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ical spectroscopy with error bars:
systematic quantification of the structural
sensitivity of calculated spectra†

Tobias G. Bergmann, Michael O. Welzel and Christoph R. Jacob *

Molecular spectra calculated with quantum-chemical methods are subject to a number of uncertainties

(e.g., errors introduced by the computational methodology) that hamper the direct comparison of

experiment and computation. Judging these uncertainties is crucial for drawing reliable conclusions

from the interplay of experimental and theoretical spectroscopy, but largely relies on subjective

judgment. Here, we explore the application of methods from uncertainty quantification to theoretical

spectroscopy, with the ultimate goal of providing systematic error bars for calculated spectra. As a first

target, we consider distortions of the underlying molecular structure as one important source of

uncertainty. We show that by performing a principal component analysis, the most influential collective

distortions can be identified, which allows for the construction of surrogate models that are amenable to

a statistical analysis of the propagation of uncertainties in the molecular structure to uncertainties in the

calculated spectrum. This is applied to the calculation of X-ray emission spectra of iron carbonyl

complexes, of the electronic excitation spectrum of a coumarin dye, and of the infrared spectrum of

alanine. We show that with our approach it becomes possible to obtain error bars for calculated spectra

that account for uncertainties in the molecular structure. This is an important first step towards

systematically quantifying other relevant sources of uncertainty in theoretical spectroscopy.
1 Introduction

The quantum-chemical calculation of molecular spectra has
nowadays become an essential tool for determining the struc-
ture of molecules.1 In many cases, structural information can
only be extracted from experimental spectra by combining them
with computations.2 Examples include the elucidation of the
gas-phase structure of polypeptides with vibrational spectros-
copy,3–7 the assignment of the absolute conguration of chiral
molecules with chiroptical spectroscopic techniques,8–11 and the
identication of active species and catalytic intermediates with
X-ray spectroscopy.12–15

While in some cases, high-resolution spectroscopic experi-
ments can resolve the individual spectroscopic transition, this is
usually not the case for most common applications that aim at
obtaining structural information from spectroscopic experiments,
such as those mentioned above. Instead, the quantity of interest is
the spectral intensity as a function of the radiation energy, s(E), in
a relevant energy range, which is usually calculated as,

sðEÞ ¼
X
n

fnGðE � EnÞ; (1)
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where En and fn are the excitation energy and oscillator strength
of the n-th excitation, respectively, which are provided by
quantum-chemical calculations, and G(E) is a suitable—usually
empirical—line broadening function. To extract structural
information from experimental spectra (e.g., in the examples
cited above), the spectral intensity s(E) calculated for suitable
structural models is compared to a measured spectrum, and
conclusions are drawn based on the agreement or disagreement
of experiment and theory.

However, quantum-chemical calculations are affected by
numerous uncertainties and in general the agreement between
experiment and computation cannot be expected to be perfect.
Sources of uncertainties include the structure of the molecular
model, the description of environment effects, and errors of the
quantum-chemical methods used for calculating spectra. The
comparison of measured and calculated spectra thus requires
carefully judging these uncertainties. To this end, one generally
relies on the oen rather subjective judgement of computa-
tional chemists.

Methods for the systematic assessment of uncertainties in
computer simulations are developed in the eld of uncertainty
quantication, which is a subeld of applied mathematics that
has developed in the past decades (for textbooks, see, e.g., ref.
16 and 17). It provides tools that are widely used in simulation
science.18,19 However, their application in quantum chemistry is
only just emerging (for a recent review, see ref. 20). For
This journal is © The Royal Society of Chemistry 2020
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quantifying uncertainties in reaction energies that are due to
errors of approximate density-functional theory (DFT), Nørskov,
Sethna, Jacobsen, and coworkers have developed the Bayesian
error estimation exchange–correlation functional (BEEF),21–24

while Reiher and coworkers extended this approach by param-
etrizing problem-specic exchange–correlation functionals with
built-in error estimation.25,26 Recently, the BEEF family of xc
functionals has been applied to quantify uncertainties in
calculated vibrational frequencies.27 Several groups have
addressed the assignment of uncertainties to the parameters of
calibration models,28 such as scaling factors for harmonic
vibrational frequencies,29,30 or linear regression models for the
quantum-chemical calculation of Mössbauer isomer shis.31

Similarly, uncertainties in the parameters of the semi-empirical
PM7 method,32 of Grimme's D3 dispersion correction,33 and of
neural networks for the exploration of chemical space34 have
been assessed.

Here, our objective is to further explore the application of
methods of uncertainty quantication to the quantum-
chemical calculation of molecular spectra. Within a chosen
quantum-chemical model, the calculated spectral intensity will
depend on the input molecular structure R that is used in the
quantum-chemical calculation, i.e.,

R ��������!QC model fEn; fng �����!eqn ð1Þ
sðE;RÞ:

Here, we specically chose s(E) instead of the positions and/or
intensities of individual peaks as quantity of interest, because
in many spectroscopic experiments for complex chemical
systems the individual transitions are not resolved.

Previously, some authors have addressed the quantication
of uncertainties introduced by approximations in the quantum-
chemical model on spectroscopic properties.27,29–31 Here, we aim
at systematically quantifying a further source of uncertainty,
namely the dependence of s(E; R) on the input molecular
structure.35 The structural sensitivity presents a challenging
case because the calculated spectrum depends on a rather large
number of independent parameters (i.e., the nuclear coordi-
nates R). In this respect, it fundamentally differs from, e.g.,
uncertainties due to approximation in the quantum-chemical
model, which are usually related to only a few parameters.
Thus, while the structural sensitivity is only one of many rele-
vant sources of uncertainty, it serves as a rst step towards
establishing a methodological framework that can be extended
to other sources of uncertainty.

Specically, we set out to establish “error bars” that account for
the structural sensitivity of a calculated spectrum. In this paper,
we present a methodology that allows us to answer the following
two questions: (1) Given distortions DR of a reference structure R0

with |DR|# dmax, what is the range of calculated spectra s(E; R0 +
DR)? (2) Given a probability distribution for distortions of a refer-
ence structure R0, how can we characterize the resulting proba-
bility distribution for the calculated spectra? This can then be
employed to obtain error bars for the calculated spectrum of the
reference structure that either represent bounds on the calculated
spectra of distorted structures or that quantify the uncertainty due
to structural distortions in a statistical fashion.
This journal is © The Royal Society of Chemistry 2020
We aim at developing a methodology that is generally
applicable for any type of computational spectroscopy providing
a spectral intensity s(E) that can be compared to an experi-
mental spectrum. To this end, we will consider typical appli-
cations in which structural information in extracted from the
comparison of experimental and calculated spectra, such as X-
ray emission spectroscopy (XES) of transition metal
complexes, vibrational spectroscopy, and UV/Vis spectroscopy.

This work is organized as follows. In Section 2, we show how
the structural distortions that are most inuential for the
calculated spectrum can be identied. This is then used in
Section 3 to construct nonlinear surrogate models of the
dependence of the calculated spectrum on the input molecular
structure, and we use this model for analyzing the propagation
of uncertainties in the molecular structure to the calculated
spectrum in Section 4. In Sections 2–4, we illustrate our meth-
odology for the calculated XES spectrum of iron pentacarbonyl
Fe(CO)5 as a test case. Results for further test cases covering
XES, UV/Vis spectroscopy, and infrared spectroscopy are pre-
sented in Section 5. Finally, in Section 6 we present our
conclusions as well as perspectives for future work. The
computational details are given in the Appendix.

