which displayed much less off-tumor toxicity profiles than the high affinity

CD38-CAR T cells[14]. After induction of CAR expression with 10 or 1000 ng/ml DOX the

low affinity CAR T cells displayed substantial CAR-mediated lysis against primary MM cells in

the BM-MNC, but, as expected, there was little or no lysis of CD38+ non-MM cells even after

using 1000 ng/ml of DOX (Fig 5 and S5 Fig). Furthermore, also as expected, these lower affin-

ity (A4, B1) CAR T cells, showed no autologous T cell killing (fratricide) in contrast to high

affinity (028) CAR T cells (S6 Fig).

More interestingly, the cells maintained their lytic activity against MM cells, with no signs

of off-tumor effects for longer than 120 hours after the removal of DOX (Fig 5). Taken together

these results demonstrated that the DOX inducible CAR design is also a feasible strategy for

Fig 4. Off-tumor effect of inducible CD38-CAR T cells. (A) Representative flow cytometry density plots of MM-BM with CD38+/CD138+ cells

(MM) after treatment with inducible mock (+/- 1000 ng/ml DOX for 48 hours) and inducible high affinity (028) CD38-CAR T cells (- DOX or

+ 1000 ng/ml DOX for 48 hours and 0, 24 or 120 hours after DOX removal). (B) Pooled data obtained from the analysis of five MM patient bone

marrow samples (patient 1–5, see for their phenotype data S4 Fig) with ~20% MM cells (S4 Fig) were co-incubated with inducible high affinity

(028) CD38-CAR T cells (E:T ratio 3:1) treated with DOX according to the schedule Fig 3A. Shown are the mean CAR-dependent % lysis of MM

(CD138+/CD38+ ; open squares) and % lysis of healthy non-MM cells (CD138-/CD56-/CD38+/-; grey diamonds) by inducible CD38-CAR T cells.

Incubated with DOX for 24 hours 1000 ng/ml (upper left), 48 hours 1000 ng/ml (upper right), 24 hours 10 ng/ml (lower left), 48 hours 10 ng/ml

(lower right). Presented is the pooled data from 5 independent experiments. Error bars indicate the mean +/- SEM. (Pt 1–5, S4 Fig).

https://doi.org/10.1371/journal.pone.0197349.g004
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low-affinity CD38-CAR T cells to establish their therapeutic effects, which could be main-

tained with no toxic signs for a longer period even after removal of DOX.

Discussion

In this study we evaluated the feasibility of controlling the on-target, off- tumor effects of

CD38-CAR T cells using a DOX inducible Tet-on CAR design. Our results show that this

inducible strategy allows the sufficient surface expression of CD38-CARs and thus also the

CAR-mediated cytolysis of relevant target cells in a DOX-dose dependent manner. More

importantly, we found that the removal of DOX results in a gradual elimination of the off-

tumor hematotoxic effects of the high affinity CD38-CAR T cells, especially when DOX expo-

sure dose was limited to 10ng/ml. Somewhat unexpectedly we observed that this approach also

generated a small, albeit a temporary therapeutic window after DOX removal, in which the

on-tumor effects retained much longer and therefore could be separated from the off-tumor

effects. We also collected evidence that this inducible strategy can also be applied to induce the

maximal functional expression of our recently developed affinity-optimized CD38-CARs,

which already enable T cells to discriminate CD38high MM cells from CD38int normal hemato-

poietic cells. Collectively, these results indicate the possibility to utilize the DOX inducible

CAR-design to actively regulate the CAR-mediated activities of therapeutic T cells. This

approach will provide another level of safety to already affinity optimized CD38-CAR T cells,

but also increases the risk of tumor immune escape. Therefore, the main benefit of being able

to control the high affinity CD38-CAR T cells could be the possibility to use them—as they can

recognize lower levels of CD38 expression—in situations where CD38 expression on MM cells

is strongly downregulated, such as in the case of post CD38-antibody (e.g. Daratumumab)

treatments[34], and as a potential risk when using affinity-optimized CD38-CAR T cells.