2 Identification of influential
structural distortions

As the space of possible molecular structures R for a given
atomic composition is intractably vast and because large parts
of this space are chemically irrelevant, we only aim at analyzing
the structural sensitivity of calculated molecular spectra around
a chosen reference structure R0, i.e., R ¼ R0 + DR. Usually, this
will be the structure obtained as a minimum on the potential
energy surface, but other choices are also possible. In the
following, we will consider distortions of this reference
structure,

DR ¼
XN
I¼1

X
a¼x;y;z

DRIaeIa; (2)

where eIa is a unit vector for a displacement of the I-th nucleus
in a ¼ (x, y, z) direction, i.e., our target is the change in the
spectral intensity

DsðE;DRÞ ¼ s
�
E;R0 þ DR|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼R

�
� sðE;R0Þ (3)

The dependence of the calculated spectrum on the molec-
ular structure around R can the be subjected to a local sensi-
tivity analysis,36 which considers the linearized model

DsðE;DRÞz dsðE;DRÞ ¼
X
Ia

dsIaðEÞDRIa (4)

with the linear structural sensitivity with respect to a Cartesian
displacement in eIa-direction,

dsIaðEÞ ¼ vsðE;RÞ
vRIa

����
R0

z
sðE;R0 þ heIaÞ � sðE;R0 � heIaÞ

2h
: (5)
Chem. Sci., 2020, 11, 1862–1877 | 1863



Chemical Science Edge Article
This linear structural sensitivity can be calculated by
numerical differentiation, i.e., by calculating the spectrum for
displaced molecular structures.35 Here, we employ a symmetric
two-point formula [see eqn (5)] and a displacement of h ¼ 0.5
pm. Tests included in our earlier work showed that this
numerical derivative is rather insensitive with respect to the
magnitude of the displacement and found that h ¼ 0.5 pm
should be a reasonable choice.35 Overall, the calculation of the
linear structural sensitivity for all 3N Cartesian displacements
requires 6N calculations of spectra for displaced structures.

To identify the linear combinations of structural distortions
that are most inuential on the calculated spectrum, a principal
component analysis37 can be performed. Aer discretizing the
energy axis of the calculated spectrum E¼ {Ej} (with j¼ 1,.,M,
where M [ 3N), the linear structural sensitivities can be
collected in a (3N � M)-matrix X with

XIa,j ¼ dsIa(Ej), (6)

i.e., the rows of this matrix contain the discretized linear
structural sensitivities with respect to the 3N Cartesian
displacements. Here, we useM¼ 10 000 evenly spaced points in
the relevant energy range. With the singular value decomposi-
tion of X ¼ U$S$VT, we obtain

UT$X ¼ S$VT, (7)

where U is an orthogonal (3N � 3N)-matrix, V is an orthogonal
(M � M)-matrix, and the (3N � M) diagonal matrix S contains
the 3N singular values sk on its diagonal.

Here, the columns of U dene principal component
distortions,

qk ¼
X
Ia

UIa;keIa (8)

i.e., qk is the unit vectors of a collective distortion corresponding
to the k-th principal component. These principal component
distortions {qk} constitute an alternative basis of the full space
of structural distortions, in which the displacement vector DR
can be expressed as,

DR ¼
X
k

Qkqk; (9)

where Qk is the displacement in direction of the collective coor-
dinate q. The vector Dq ¼ (Q1, Q2, .)T ¼ UDR describes the
displacement in the basis of our new collective coordinates. Note
that despite the notational and conceptual similarity, the collec-
tive coordinates {qk} describing the principal component distor-
tions and the displacements Qk differ from the normal
coordinates and normal modes appearing in theoretical vibra-
tional spectroscopy (see Section S1 in the ESI† for a detailed
analysis). Nevertheless, because of this analogy we will refer to the
collective coordinates {qk} as sensitivity modes in the following.

The linear structural sensitivities can now also be expressed
with respect to the principal component distortions as

dsPC
k ðEÞ ¼

X
Ia

UIa;kdsIaðEÞ ¼ vsðE;RÞ
vQk

����
R0

: (10)
1864 | Chem. Sci., 2020, 11, 1862–1877
By comparing with eqn (7), we nd

dsPC
k

À
Ej

Á ¼ X
Ia

UIa;kdsIa

À
Ej

Á ¼ skV j;k; (11)

i.e., the k-th column of the matrix V multiplied by the k-th
singular value sk corresponds to the discretized principal
component structural sensitivity dsPCk with respect to distor-
tions along the sensitivity mode qk. Note that because V is an
orthogonal matrix, its columns are normalized. Therefore,

|dsPC
k ðEÞ|

2

¼
ðEmax

Emin

dsPC
k ðEÞ2dE ¼ Emax � Emin

M
sk

2; (12)

and the norm of dsPCk is proportional to the corresponding
singular value sk. Thus, the k-th singular value provides
a quantitative measure for the linearized inuence of distor-
tions along sensitivity mode qk on the calculated spectrum.

Altogether, the linearized model of eqn (4) can now be
expressed as

dsðE;DRÞ ¼ dsðE;DqÞ ¼
X3N
k¼1

dsPC
k ðEÞQk z

Xkmax

k¼1

dsPC
k ðEÞQk;

(13)

which makes it possible to truncate the sum over principal
components by neglecting the contributions that correspond to
small singular values. In general, the linearized dependence of
the calculated spectra on structural distortions can thus be
described accurately by including only a few displacements along
the kmax most inuential sensitivity modes q1, ., qkmax

. Note that
the resulting linearized model will depend on the choice of the
quantity of interest, i.e., on the relevant energy range and on the
parameters used for an empirical line broadening.

As an example, we consider the structural sensitivity of the
calculated XES spectrum of Fe(CO)5. XES is widely used to
obtain insights into the geometrical and electronic structure at
transition metal centers from the combination of experimental
and theoretical spectroscopy.12–15 Fe(CO)5 is a prototypical
transition metal complex, and its XES spectrum has been
previously studied both experimentally and computationally. As
the calculation of XES spectra within a DDFT approximation38

only requires a ground-state calculation, it constitutes an ideal
rst test case. For this example, we already explored the
dependence on manually selected structural distortions in our
previous work.35 An in-depth experimental and computational
study of the XES spectrum of Fe(CO)5 can be found in ref. 39.

Starting from the minimum energy structure of Fe(CO)5, we
calculated the linear structural sensitivity dsIa(E) with respect to
all 33 Cartesian displacements by numerical differentiation and
performed the principal component analysis outlined above.
The resulting singular values are plotted in Fig. 1a. We nd that
the four largest singular values (s1 ¼ 9.44, s2 ¼ 3.58, s3 ¼ 2.54, s4
¼ 0.88) account for over 95% of the sum of all singular values.
The sum of the remaining 29 singular values amounts to only
0.36. The corresponding sensitivity modes qk are visualized in
Fig. 1b and the corresponding principal component structural
sensitivities dsPCk are shown in Fig. 1c.
This journal is © The Royal Society of Chemistry 2020
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For the largest singular value s1, the sensitivity mode q1 is
given by a collective symmetric C]O stretching coordinate.
Distorting the molecular structure along this mode will mainly
affect the position and intensity of the rst peak as well as the
intensity of the second peak in the calculated XES spectrum,
while it leaves the third peak mostly unchanged (see blue
graphs in Fig. 1c). The second sensitivity mode q2 corresponds
to a symmetric Fe–C stretching coordinate. A distortion along
this mode will affect all three peaks, but to a much smaller
extent than for the rst sensitivity mode (see green graphs in
Fig. 1c). The third and forth sensitivity modes q3 and q4 are
asymmetric Fe–C and C]O stretching coordinates, respectively,
in which the distortions of the axial and equatorial ligands form
an out-of-phase combination. Again, it is obvious form Fig. 1c
(see red and cyan graphs) that the effect of a distortion along q3
and q4 further decreases, and is already almost negligible for q4.

Finally, the lower panel of Fig. 1c also includes the sum of
the principal component structural sensitivities corresponding
to all remaining singular values (magenta line), which turns out
to be negligible. Thus, a principal component analysis allows
for a signicant reduction of the dimensionality of the linear-
ized change in the calculated spectrum,

ds(E;DR) ¼ ds(E;Dq) z ds(E;Q1, ., Qkmax
). (14)

For the example of Fe(CO)5 only four collective displacements
Q1, ., Q4 along sensitivity modes instead of the full 33 Carte-
sian displacements DRIa are required for accurately describing
the dependence of the calculated XES spectrum on the under-
lying molecular structure. All remaining principal component
Fig. 1 Principal component analysis of the linearized structural sensitivit
and sum of the singular values (blue) in descending order. (b) Visualizatio
values. (c) Calculated XES spectrum (upper panel) and principal compon
areas indicate the linearized change in the calculated spectrum for disto

This journal is © The Royal Society of Chemistry 2020
distortions turn out to be non-inuential within the linearized
model.

3 Construction of nonlinear
surrogate models

Based on a principal component analysis, the dimensionality of
a linearized model can be signicantly reduced by only
considering the most inuential principal component distor-
tions and neglecting non-inuential distortions. This can now
be used as starting point for constructing nonlinear surrogate
models of the structural sensitivity of calculated spectra within
this reduced space, i.e.,

Ds(E;DR) z Ds(E;Q1, ., Qkmax
). (15)

The use of such a reduced space is based on the assumption
that the sensitivity modes that are non-inuential in the line-
arized model also only have a small inuence when considering
the full structural sensitivity. Additional tests to verify this
assumption are presented in the ESI (Section S2).†

A general ansatz for a nonlinear surrogate model within the
reduced space of the displacements that are most inuential in
the linearized model is given by

Ds
À
E;Q1;.;Qkmax

Á ¼ Xkmax

k¼1

Ds
ð1Þ
k ðE;QkÞ þ

Xkmax

k\l

Ds
ð2Þ
kl ðE;Qk;QlÞ þ/

(16)

with the one-mode contributions

Ds(1)k (E;Qk) ¼ Ds(E;0, .,Qk, ., 0), (17)
y of the calculated XES spectrum of Fe(CO)5. (a) Singular values sk (red)
n of the sensitivity modes qk corresponding to the four largest singular
ent structural sensitivities dsPCk (lower panel). The color-coded shaded
rtions of Qk ¼ �4 pm.

Chem. Sci., 2020, 11, 1862–1877 | 1865
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two-mode contributions

Ds(2)kl (E;Qk, Ql) ¼ Ds(E;0, ., Qk, ., Ql, ., 0)

� Ds(1)k (E;Qk) � Ds(1)l (E;Ql), (18)

and possibly further higher-order contributions. In the litera-
ture on uncertainty quantication, this ansatz is referred to as
high-dimensional model representation (HDMR)40 and is
closely related to the Sobol expansion.41 The specic form
considered here is known as Cut-HDMR.42 In theoretical
chemistry, such an ansatz is well known from the N-mode
expansion commonly used in anharmonic theoretical vibra-
tional spectroscopy and quantum dynamics.43–46 Note that this
ansatz is exact within our reduced space if all contributions up
to order kmax are included, but generally a truncation at a lower
order is used as an approximation. Furthermore, the Cut-HDMR
expansion of eqn (16) provides the possibility for introducing
further approximations to the individual one-mode, two-mode,
and possibly higher-order contributions.

In the linearized model of eqn (13), two-mode and higher-
order contributions are neglected while the one-mode contri-
butions are approximated as

Ds(1)k (E;Qk) z dsPCk (E)Qk. (19)

To improve upon this linear approximation for the one-mode
contributions, one can employ a Taylor expansion, i.e.,

Ds
ð1Þ
k ðE;QkÞz dsPC

k ðEÞQk þ 1

2

v2sðE;RÞ
vQk

2
|
R0

Qk
2

þ1

6

v3sðE;RÞ
vQk

3
|
R0

Qk
3 þ/: (20)

Similarly, instead of neglecting the two-mode contributions,
these could be approximated via a Taylor expansion,

Ds
ð2Þ
kl ðE;Qk;QlÞz 1

2

v2sðE;RÞ
vQkvQl

|
R0

QkQl þ/: (21)

Here, the quadratic term is the lowest order entering the two-
mode contributions. The required higher derivatives can be
calculated by numerical differentiation. As before, for the one-
mode contributions we use a displacement of h ¼ 0.5 pm in
combination with a three-point nite-difference formula for the
second derivative, a four-point formula for the third derivative,
and possibly a ve-point formula for the fourth derivative along
one mode.

As an alternative to a Taylor expansion, the one-mode, two-
mode, higher-order contributions could also be approximated
by a discretized representation on a suitable grid of distortions
in the relevant range. Note that the fact that the surrogate model
is only constructed in the reduced space of the most inuential
sensitivity modes signicantly reduces the number of addi-
tional quantum-chemical calculations of the spectrum for dis-
torted structures that are required for its construction.

The accuracy of different approximations within a surrogate
model can be assessed by comparing the change in the spec-
trum predicted by the model to the one obtained from
1866 | Chem. Sci., 2020, 11, 1862–1877
a calculation of the spectrum for a distorted structure. For the
example of the XES spectrum of Fe(CO)5, such a comparison is
shown for selected terms in Fig. 2.

For the one-mode contributions, we consider a distortion of
�4 pm along themost inuential sensitivity mode in Fig. 2a and
b. The exact one-mode contribution obtained from a calcula-
tions of the spectrum for distorted structures (red line) is in
good agreement with the linearized model (blue line), but some
differences appear in the region of the rst and second peak.
When going to a 3rd order Taylor expansion (dashed green line),
these differences disappear and an almost perfect agreement
with the exact one-mode contribution is found on the scale of
the gure. Fig. 2c and d shows the exact two-mode contribution
obtained from calculating the spectrum for structures that were
simultaneously distorted by |Dq| ¼ 4 pm along the two most
inuential sensitivity modes. The plots show that these two-
mode contributions are almost negligible.

Based on these tests, in the following we use a 3rd order Taylor
expansion for the one-mode contributions and neglect all two-
mode contributions. Of course, such a choice will have to be
reassessed for different test cases. More systematic schemes for
the construction of non-linear surrogate models that include
additional terms on-the-y as needed can also be envisioned.

4 Analysis of uncertainty propagation

A surrogate model of the change in the calculated spectrum
Ds(E;DR) can be evaluated for arbitrary structural distortions
without signicant computational effort. This now makes it
possible to analyze the propagation of uncertainties in the
molecular structure to uncertainties in the calculated spectrum.