Fig 5. Off-tumor effect of inducible low affinity CD38-CAR T cells. MM patient bone marrow samples (n = 4) with

~20% MM cells were co-incubated with inducible low affinity (B1) CD38-CAR T cells (E:T ratio 3:1) treated with DOX

according to the schedule Fig 3A. Depicted are the average CAR-dependent lysis of MM cells (CD138+/CD38+ ; open

squares) and lysis of healthy non-MM cells (CD138-/CD56-/CD38+/- ; grey diamonds) by inducible CD38-CAR T cells.

Incubated with DOX for 24 hours 1000 ng/ml (upper left), 48 hours 1000 ng/ml (upper right), 24 hours 10 ng/ml

(lower left), 48 hours 10 ng/ml (lower right). Presented is the pooled data from 4 independent experiments. Error bars

indicate the mean +/- SEM. (Pt 2–5, same pts as in Fig 4 and S4 Fig).

https://doi.org/10.1371/journal.pone.0197349.g005
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From a cell biological point of view, our data collected during the 24 hours induction and

subsequent decay phase of high affinity CD38-CARs provide evidence for a linear correlation

between the CAR surface expression levels and the cytotoxic activity of CD38-CAR T cells.

Related to this, our finding that a certain high affinity CAR expression level results in the sepa-

ration of the anti-tumor effects of CD38-CAR T cells from their off-tumor cytotoxicity is also

novel and suggest that quantitative manipulation of CAR surface expression could, next to

CAR affinity optimization, also be exploited to increase the tumor selectivity of CARs directed

against tumor-associated antigens (TAAs). Nonetheless, it should be noted that the regulation

of gene expression is a highly complex and a difficult to control process. Although we provide

evidence that CAR expression in this inducible system is dependent on the dose of DOX, a

phase 1 gradual DOX increase may be needed to define a precise dose for each individual to

establish a certain level of functional CAR expression. Thus whether the DOX inducible Tet-

on strategy will be feasible and the most convenient way for quantitative control of the surface

expression of high affinity CD38-CARs needs to be evaluated in future studies. Alternative

strategies which are not based on gene regulation may be more feasible for the precise quanti-

tative expression of CARs on the T cell surface, such as the docking of an scFv on an universal

receptor[25].

From the safety point of view, our data clearly indicate that the removal of DOX will even-

tually result in the elimination of off-tumor toxicities of high affinity CD38-CAR T cells.

However, one important issue to be discussed is whether the elimination of toxic effects

will be sufficiently rapid with this DOX-inducible system. We observed that high affinity

CD38-CARs, when they are induced with an optimal dose of 10ng/ml of DOX will lose most,

if not all, of their off-target effects within 24 hours (Fig 4). This time frame, when compared to

the reported much more rapid clinical results of the suicide gene inducible caspase 9 (iCasp9)

system (90% of the cell kill within 30 minutes) is indeed too slow [19]. However, in an in vitro
system the elimination of iCasp9 positive T cells took also around 24 hours [20]. Moreover, it

is known that suicide gene approaches, for instance HSV-TK can cause bystander effects and

thereby exhibit safety “leaks”[35,36]. Also, both HSV-TK and the rTta can itself elicit immune

response due to their pathogen or foreign origin[37,38]. Furthermore, it needs to be men-

tioned that it is not precisely known how rapid the elimination of the infused cells should be to

prevent further complications. If the direct hematotoxic effects of CD38-CAR T cells needs to

be controlled, this time frame does not necessarily be very rapid, since CD38-CAR therapy

mainly eliminates NK cells and monocytes, while a large fraction of T and B cells will be

ignored as they are CD38 low/negative. The temporary damage to NK cells and monocytes

can be gradually recovered after DOX removal since CD38-CARs therapy does not affect

CD38 negative normal stem cells [13,14]. It is obvious that DOX removal will also rapidly or

eventually abrogate the anti-myeloma effect, depending on the CD38 expression levels on MM

cells. But again, the main advantage if this strategy above suicide gene approaches will be that

the CAR expression can be re-induced whenever necessary to regain the control on the tumor

growth.

In the case of CRS associated with CAR therapy, the immediate disease symptoms can be

currently controlled within hours with the use of the anti-IL6 antibody tocilizumab [6,10,39].