First, we consider the molecular structures that can be ob-
tained from the reference structure by distortions up to a given
magnitude dmax, i.e., with |DR| # dmax. As the transformation
from Cartesian distortions to sensitivity modes is orthogonal,
this is equivalent to |Dq| # dmax. Such distortions will result in
changes in the calculated spectrum, for which we want to
determine upper and lower bounds. For a surrogate model
expressed as HDMR expansion up to two-mode contributions
we nd,

max
|Dq|# dmax

DsðE;DRÞ#
Xkmax

k¼1

max
|Qk |# dmax

Ds
ð1Þ
k ðE;QkÞ

þ
Xkmax

k\l

maxffiffiffiffiffiffiffiffiffiffiffiffiffi
Qk

2þQl
2

p
# dmax

Ds
ð2Þ
kl ðE;Qk;QlÞ (22)

with the analogous expression for the minimum. Note that on
the right-hand side we applied the triangle inequality, i.e., the
upper and lower bounds given by this equation are not tight.

The calculation of the maximum and minimum of the
change in the spectrum is thus reduced to determining the
maximum and minimum for the one-mode and two-mode
contributions, i.e., for simple one- or two-dimensional func-
tions. For the linearized model, only the one-mode contribu-
tions at the maximum displacements Qk ¼ �dmax need to be
considered. In the general case, the maximum and minimum
can be found by sampling the one-mode and two-mode
This journal is © The Royal Society of Chemistry 2020



Fig. 2 Analysis of the accuracy of different approximations of the one-mode and two-mode contributions to the structural sensitivity of the
calculated XES spectrum of Fe(CO)5. (a and b) One-mode contributions obtained from calculations for displaced structures with Q1 ¼ �4 pm
(solid red line) compared to a linearized approximation (solid blue line) and a 3rd order Taylor expansion (dashed green line). The top panels show
the corresponding spectra while the lower panels show the change in the calculated spectra. (c and d) Two-mode contributions obtained from

calculations for displaced structures with Q1 ¼ � 4ffiffiffi
2

p pm and Q2 ¼ � 4ffiffiffi
2

p pm (i.e., |Dq| ¼ 4 pm).
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contributions in the relevant interval (e.g., using 100 evenly
spaced points between �dmax and +dmax for the one-mode
contributions).

For the test case of the XES spectrum of Fe(CO)5, the error
bars for distortions of up to 4 pm calculated according to eqn
(22) are shown in Fig. 3a for the linearized model and in Fig. 3b
for a non-linear surrogate model based on a 3rd-order Taylor
expansion for the one-mode contributions.

For the linearized model, some artifacts are observed for the
error bars. In particular, there are points at which the error
almost vanishes between the rst two peaks at ca. 7101 eV and
close to the maximum of the second peak. Moreover, for the
second peak the error bars appear rather bumpy. These features
disappear for the nonlinear surrogate model, for which smooth
error bars are obtained that seem overall reasonable.

To verify the accuracy of the obtained error bars, we have
explicitly calculated the spectra for 100 distorted molecular
structures with |DR|. These are shown as black lines in Fig. 3c.
We notice that for these random distortions, the effect on the
calculated spectra is signicantly below the maximum indi-
cated by the error bars, but their spread follows the same
patterns. However, with only 100 distorted structures in the 33-
dimensional space of possible distortions, it is not surprising
that the distortions that have the largest effect on the calculated
This journal is © The Royal Society of Chemistry 2020
spectra are not sampled. Therefore, Fig. 3c also includes the
spectra calculated for structures distorted along the four most
inuential sensitivity modes as red lines. For these distortions,
we see a signicantly larger effect than for random distortions.
The spread of the calculated spectra now approaches the error
bars, while all spectra calculated for distorted structures remain
within the calculated error bars.

The error bars in Fig. 3b indicate that the uncertainty in the
position and intensity of the rst peak is larger than for the third
peak. For the second peak, the uncertainty is rather small for the
position of the peak while there is a larger effect of structural
distortions for its intensity. Eqn (22) allows for a decomposition
into contributions of the different sensitivity modes that is also
included in Fig. 3 and allows for a further analysis. For instance,
the uncertainty for the rst and second peak is mostly due to the
rst sensitivity mode, while for the third peak the rst three
sensitivity modes contribute roughly equally to the uncertainty.

Second, we turn to a probabilistic picture and set out to
determine the propagation of statistical uncertainties in the
underlying molecular structure to the calculated spectrum. To
this end, we consider the distortions in the molecular structure
as a random variable with the probability density p(Dq). Here,
we assume that distortions along the different sensitivity modes
are uncorrelated, i.e.,
Chem. Sci., 2020, 11, 1862–1877 | 1867



Fig. 3 Calculated XES spectrum of Fe(CO)5 (black line) including error
bars (shaded area) giving upper and lower bounds for distortions of the
minimum energy reference structure with |DR| # 4 pm. The different
colors of the shaded area indicate the contributions of the four most
influential sensitivity modes (q1 blue; q2 green, q3 red, q4 cyan). (a) Error
bars calculated for the linearized surrogate model and (b) for the non-
linear surrogate model based on a 3rd-order Taylor expansion for the
one-mode contributions and neglecting two-mode and higher-order
contributions. (c) Spectra calculated for 100 random distortions with
|DR| ¼ 4 pm (black lines) as well as 20 evenly spaced distortions
betweenQi ¼ �4 pm along each of the four most influential sensitivity
modes (red lines). The total error bars from (b) are included as green
shaded area for comparison.
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pðDqÞ ¼
Y3N
k¼1

pkðQkÞ; (23)

and that the mean value corresponds to the undistorted struc-
ture, i.e., hQki ¼ 0. A generalization is usually possible by
applying a suitable coordinate transformation.

The calculated spectrum will thus also become a random
variable with an associated probability density,

pðDqÞ ���������!uncertainty

propagation
pðsðEÞÞ (24)

The probability distribution for the calculated spectrum can
be characterized by calculating its moments,

mn½sðEÞ� ¼
ðþN

�N
sðEÞnpðsðEÞÞds

¼
ðþN

�N
.

ðþN

�N
sðE;DqÞnpðDqÞdQ1/dQkmax

(25)
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most importantly its mean hs(E)i ¼ m1[s(E)] and its variance
Var[s(E)] ¼ m2[s(E)] � hs(E)i2 or its standard deviation
s½sðEÞ� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½sðEÞ�p
:

For our surrogate model with up to two-mode contributions,
the mean value of the probability distribution for the calculated
spectrum can be calculated as,

hsðEÞi ¼ sðE;R0Þ þ
Xkmax

k¼1

ð
Ds

ð1Þ
k ðE;QkÞpkðQkÞdQk

þ
Xkmax

k\l

ð ð
Ds

ð2Þ
kl ðE;Qk;QlÞpkðQkÞplðQlÞdQkdQl

¼ sðE;R0Þ þ
Xkmax

k¼1

D
Ds

ð1Þ
k

E
þ

Xkmax

k;l¼1
k\l

D
Ds

ð2Þ
kl

E
(26)

Note that this mean value does not necessarily agree with the
spectrum calculated for the undistorted structure, even tough
the mean of the distribution of the distortions equals the
reference structure.

If only one-mode contributions are included, the variance
can be calculated as,

Var½sðEÞ� ¼
Xkmax

k¼1

�ð �
Ds

ð1Þ
k ðQkÞ

�2

pkðQkÞdQk �
D
Ds

ð1Þ
k

E2
�

¼
Xkmax

k¼1

Var
h
Ds

ð1Þ
k

i
: (27)

For surrogate models including two-mode contributions,
explicit expressions are given in the ESI (Section S3).† More
elaborate approaches (such as polynomial chaos expansions47)
for calculating the variance with higher-order surrogate models
and for its analysis are available in the literature on uncertainty
quantication (global sensitivity analysis).48

For the test case of the XES spectrum of Fe(CO)5, we assume
a normal distribution with a mean of zero and with standard
deviation sQ for distortions along all sensitivity modes,

pkðQkÞ ¼ N ð0; sÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2psQ2

p e
�Qk

2

2sQ2 (28)

Thus, the probability that a distortions is within �2sQ is ca.
95%. In Fig. 4 we plot the error bars corresponding to two
standard deviations s[s(E)] for the calculated spectrum.
Assuming the calculated spectra follow a normal distribution,
the calculated spectra would lie within the error bars with
a probability of 95%. Therefore, with sQ ¼ 2 pm in this setup
we expect similar error bars as when considering maximum
distortions of �4 pm. Note, however, that because indepen-
dent, normally-distributed distortions along all sensitivity
modes are assumed, the expectation value of |DR| amounts toffiffiffiffiffiffiffi
3N

p
sQ: Thus, the considered distortions are much larger than

those considered above, but their largest part will always be
along non-inuential sensitivity modes.

The calculation of the error bars requires calculating the
integrals in eqn (26) and (27). With our surrogate model based
on a Taylor expansion of the one-mode contributions and
This journal is © The Royal Society of Chemistry 2020



Fig. 4 Calculated XES spectrum of Fe(CO)5 (black line) including error bars (blue shaded area) corresponding to two standard deviations when
assuming a normal distribution with standard deviation sQ for the distortions of the underlying molecular structure. If different from the spectrum
calculated for the reference structure, themean of the calculated spectrum is included as dashed red line. (a) Error bars calculated for sQ¼ 2 pmwith
the linearized surrogatemodel; (b and c) error bars calculated for (b) sQ¼ 2 pm and (c) sQ¼ 4 pmwith the non-linear surrogatemodel based on a 3rd
order Taylor expansion for the one-mode contributions and neglecting two-mode and higher-order contributions. (d and e) Spectra calculated for
100 random distortions sampled from independent normal distributions with (d) sQ ¼ 2 pm and (e) sQ ¼ 4 pm (black lines) as well as the error bars
corresponding to two standard deviations (blue lines). For comparison, the error bars from (b) and (c), respectively, are included as blue shaded area.
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normally distributed distortions these could be obtained
analytically, but using a numerical integration scheme such as
Gauss–Hermite quadrature or Monte–Carlo sampling is more
general. For simplicity, here we apply numerical integration
with a grid of 1000 evenly spaced points between�4sQ and +4sQ.

Fig. 4a shows the calculated XES spectrum of Fe(CO)5 with 2s
error bars assuming a normal distribution with 2sQ¼ 4 pm for the
structural distortions within the linearized surrogate model. In
this case, the mean of the calculated spectrum coincides with the
spectrum of the undistorted structure. Again, the error bars ob-
tained with the linearized surrogate model show some unphysical
features at the minimum at ca. 7101 eV and close to the maximum
of the second peak at ca. 7103 eV. With the surrogate model
employing a 3rd order Taylor expansion (see Fig. 4b) these mostly
disappear and the error bars become overall smooth.

When increasing the standard deviation of the normal
distribution assumed for the structural distortions to 2sQ ¼ 8
pm, the error bars increase (see Fig. 4c). However, this
increase is not proportional and different new features are
introduced for the individual peaks in the spectrum. For
instance, the error bars for the second peak are larger for an
increase in the intensity than for a decrease and also show
a larger probability for a shi of this peak to lower energies.
This also results in a shi of the mean of the calculated
This journal is © The Royal Society of Chemistry 2020
spectrum compared to the spectrum of the undistorted
structure.

To verify the accuracy of the obtained error bars, we re-
calculated the XES spectrum for 100 random distortions
sampled from independent normal distributions for each Carte-
sian coordinate. These randomly sampled calculated spectra are
shown in Fig. 4d and e for 2sQ ¼ 4 pm and 2sQ ¼ 8 pm, respec-
tively, together with the corresponding error bars, obtained as two
standard deviations of the calculated spectra. For 2sQ¼ 4 pm (see
Fig. 4d), we nd an almost perfect agreement of the error bars
obtained from random sampling with the error bars derived from
our non-linear surrogate model. On the other hand, for 2sQ ¼ 8
pm (see Fig. 4e) larger deviations appear. For the rst peak, the
surrogate model predicts too large error bars at the low-energy
shoulder of the peak, and for the third peak it overestimates
the uncertainty for a shi of the peak position. These differences
points to a breakdown of the 3rd order Taylor expansion for larger
distortions. In addition, for larger distortions it is also not clear
whether with only 100 randomdistortions, all relevant distortions
are sampled sufficiently.

The main features of the error bars in Fig. 4 are overall
similar to those already observed in Fig. 3. The largest error bars
is found for the rst and second peak, whereas the uncertainty
is smaller for the third peak. To allow for a further analysis,
Table 1 collects quantitative statistical metrics for the intensity
Chem. Sci., 2020, 11, 1862–1877 | 1869
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at the positions of the three peaks. At the rst and third peak,
the mean on the calculated intensity hs(Ej)i coincides with the
intensity that is calculated for the undistorted structure s(Ej;R0),
while for the second peak the mean intensity slightly deviates
from the intensity for the reference structure. This deviation
increases when increasing the standard deviation of the normal
distribution that is assumed for the structural distortions.

Table 1 further includes the variance of the intensity at the
peak maxima Var[s(Ej)], its standard

deviation s½sðEjÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½sðEjÞ�

p
; and the coefficient of variance

(COV), s[s(Ej)]/hs(Ej)i. As it is normalized to the mean intensity,
the latter gives a measure of the relative uncertainty. These
quantitative metrics conrm the observations already made in
Fig. 4, i.e., the absolute uncertainty, as measured by the variance
or the standard deviation, is largest for the rst and the second
peak, while it is considerably lower for the third peak.

The COV shows that the relative uncertainty is the largest for
the rst peak, while it is considerably smaller for the second
and third peak. When increasing the uncertainty that is
assumed for the structural distortions by a factor of two, the
standard deviation and COV approximately double for all three
peaks. Note, however, that the considered metrics only account
for the intensity at the position of the peak, and thus only partly
capture differences in the uncertainty of the peak position.
5 Further test cases: XES, UV/Vis, and
IR

The methodology for quantifying the structural sensitivity of
calculated spectra developed in the previous sections is not
restricted to the test case of the XES spectrum of Fe(CO)5
considered so far, but should be generally applicable to
different spectroscopies. To demonstrate this and to explore the
limitations of the current approach, in this section we investi-
gate additional test cases from XES, ultraviolet/visible (UV/Vis),
Table 1 Quantitative statistical metrics for the uncertainty of the
calculated XES spectrum of Fe(CO)5 at the maxima of the three
considered peaks (Ej, indicated by vertical lines in the spectra in Fig. 4)
assuming a normal distribution with standard deviation sQ ¼ 2 pm and
sQ ¼ 4 pm for the distortions of the underlying molecular structure.
Listed are the intensity for the undistorted structure s(Ej;R0), the
mean of the intensity hs(Ej)i, its variance Var[s(Ej)], its standard devia-
tion s[s(Ej)], and the coefficient of variance COV[s(Ej)]. All metrics refer
to the non-linear surrogate model based on a 3rd order Taylor
expansion for the one-mode contributions and neglecting two-mode
and higher-order contributions.