Thus, this novel treatment generates a window of opportunity, during which the downregula-

tion of CARs to sufficiently non-toxic levels can be realized. In conclusion, although it may be

not as rapid as the suicide gene approach, the inducible CAR strategy can be beneficial, espe-

cially when used in combination of tocilizumab in case of CRS. Obviously the main advantage

of such an approach will be the control of the therapeutic cells without the need to destroy

them permanently.
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Another relevant question is whether the Tet-on system is the best or the most convenient

system among other inducible systems: when compared to a Tet-off system, a Tet-on inducible

system seems more practical to control the toxic effects of CAR T cells since a Tet-on system,

where the default is the “off” switch will prevent unfavorable antigen-induced T cell differenti-

ation and exhaustion as compared to a default “on” switch [40]. However, several recently

developed strategies such as the CARs with a dimerizer-activated signaling domains [23] may

be more effective and rapid than the Tet-on system because they are not dependent on tran-

scriptional gene regulation to achieve the similar effect. Strategies aiming at the induction of

CARs in the tumor microenvironment, such as hypoxia inducible CARs[41] or the recently

described Syn-Notch strategy[42,43] in which the CAR expression is induced upon recogni-

tion of an antigen in the microenvironment also deserve comparison with this more conven-

tional Tet-on strategy. Therefore, while our results are highly promising, we need to

acknowledge that an in vivo preclinical evaluation of this Tet-on system is necessary to deter-

mine whether this strategy can indeed control the CAR T cell related toxicities and the optimal

control of DOX half-life and dosing. However, the challenge here is the development of appro-

priate in vivo models where the hematotoxic and other off-tumor effects, as well as the CRS

related to CAR T cell therapy, can be adequately mimicked [44].

Nonetheless, the flexibility in CAR functions that we observe in this study illustrates the

advantages to control CAR expression and consequently the cytotoxic functions. The develop-

ment of a controllable switch to effectively tune engineered cells will lead to a safer application

of CAR T cell therapy.

Supporting information

S1 Fig. Long-term exposure of MM target cells to TRE-CAR T cells and possibility to re-

stimulate TRE-CAR T cells. (A) Lysis of luciferase-transduced CD38+ MM cell line UM9 (A)

after co-incubation with inducible Mock and high affinity (028) or low affinity (A4 and B1)

TRE-CD38-CAR for 6 days with 0 (left panel) or 1000 ng/ml DOX (right panel). Cytotoxicity

was measured in flow cytometry-based assay as mentioned in the material and methods. Pre-

sented is duplicate measurements +/- SD. (B) BLI-based cytotoxicity assay of 16 hours, after

first DOX stimulation (left panel) and after a second DOX stimulation of the same cells, upon

culturing without DOX for at least 120 hours (right panel). Presented is a pooled data of two

independent experiments, n = 2 +/- SD.

(TIF)

S2 Fig. TRE-CAR T cells show a DOX-dependent cytokine release upon incubation with

MM-BM. 24 hours after co-incubation with MM-BM, cell supernatants were harvested to

measure cytokine secretion (E:T ratio 3:1) with a flow cytometry-based assay. Graph shows the

secretion of IFN-γ, TNF and IL-2. Presented is the representative data of cytokine release of

five independent experiments.

(TIF)

S3 Fig. Different time points for induction of CD38-CAR-induced anti-MM cytotoxicity.

Lysis of luciferase-transduced CD38+ MM cell line RPMI8226 after co-incubation with induc-

ible Mock and TRE-CD38-CAR, which were treated with (A) no or 1000 ng/ml DOX for 2, 5,

8, 24, 48, 72 and 120 hours or (B) treated with Dox 24 hours and washed and incubated with-

out DOX for 5 or 48 hours. The BLI signal from surviving MM cells was measured after 16

hours using a luminometer and the percentage lysis was calculated as indicated in the material

& methods.

(TIF)
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S4 Fig. Representative flow cytometry density plots of MM-BM. MM-BM samples of patient

1, 2, 3, 4 and 5 were stained for CD38+/CD138+ expression to illustrate the level of CD38

expression on MM cells (upper right) versus healthy MNCs (upper and lower left).