Ej/eV s(Ej;R0) hs(Ej)i Var[s(Ej)] s[s(Ej)] COV[s(Ej)]

pkðQkÞ ¼ N ð0; 2 pmÞ
7099.8 4.06 4.06 0.16 0.40 0.10
7103.1 9.36 9.41 0.12 0.35 0.04
7107.9 4.23 4.23 0.02 0.15 0.04

pkðQkÞ ¼ N ð0; 4 pmÞ
7099.8 4.06 4.06 0.74 0.86 0.21
7103.1 9.36 9.54 0.47 0.69 0.07
7107.9 4.23 4.23 0.09 0.30 0.07
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and infrared (IR) spectroscopy. These test cases cover a divers
set of computational spectroscopies treated with different
computational approaches (ground-state DDFT, time-
dependent DFT, and harmonic vibrational analysis).

First, we consider the XES spectrum of another iron complex,
Fe(CO)3(cod) (cod ¼ cyclooctadienyl, C8H12).39,49 This is another
typical transition metal complex, but features a more complex
coordination environment compared to Fe(CO)5. The sensitivity
of the calculated XES spectrum with respect to selected distor-
tions has been explored previously in ref. 35. Here, we now
consider distortions with respect to all possible distortions as
described above.

The sensitivity modes resulting from the principal compo-
nent analysis are shown in Fig. 5a. We nd that only 11 of the in
total 81 sensitivity modes are required to account for 95% of the
sum of all singular values. For these 11 sensitivity modes, we set
up our surrogate model in the same fashion as for Fe(CO)5, i.e.,
a 3rd order Taylor expansion was used for the one-mode
contributions while neglecting two-mode and higher-order
contributions. The calculated spectrum together with error
bars is shown in Fig. 5b–d. A comparison to the error bars ob-
tained from randomly sampling 100 distortions, which shows
an excellent agreement with our non-linear surrogate model for
both sQ ¼ 2 pm and sQ ¼ 4 pm, is given in Fig. S2 in the ESI.†

As for Fe(CO)5, the two most inuential sensitivity modes
correspond to C]O stretching and Fe–C stretching vibrations.
The third sensitivity mode can be interpreted as a Fe–cod
stretching mode, whereas the fourth and h sensitivity mode
describe deformations of the CO ligand sphere. Note that the
most inuential sensitivity modes do not include any changes
of the structure of the cod ligand, which indicates that such
distortions do not alter the calculated XES spectrum
signicantly.

The calculated error bars are similar to those found for
Fe(CO)5 for the three most intense peaks (see also Section S5 in
the ESI† for a discussion of quantitative metrics). For the weak
features between ca. 7092 and 7095 eV, the error bars are very
small, i.e., even though it is only weak this region appears to be
rather insensitive to structural distortions. Noteworthy are also
the error bars for the third peak at ca. 7106–7109 eV. Within the
error bars, this peak could show only one maximum (as for the
reference structure) or two maxima. Such insights provided by
the error bars for calculated spectra will potentially be crucial
for the comparison of calculated and measured spectra.

As a second test case, we consider the electronic excitation
(UV/Vis) spectrum of the dye molecule aminocoumarin C151.
Such coumarin dyes are widely used for studying photochem-
istry and thus provide a typical test case. We have previously
investigated aminocoumarin C151 as a model system for
simulating solvent effects on electronic excitations.50 Besides
the effect of the solvent environment, a further contribution to
such solvent effects are uctuations of the molecular structure
which have distinct effects on the calculated UV/Vis spectrum.

For analyzing the structural sensitivity of the calculated UV/
Vis spectrum of aminocoumarin C151 we considered the region
between 2.5 and 5.0 eV, in which four allowed electronic tran-
sitions are found. We performed a principal component
This journal is © The Royal Society of Chemistry 2020



Fig. 5 Analysis of the structural sensitivity of the calculated XES spectrum of Fe(CO)3(cod). (a) Visualization of the six most influential sensitivity
modes. (b) Calculated spectrum including error bars giving upper and lower bounds for distortions with |DR| # 4 pm. The colors of the shaded
area indicate the contributions of the different sensitivity modes. (c and d) Calculated spectrum including error bars corresponding to two
standard deviations when assuming a normal distribution with standard deviation (c) sQ ¼ 2 pm and (d) sQ ¼ 4 pm for the distortions of the
molecular structure. All error bars are obtained using the non-linear surrogate model based on a 3rd order Taylor expansion for the one-mode
contributions and neglecting two-mode and higher-order contributions.
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analysis of the linear structural sensitivities as described above.
Here, only ve sensitivity modes, which are shown in Fig. 6a, are
required to account for 95% of the sum of all 66 singular values.
These all correspond to different ring breathing modes of the
conjugated aromatic system. Note that the inuence of the rst
sensitivity mode is already more than three times larger than for
the second sensitivity mode.

For the calculation of error bars, we used both the linearized
model and a 4th order Taylor expansion of the one-mode
contributions, while neglecting two-mode and higher-order
contributions. The resulting error bars are shown in Fig. 6b,
c, e and f. First, we notice that the effect of structural distortions
on the calculated spectra is much larger than for XES. There-
fore, we only consider maximum distortions of up to 1 pm and
assumed a normal distribution with a standard deviation of sQ
¼ 0.5 pm, respectively. Even for these smaller distortions, the
difference between the linearized model and the non-linear
model using a 4th order Taylor expansion of the one-mode
contributions is rather pronounced. With the linearized
model, the error bars extend quite far to negative intensities,
which is unphysical and indicates a breakdown of the linear
This journal is © The Royal Society of Chemistry 2020
approximation. This is to a large extent corrected when
switching to a 4th order Taylor expansion.

Further inspection shows that for all peaks, the dominating
effect of structural distortions is a shi of the peak position.
Once this shi becomes large compared to the width of the
peak, it is not well described by a linear expansion of the
difference spectrum. This is most obvious in Fig. 6c for the rst
peak. Here, the 4th order Taylor expansion is mostly sufficient
for recovering such a shi in the peak position (see Fig. 6d), but
for larger shis even a higher-order Taylor expansion might not
be adequate. However, even though the 4th order Taylor
expansion improves upon the linearized model, it still results in
some unphysical extent of the calculated error bars to negative
intensities. Note, that our form of the nonlinear surrogate
model is also able to accommodate other approximations than
a Taylor expansion for the one-mode (and possibly higher-
order) contributions, which might be more suitable for
describing larger shis in peak positions.

To assess the accuracy of the error bars obtained with our
nonlinear surrogate model, Fig. 6d and g show the spectra ob-
tained for 100 randomly sampled distortions. For random
Chem. Sci., 2020, 11, 1862–1877 | 1871