(TIF)

S5 Fig. Off-tumor effect of inducible low affinity CD38-CARA4 T cells. Pooled data

obtained from the analysis of five MM patient bone marrow samples (patient 2–5, see for their

phenotype data S4 Fig) were co-incubated with inducible low affinity (A4) CD38-CAR T cells

(E:T ratio 3:1) treated with DOX according to the schedule Fig 3A. Depicted are the average

CAR-dependent lysis of MM cells (CD138+/CD38+ ; open squares) and lysis of healthy non-

MM cells (CD138-/CD56-/CD38+/- ; grey diamonds) by inducible CD38-CAR T cells. Incu-

bated with DOX for 24 hours 1000 ng/ml (upper left), 48 hours 1000 ng/ml (upper right), 24

hours 10 ng/ml (lower left), 48 hours 10 ng/ml (lower right). Presented is the pooled data of 4

independent experiments mean +/- SEM (2–5, same patients Figs 4 and 5).

(TIF)

S6 Fig. Growth rate and cytotoxicity towards autologous Mock T cells. (A) The growth rate

of mock and high and low affinity TRE-CAR T cells with 0 (left panel) or 1000 ng/ml DOX

(right panel) when cultured on a feeder cell/cytokine mixture. Presented is representative data

of five independent experiments. (B) Autologous Mock T cells were labeled and co-incubated

with Mock or (high affinity 028 and low affinity A4 and B1) TRE-CAR-T cells with 0 (left pan-

els) or 1000 ng/ml DOX for either 16 hours (upper panels) or 6 days (lower panels) in a flow

cytometry-based cytotoxicity assay as described in the material and methods. (C) The level of

CD38 expression (mean fluorescent intensity) was measured on the surviving Mock T cells

after co-incubation for 16 hours (left panel) or 6 days (right panel) with (high affinity 028 or

low affinity A4 and B1) TRE-CD38-CAR T cells in the absence or presence (1000 ng/ml) of

DOX.

(TIF)

Acknowledgments

We thank Patrick Celie from the NKI Protein Facility for cloning, expression and purification

of recombinant CD38 protein. We thank Cilia Pothast for titration experiments on TRE-

CD38-CAR T cells.

Author Contributions

Conceptualization: Esther Drent, Niels W. C. J. van de Donk, Maria Themeli, Henk M.

Lokhorst, Tuna Mutis.

Data curation: Esther Drent.

Formal analysis: Esther Drent, Renée Poels.

Funding acquisition: Tuna Mutis.

Investigation: Esther Drent, Renée Poels, Manon J. Mulders.

Methodology: Esther Drent.

Project administration: Esther Drent, Tuna Mutis.

Supervision: Niels W. C. J. van de Donk, Maria Themeli, Henk M. Lokhorst, Tuna Mutis.

Validation: Esther Drent, Renée Poels.

Tet-on inducible CD38-CAR T cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0197349 May 30, 2018 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197349.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197349.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0197349.s006
https://doi.org/10.1371/journal.pone.0197349


Visualization: Esther Drent.

Writing – original draft: Esther Drent, Tuna Mutis.

Writing – review & editing: Niels W. C. J. van de Donk, Henk M. Lokhorst, Tuna Mutis.

References
1. Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adop-

tively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory

B-cell leukemias. Blood. 2011; 118: 4817–4828. https://doi.org/10.1182/blood-2011-04-348540 PMID:

21849486

2. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al. CD19-targeted T cells rapidly

induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci

Transl Med. 2013; 5: 177ra38. https://doi.org/10.1126/scitranslmed.3005930 PMID: 23515080

3. Kochenderfer JN, Dudley ME, Feldman S a, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and

remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-

antigen-receptor-transduced T cells. Blood. 2012; 119: 2709–2720. https://doi.org/10.1182/blood-

2011-10-384388 PMID: 22160384

4. Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with

novel T cell-engaging therapies. Cancer J. 2014; 20: 119–122. https://doi.org/10.1097/PPO.