Fig. 6 Analysis of the structural sensitivity of the calculated UV/Vis spectrum of aminocoumarin C151. (a) Visualization of the five most influential
sensitivity modes. (b and c) Calculated spectrum including error bars giving upper and lower bounds for distortions with |DR| # 1 pm obtained
within (b) the linearized model and (c) the non-linear surrogate model based on a 4th order Taylor expansion for the one-mode contributions
and neglecting two-mode and higher-order contributions. (d) Spectra calculated for 100 randomdistortions with |DR|¼ 1 pm (black lines) as well
as 20 evenly spaced distortions betweenQi¼�1 pm along each of the four most influential sensitivity modes (red lines). The total error bars from
(c) are included as green shaded area for comparison. (e and f) Calculated spectrum including error bars corresponding to two standard
deviations when assuming a normal distribution with standard deviation sQ ¼ 0.5 pm for the distortions of the molecular structure obtain within
(e) the linearized model and (f) the non-linear surrogate model. (g) Spectra calculated for 100 random distortions sampled from independent
normal distributions with sQ ¼ 0.5 pm as well as the error bars corresponding to two standard deviations (blue lines). For comparison, the error
bars from (f) are included as blue shaded area.
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distortions with |DR|¼ 1 pm (see Fig. 6d), all calculated spectra
are within the boundaries for the maximum change in the
calculated spectrum. However, the magnitude of the change is
signicantly smaller because the most inuential distortions
are not sampled sufficiently. When considering explicit distor-
tions along themost inuential sensitivity modes, the error bars
are approached more closely. When sampling independent
normally-distributed distortions (see Fig. 6g), we nd that the
error bars obtained from the standard deviation of the calcu-
lated spectra are in very good agreement with those obtained
from the nonlinear surrogate model. Note that even though the
spectra always remain positive, these error bars extend to
negative intensities, which might appear unphysical. However,
this is a consequence of the fact that the calculated spectrum do
not follow a normal distribution anymore, which leads to
1872 | Chem. Sci., 2020, 11, 1862–1877
a breakdown of the interpretation of the 2s error bars as 95%
condence intervals.

Finally, we consider the calculated harmonic IR spectrum of
the amino acid alanine as a third test case. Vibrational spec-
troscopy is a prime example for a spectroscopic method that is
used for making structural assignments based on the direct
comparison of calculated and measured spectra (see, e.g., ref.
3–7). As many such studies concern polypeptides, alanine as
one of the simplest amino acids is well suited as a rst test case.
Note that for vibrational spectra, the sensitivity of the calculated
harmonic spectra with respect to structural distortions is
related to the anharmonicity of the potential energy surface and
the resulting error bars thus also give an indication for uncer-
tainties resulting from the neglect of anharmonicities.

For the IR spectrum of alanine, we analyzed the structural
sensitivity in the region between 500–4000 cm�1. Here, we nd
This journal is © The Royal Society of Chemistry 2020
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that 13 out of 39 sensitivity modes need to be included to
account for 95% of the sum of all singular values. The ninemost
inuential sensitivity modes are visualized in Fig. 7a. The
comparison with the color-coded error bars for maximum
distortions of up to 0.5 pm in Fig. 7b shows that different peaks
are affected by the individual sensitivity modes. For instance,
the amide I (C]O stretching) vibration at ca. 1650 cm�1 is
almost exclusively inuenced by the second sensitivity mode,
which corresponds to a change of the C]O bond length.

As for UV/Vis spectroscopy, we nd that also the calculated
IR spectra are much more sensitive to structural distortions
than the XES spectra. Therefore, we consider only normally
distributed distortions with a standard deviation of sQ ¼ 0.25
pm in Fig. 7c and d. Again, we nd that going from a linearized
model to a 4th order Taylor expansion of the one-mode
contributions signicantly reduces the extent of the error bars
to negative intensities. We also note that when going to nor-
mally distributed distortions with a standard deviation of sQ ¼
0.5 pm (see Fig. 7f), the 4th order Taylor expansion breaks
Fig. 7 Analysis of the structural sensitivity of the calculated IR spectrum o
(b) calculated spectrum including error bars giving upper and lower boun
including error bars corresponding to two standard deviations when assu
pm and (f) sQ ¼ 0.5 pm for the distortions of the molecular structure. In (c
and (f) a non-linear surrogate model is used that is based on a 4th order
mode and higher-order contributions. (e and g) Spectra calculated for 10
with (e) sQ¼ 0.25 pm and (g) sQ¼ 0.5 pm as well as the error bars correspo
bars from (d) and (f), respectively, are included as blue shaded area.
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down, i.e., more sophisticated approximations for the one-
mode contributions will be required for describing such
larger distortions. This is conrmed by the comparison with the
error bars obtained from randomly sampled distortions that is
shown in Fig. 7e and g.

Inspecting the error bars in Fig. 7d as well as the corre-
sponding quantitative statistical metrics listed in Table 2
reveals rather different uncertainties in different regions of the
spectrum. While the ngerprint region below ca. 800 cm�1 is
subject to large absolute uncertainties as well as for the amide I
peak at ca. 1650 cm�1 (which mainly consists of the C]O
stretching vibration), a rather small absolute uncertainty is
found for the position of the peak at ca. 1016 cm�1 as well as for
low-intensity peaks between ca. 1050 and 1500 cm�1 (which are
due to the Ca–N stretching, Ca–H bending and the symmetric
CH3 bending vibrations). In the high-wavenumber region, the
C–H stretching vibrations in the region between ca. 2800–
3150 cm�1 is affected by a signicantly smaller absolute
f alanine. (a) Visualization of the nine most influential sensitivity modes;
ds for distortions with |DR| # 0.5 pm. (c, d and f) Calculated spectrum
ming a normal distribution with standard deviation (c and d) sQ ¼ 0.25
) the error bars are obtained using the linearized model, while in (b), (d)
Taylor expansion for the one-mode contributions and neglecting two-
0 random distortions sampled from independent normal distributions
nding to two standard deviations (blue lines). For comparison, the error
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Table 2 Quantitative statistical metrics for the uncertainty of the calculated IR spectrum of alanine at the maxima of selected peaks (Ej, indicated
by vertical lines in the spectra in Fig. 7). The statistical analysis assumes a normal distribution with standard deviation sQ ¼ 0.25 pm for the
distortions of the underlying molecular structure. Listed are the intensity for the undistorted structure s(Ej;R0), the mean of the intensity hs(Ej)i, its
variance Var[s(Ej)], its standard deviation s[s(Ej)], and the coefficient of variance COV[s(Ej)]. All metrics refer to the non-linear surrogate model
based on a 4th order Taylor expansion for the one-mode contributions and neglecting two-mode and higher-order contributions. See Table S11
in the ESI for the metrics for sQ ¼ 0.5 pm

Ej/cm
�1 Assignment s(Ej;R0) hs(Ej)i Var[s(Ej)] s[s(Ej)] COV[s(Ej)]

534.7 Fingerprint 11.12 8.66 8.77 2.96 0.34
1015.6 X–H bend 7.70 7.22 0.48 0.69 0.10
1191.3 Ca–N stretch 0.88 0.86 0.00 0.04 0.05
1313.1 Ca–H bend 0.99 0.96 0.02 0.15 0.16
1412.5 Symm. CH3 bend 1.08 1.07 0.00 0.06 0.06
1650.9 C]O stretch 8.31 7.18 3.52 1.88 0.26
2922.2 C–H stretch 0.79 0.66 0.05 0.22 0.34
3014.7 C–H stretch 0.59 0.54 0.02 0.13 0.24
3390.2 O–H stretch 2.07 1.10 0.88 0.94 0.85
3547.1 N–H stretch 0.58 0.37 0.05 0.23 0.62
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uncertainty that the O–H and N–H stretching vibrations in the
region between ca. 3200–3700 cm�1.

Considering the COV, the latter stand out as the peaks with
the highest relative uncertainty. For the C–H stretching, amide I
(C]O stretching), and the ngerprint region, the COV is
smaller by about a factor of two, but is still sizable. The inten-
sities of the peaks in the region between ca. 1050 and 1500 cm�1

show not only the smallest absolute uncertainty, but also the
smallest COV.

Such a systematic assessment of the uncertainties in the
positions and intensities of different peaks in calculated
vibrational spectra will potentially enable a much more reliable
assignment of experimental spectra. Most importantly, it allows
one to identify spectral features that are subject to high
uncertainties. For these peaks, one can then selectively rene
the computational methodology in order to reduce the
uncertainty.