0000000000000035 PMID: 24667956

5. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors

have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl

Med. 2011; 3: 95ra73. https://doi.org/10.1126/scitranslmed.3002842 PMID: 21832238

6. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric Antigen Receptor–

Modified T Cells for Acute Lymphoid Leukemia. N Engl J Med. 2013; 368: 1509–1518. https://doi.org/

10.1056/NEJMoa1215134 PMID: 23527958

7. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of

19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014; 6: 224–225.

https://doi.org/10.1126/scitranslmed.3008226 PMID: 24553386

8. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious

adverse event following the administration of T cells transduced with a chimeric antigen receptor recog-

nizing ERBB2. Mol Ther. Nature Publishing Group; 2010; 18: 843–851. https://doi.org/10.1038/mt.

2010.24 PMID: 20179677

9. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis

and management of cytokine release syndrome. Blood. 2014; 124: 188–195. https://doi.org/10.1182/

blood-2014-05-552729 PMID: 24876563

10. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and manage-

ment. Blood. 2016; 127: 3321–3330. https://doi.org/10.1182/blood-2016-04-703751 PMID: 27207799

11. Carter RH, Fearon DT. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes.

Science. 1992; 256: 105–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/1373518 PMID: 1373518

12. Sadelain M. CAR therapy: the CD19 paradigm. J Clin Invest. 2015; 125: 3392–3400. https://doi.org/10.

1172/JCI80010 PMID: 26325036

13. Drent E, Groen RWJ, Noort WA, Themeli M, Lammerts van Bueren JJ, Parren PWHI, et al. Pre-clinical

evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma.

Haematologica. 2016; 101: 616–625. https://doi.org/10.3324/haematol.2015.137620 PMID: 26858358

14. Drent E, Themeli M, Poels R, de Jong-Korlaar R, Yuan H, de Bruijn J, et al. A Rational Strategy for

Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization.

Mol Ther. 2017; 25: 1946–1958. https://doi.org/10.1016/j.ymthe.2017.04.024 PMID: 28506593

15. Lamers CHJ, Sleijfer S, Vulto AG, Kruit WHJ, Kliffen M, Debets R, et al. Treatment of metastatic renal

cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX:

first clinical experience. J Clin Oncol. 2006; 24: 904–912. https://doi.org/10.1200/JCO.2005.03.1955

16. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan D-AN, Feldman SA, et al. T cells targeting

carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe

transient colitis. Mol Ther. 2011; 19: 620–626. https://doi.org/10.1038/mt.2010.272 PMID: 21157437

17. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, et al. HSV-TK gene transfer into

donor lymphocytes for control of allogeneic graft-versus-leukemia. Science. 1997; 276: 1719–24. Avail-

able: http://www.ncbi.nlm.nih.gov/pubmed/9180086 PMID: 9180086

Tet-on inducible CD38-CAR T cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0197349 May 30, 2018 14 / 16

https://doi.org/10.1182/blood-2011-04-348540
http://www.ncbi.nlm.nih.gov/pubmed/21849486
https://doi.org/10.1126/scitranslmed.3005930
http://www.ncbi.nlm.nih.gov/pubmed/23515080
https://doi.org/10.1182/blood-2011-10-384388
https://doi.org/10.1182/blood-2011-10-384388
http://www.ncbi.nlm.nih.gov/pubmed/22160384
https://doi.org/10.1097/PPO.0000000000000035
https://doi.org/10.1097/PPO.0000000000000035
http://www.ncbi.nlm.nih.gov/pubmed/24667956
https://doi.org/10.1126/scitranslmed.3002842
http://www.ncbi.nlm.nih.gov/pubmed/21832238
https://doi.org/10.1056/NEJMoa1215134
https://doi.org/10.1056/NEJMoa1215134
http://www.ncbi.nlm.nih.gov/pubmed/23527958
https://doi.org/10.1126/scitranslmed.3008226
http://www.ncbi.nlm.nih.gov/pubmed/24553386
https://doi.org/10.1038/mt.2010.24
https://doi.org/10.1038/mt.2010.24
http://www.ncbi.nlm.nih.gov/pubmed/20179677
https://doi.org/10.1182/blood-2014-05-552729
https://doi.org/10.1182/blood-2014-05-552729
http://www.ncbi.nlm.nih.gov/pubmed/24876563
https://doi.org/10.1182/blood-2016-04-703751
http://www.ncbi.nlm.nih.gov/pubmed/27207799
http://www.ncbi.nlm.nih.gov/pubmed/1373518
http://www.ncbi.nlm.nih.gov/pubmed/1373518
https://doi.org/10.1172/JCI80010
https://doi.org/10.1172/JCI80010
http://www.ncbi.nlm.nih.gov/pubmed/26325036
https://doi.org/10.3324/haematol.2015.137620
http://www.ncbi.nlm.nih.gov/pubmed/26858358
https://doi.org/10.1016/j.ymthe.2017.04.024
http://www.ncbi.nlm.nih.gov/pubmed/28506593
https://doi.org/10.1200/JCO.2005.03.1955
https://doi.org/10.1038/mt.2010.272
http://www.ncbi.nlm.nih.gov/pubmed/21157437
http://www.ncbi.nlm.nih.gov/pubmed/9180086
http://www.ncbi.nlm.nih.gov/pubmed/9180086
https://doi.org/10.1371/journal.pone.0197349


18. Fan L, Freeman KW, Khan T, Pham E, Spencer DM. Improved artificial death switches based on cas-

pases and FADD. Hum Gene Ther. 1999; 10: 2273–85. https://doi.org/10.1089/10430349950016924

PMID: 10515447

19. Di Stasi A, Tey S-K, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible apoptosis as a

safety switch for adoptive cell therapy. N Engl J Med. 2011; 365: 1673–83. https://doi.org/10.1056/

NEJMoa1106152 PMID: 22047558

20. Tey S-K, Dotti G, Rooney, Cliona M et al. Inducible caspase 9 suicide gene to improve the safety of allo-

depleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant. 2007; 13:

913–924. https://doi.org/10.1016/j.bbmt.2007.04.005 PMID: 17640595

21. Wang X, Chang W-C, Wong CW, Colcher D, Sherman M, Ostberg JR, et al. A transgene-encoded cell

surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood. 2011; 118:

1255–1263. https://doi.org/10.1182/blood-2011-02-337360 PMID: 21653320

22. Griffioen M, van Egmond EHM, Kester MGD, Willemze R, Falkenburg JHF, Heemskerk MHM. Retrovi-

ral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica. 2009; 94:

1316–20. https://doi.org/10.3324/haematol.2008.001677 PMID: 19734426

23. Wu C-Y, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a

small molecule-gated chimeric receptor. Science (80- ). American Association for the Advancement of

Science; 2015; 350: aab4077–aab4077. https://doi.org/10.1126/science.aab4077 PMID: 26405231

24. Kim MS, Ma JSY, Yun H, Cao Y, Kim JY, Chi V, et al. Redirection of Genetically Engineered CAR-T

Cells Using Bifunctional Small Molecules. J Am Chem Soc. American Chemical Society; 2015; 137:

2832–2835. https://doi.org/10.1021/jacs.5b00106 PMID: 25692571

25. Juillerat A, Marechal A, Filhol J-M, Valton J, Duclert A, Poirot L, et al. Design of chimeric antigen recep-

tors with integrated controllable transient functions. Sci Rep. 2016; 6: 18950. https://doi.org/10.1038/

srep18950 PMID: 26750734

26. Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors

(iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013; 5: 215ra172. https://doi.org/

10.1126/scitranslmed.3006597 PMID: 24337479

27. Sun J, Sadelain M. The quest for spatio-temporal control of CAR T cells. Cell Res. Nature Publishing

Group; 2015; 25: 1281–2. https://doi.org/10.1038/cr.2015.131 PMID: 26575974

28. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell.

2017; 8: 573–589. https://doi.org/10.1007/s13238-017-0411-9 PMID: 28434147

29. Sakemura R, Terakura S, Watanabe K, Julamanee J, Takagi E, Miyao K, et al. A Tet-On Inducible Sys-

tem for Controlling CD19-Chimeric Antigen Receptor Expression upon Drug Administration. Cancer

Immunol Res. 2016; 4: 658–68. https://doi.org/10.1158/2326-6066.CIR-16-0043 PMID: 27329987

30. Holloway PA, Kaldenhoven N, Kok-Schoemaker HM, Dijk M van, Otten HG, Tilanus M, et al. A class II-

restricted cytotoxic T-cell clone recognizes a human minor histocompatibility antigen with a restricted

tissue distribution. Br J Haematol. 2005; 128: 73–81. https://doi.org/10.1111/j.1365-2141.2004.05283.x