6 Conclusions and outlook

Altogether, we have presented a methodology for systematically
quantifying the structural sensitivity of calculated molecular
spectra. It allows for the inclusion of error bars indicating the
uncertainties in a calculated spectrum that are due to uncer-
tainties in the underlying molecular structure. It is thus
a crucial rst step towards theoretical spectroscopy with error
bars and will enable a systematic assessment of the agreement
between computational and experimental spectra. While we
demonstrated its applicability to XES, UV/Vis, and IR spectros-
copy, our methodology is not specic to certain spectroscopies
but should be generally applicable to any type of computational
spectroscopy providing a spectral intensity as function of exci-
tation energy.

Our starting point for quantifying the structural sensitivity is
a principal component analysis of the linear structural sensi-
tivity with respect to all possible Cartesian displacements. This
leads to sensitivity modes, which correspond to collective
distortions of the reference structure. We could show that only
a small fraction of all sensitivity modes need to be included to
1874 | Chem. Sci., 2020, 11, 1862–1877
describe the full linear structural sensitivity. Currently, our
approach initially requires the calculation of 6N spectra for
displaced structures, which can be a signicant increase of the
computational effort. However, different strategies for making
this step more efficient could be explored in future work, e.g.,
the analytical calculation of the derivative of the spectra with
respect to structural distortions (see, e.g., ref. 51), the determi-
nation of the most inuential sensitivity modes at a lower level
of theory, or an iterative calculation of the largest singular
values and the corresponding singular vectors.52

Within the reduced space of the most inuential sensitivity
modes, one can subsequently set up a nonlinear surrogate
model of the structural sensitivity, for which an HDMR expan-
sion provides a convenient and general ansatz. Here, we
employed a 3rd or 4th order Taylor expansion for the one-mode
contributions and neglected two-mode and higher-order
contributions. We found that such an approximation is suffi-
cient as long as the shis in peak positions remain small
compared to their width. If this is no longer the case, more
sophisticated approximations will be required, but can easily be
accommodated within the general form of the surrogate model
introduced here. For the systematic construction of surrogate
models of the structural sensitivity, iterative schemes that
include additional data points as needed could be devised in
analogy to methods available for the construction of anhar-
monic potential energy surfaces.53,54

With a surrogate model of the structural sensitivity, it
becomes possible to perform a statistical analysis of the prop-
agation of uncertainties in the molecular structure to the
calculated spectra, which ultimately provides error bars for the
calculated spectra. In the present work, we assumed an ad hoc
uncertainty for the molecular structure, either by specifying
a maximum distortion or by assuming a normal distribution
with a certain standard deviation. In future applications, these
structural uncertainties could be obtained from more physical
considerations, e.g., by assuming a thermal population of
vibrational modes. Here, we characterized the uncertainty in
the calculated spectrum either by giving upper and lower
bounds or by calculating the standard deviation of the
This journal is © The Royal Society of Chemistry 2020
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probability distribution for the calculated spectra. This could be
extended by performing additional statistical analyses, e.g., by
explicitly calculating condence or credible intervals for the
calculated spectrum.

The resulting error bars make it possible to identify which
spectral features are associated with a large structural sensi-
tivity and which spectral features are rather insensitive to
distortions of the underlying molecular structure. For instance,
our analysis of the structural sensitivity of the calculated IR
spectrum of alanine reveals that peaks that are due to stretching
modes show a signicantly larger uncertainty than those due to
bending modes. Moreover, the analysis of the sensitivity modes
reveals the collective distortions that have the largest inuence
on the calculated spectrum. For alanine, we nd that changes of
the N–H, O–H, and C]O bond lengths have the largest effect on
the calculated IR spectrum. Altogether, the novel analysis tools
developed here make it possible to assess the relationship
between molecular structure and calculated spectra in a quan-
titative way and will ultimately make structural assignments
based on the comparison of experimental and calculated
spectra more reliable.

Here, we have considered distortions of the underlying
molecular structure as the only source of uncertainty. Of
course, calculated spectra are also subject to additional
sources of uncertainty, most importantly errors of the
approximate exchange–correlation functional in DFT. The
methodology presented here can be combined with existing
approaches for quantifying such uncertainties of quantum-
chemical approximations (see e.g., ref. 23–27). Moreover, our
general methodology can be extended to other sources of
uncertainties that depend on a larger number of parameters,
e.g., uncertainties introduced by an environment that is
described by an embedding potential.55 Ultimately, we envi-
sion the quantication of all relevant sources of uncertainties
in calculated spectra, and consider the present work an
important step in this direction.

Appendix: computational details

All quantum-chemical calculations have been performed using
the Amsterdam Density Functional (ADF) program package.56,57

The calculations were automated using the PyADF scripting
framework,58 and the methodology for the analysis of the
structural sensitivity of calculated spectra described here has
been implemented as an add-on to PyADF. Normally-
distributed random distortions (used in Fig. 4d, e, 6g, 7e and
g) are obtained by drawing each component of the displacement
vector DR from an independent normal distribution with the
desired standard deviation. Random distortions with a given
magnitude |DR| (used in Fig. 3c and 6d) are obtained from these
normally-distributed random distortions by rescaling the
displacement vector accordingly.

The molecular structures of Fe(CO)5 and of Fe(CO)3(cod)
were optimized employing the BP86 exchange–correlation (xc)
functional59,60 in combination with a Slater-type TZ2P basis
set.61 For aminocoumarin C151, the structure was optimized
using BP86 and a TZP basis set. For alanine, BP86 and a DZ
This journal is © The Royal Society of Chemistry 2020
basis set were used in combination with a COSMO solvation
model62 with default parameters.

For the calculation of XES spectra, we employed the DDFT
approach of Lee et al.,38 in which excitation energies are
calculated as occupied orbital energy differences. This DDFT
approach is a rather simple approximation, but it has been
shown to be reliable for valence-to-core XES spectra of
diverse transition metal complexes,63–71 including the ones
considered here.39 XES intensities are obtained from transi-
tion moments between occupied orbitals, including contri-
butions beyond the electric dipole approximation.72,73 All
calculations of XES spectra were performed with the BP86 xc
functional and a QZ4P basis set in combination with the
COSMO solvation model62 with default parameters. The
calculated spectra were shied by 180.62 eV (ref. 35 and 49)
and a Gaussian line broadening with a full-width at half
maximum of 1.5 eV was applied to each calculated transition.
For Fe(CO)5, we considered the region between 7094.62 eV
and 7110.62 eV as relevant energy range, whereas for
Fe(CO)3(cod) the region between 7088.62 eV and 7110.62 eV
was used.

The UV/Vis spectrum of aminocoumarin C151 was calcu-
lated using time-dependent DFT (TD-DFT) as implemented in
ADF.74 In all TD-DFT calculations, the SAOP model potential75,76

was used in combination with a TZP basis set. The spectra were
obtained by applying a Gaussian line broadening with a FWHM
of 0.08 eV, and the broadened spectrum in the region between
2.5 eV and 5.0 eV was used as quantity of interest.

Harmonic infrared spectra of alanine were calculated with ADF
using its analytical frequency module77 using BP86/DZ and
a COSMO solvation model. A Gaussian line broadening with
a FWHMof 50 cm�1 was employed. Here, the broadened spectrum
was considered in the region between 500 cm�1 and 4000 cm�1.
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