PMID: 15606552

31. Rozemuller H, van der Spek E, Bogers-Boer LH, Zwart MC, Verweij V, Emmelot M, et al. A biolumines-

cence imaging based in vivo model for preclinical testing of novel cellular immunotherapy strategies to

improve the graft-versus-myeloma effect. Haematologica. 2008; 93: 1049–57. https://doi.org/10.3324/

haematol.12349 PMID: 18492693

32. Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including gly-

cylcyclines. J Antimicrob Chemother. Oxford University Press; 2006; 58: 256–265. https://doi.org/10.

1093/jac/dkl224 PMID: 16816396

33. Ahler E, Sullivan WJ, Cass A, Braas D, York AG, Bensinger SJ, et al. Doxycycline Alters Metabolism

and Proliferation of Human Cell Lines. PLoS One. Public Library of Science; 2013; 8: e64561. https://

doi.org/10.1371/journal.pone.0064561 PMID: 23741339

34. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al. Daratumumab depletes CD38+

immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma.

Blood. 2016; 128: 384–394. https://doi.org/10.1182/blood-2015-12-687749 PMID: 27222480

35. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL, et al. The “bystander

effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993;

53: 5274–83. Available: https://pdfs.semanticscholar.org/ff42/

93e45d64b37f1c2d879aef794d1f316b1d36.pdf PMID: 8221662

36. Mesnil M, Yamasaki H. Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer

gene therapy: role of gap-junctional intercellular communication. Cancer Res. 2000; 60: 3989–99. Avail-

able: http://www.ncbi.nlm.nih.gov/pubmed/10945596 PMID: 10945596

Tet-on inducible CD38-CAR T cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0197349 May 30, 2018 15 / 16

https://doi.org/10.1089/10430349950016924
http://www.ncbi.nlm.nih.gov/pubmed/10515447
https://doi.org/10.1056/NEJMoa1106152
https://doi.org/10.1056/NEJMoa1106152
http://www.ncbi.nlm.nih.gov/pubmed/22047558
https://doi.org/10.1016/j.bbmt.2007.04.005
http://www.ncbi.nlm.nih.gov/pubmed/17640595
https://doi.org/10.1182/blood-2011-02-337360
http://www.ncbi.nlm.nih.gov/pubmed/21653320
https://doi.org/10.3324/haematol.2008.001677
http://www.ncbi.nlm.nih.gov/pubmed/19734426
https://doi.org/10.1126/science.aab4077
http://www.ncbi.nlm.nih.gov/pubmed/26405231
https://doi.org/10.1021/jacs.5b00106
http://www.ncbi.nlm.nih.gov/pubmed/25692571
https://doi.org/10.1038/srep18950
https://doi.org/10.1038/srep18950
http://www.ncbi.nlm.nih.gov/pubmed/26750734
https://doi.org/10.1126/scitranslmed.3006597
https://doi.org/10.1126/scitranslmed.3006597
http://www.ncbi.nlm.nih.gov/pubmed/24337479
https://doi.org/10.1038/cr.2015.131
http://www.ncbi.nlm.nih.gov/pubmed/26575974
https://doi.org/10.1007/s13238-017-0411-9
http://www.ncbi.nlm.nih.gov/pubmed/28434147
https://doi.org/10.1158/2326-6066.CIR-16-0043
http://www.ncbi.nlm.nih.gov/pubmed/27329987
https://doi.org/10.1111/j.1365-2141.2004.05283.x
http://www.ncbi.nlm.nih.gov/pubmed/15606552
https://doi.org/10.3324/haematol.12349
https://doi.org/10.3324/haematol.12349
http://www.ncbi.nlm.nih.gov/pubmed/18492693
https://doi.org/10.1093/jac/dkl224
https://doi.org/10.1093/jac/dkl224
http://www.ncbi.nlm.nih.gov/pubmed/16816396
https://doi.org/10.1371/journal.pone.0064561
https://doi.org/10.1371/journal.pone.0064561
http://www.ncbi.nlm.nih.gov/pubmed/23741339
https://doi.org/10.1182/blood-2015-12-687749
http://www.ncbi.nlm.nih.gov/pubmed/27222480
https://pdfs.semanticscholar.org/ff42/93e45d64b37f1c2d879aef794d1f316b1d36.pdf
https://pdfs.semanticscholar.org/ff42/93e45d64b37f1c2d879aef794d1f316b1d36.pdf
http://www.ncbi.nlm.nih.gov/pubmed/8221662
http://www.ncbi.nlm.nih.gov/pubmed/10945596
http://www.ncbi.nlm.nih.gov/pubmed/10945596
https://doi.org/10.1371/journal.pone.0197349


37. Das AT, Tenenbaum L, Berkhout B. Tet-On Systems For Doxycycline-inducible Gene Expression. Curr

Gene Ther. Bentham Science Publishers; 2016; 16: 156–67. https://doi.org/10.2174/

1566523216666160524144041 PMID: 27216914

38. Berger C, Flowers ME, Warren EH, Riddell SR. Analysis of transgene-specific immune responses that

limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic

hematopoietic cell transplantation. Blood. American Society of Hematology; 2006; 107: 2294–302.

https://doi.org/10.1182/blood-2005-08-3503 PMID: 16282341

39. Namuduri M, Brentjens RJ. Medical management of side effects related to CAR T cell therapy in hema-

tologic malignancies. Expert Rev Hematol. NIH Public Access; 2016; 9: 511–3. https://doi.org/10.1080/

17474086.2016.1183479 PMID: 27139507

40. Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, et al. Targeting

a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. Nature Publishing

Group; 2017; 543: 113–117. https://doi.org/10.1038/nature21405 PMID: 28225754

41. Juillerat A, Marechal A, Filhol JM, Valogne Y, Valton J, Duclert A, et al. An oxygen sensitive self-deci-

sion making engineered CAR T-cell. Sci Rep. Nature Publishing Group; 2017; 7: 39833. https://doi.org/

10.1038/srep39833 PMID: 28106050

42. Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, et al. Engineering Customized Cell

Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell. 2016; 164: 780–791. https://

doi.org/10.1016/j.cell.2016.01.012 PMID: 26830878

43. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision Tumor Recognition by

T Cells With Combinatorial Antigen-Sensing Circuits. Cell. Elsevier Inc.; 2016; 164: 770–779. https://

doi.org/10.1016/j.cell.2016.01.011 PMID: 26830879

44. van der Stegen SJC, Davies DM, Wilkie S, Foster J, Sosabowski JK, Burnet J, et al. Preclinical in vivo

modeling of cytokine release syndrome induced by ErbB-retargeted human T cells: identifying a window

of therapeutic opportunity? J Immunol. 2013; 191: 4589–98. https://doi.org/10.4049/jimmunol.1301523

PMID: 24062490

Tet-on inducible CD38-CAR T cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0197349 May 30, 2018 16 / 16

https://doi.org/10.2174/1566523216666160524144041
https://doi.org/10.2174/1566523216666160524144041
http://www.ncbi.nlm.nih.gov/pubmed/27216914
https://doi.org/10.1182/blood-2005-08-3503
http://www.ncbi.nlm.nih.gov/pubmed/16282341
https://doi.org/10.1080/17474086.2016.1183479
https://doi.org/10.1080/17474086.2016.1183479
http://www.ncbi.nlm.nih.gov/pubmed/27139507
https://doi.org/10.1038/nature21405
http://www.ncbi.nlm.nih.gov/pubmed/28225754
https://doi.org/10.1038/srep39833
https://doi.org/10.1038/srep39833
http://www.ncbi.nlm.nih.gov/pubmed/28106050
https://doi.org/10.1016/j.cell.2016.01.012
https://doi.org/10.1016/j.cell.2016.01.012
http://www.ncbi.nlm.nih.gov/pubmed/26830878
https://doi.org/10.1016/j.cell.2016.01.011
https://doi.org/10.1016/j.cell.2016.01.011
http://www.ncbi.nlm.nih.gov/pubmed/26830879
https://doi.org/10.4049/jimmunol.1301523
http://www.ncbi.nlm.nih.gov/pubmed/24062490
https://doi.org/10.1371/journal.pone.0197349

