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Mononuclear phagocytes often function as control switches of the immune system, securing the balance between pro- and anti-
inflammatory reactions. For this purpose and depending on the activating stimuli, these cells can develop into different subsets:
proinflammatory classically activated (M1) or anti-inflammatory alternatively activated (M2) macrophages. The expression of the
nuclear peroxisome proliferator-activated receptors (PPARs) is regulated by M1- or M2-inducing stimuli, and these receptors are
generally considered to counteract inflammatory M1 macrophages, while actively promoting M2 activation. This is of importance
in a tumor context, where M1 are important initiators of inflammation-driven cancers. As a consequence, PPAR agonists are
potentially usefull for inhibiting the early phases of tumorigenesis through their antagonistic effect on M1. In more established
tumors, the macrophage phenotype is more diverse, making it more difficult to predict the outcome of PPAR agonism. Overall,
in our view current knowledge provides a sound basis for the clinical evaluation of PPAR ligands as chemopreventive agents in
chronic inflammation-associated cancer development, while cautioning against the unthoughtful application of these agents as
cancer therapeutics.

Copyright © 2008 Jo A. Van Ginderachter et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

For many years, the centre of gravity in cancer research was
focused on uncovering the activating (oncogenes) and/or
deactivating (tumor suppressor genes) mutations in pro-
liferating cells, causing these cells to adopt a cancerous
phenotype [1]. By now, it has become increasingly clear
that untransformed host cells, in particular cells of the
immune system, are equally important in every aspect of
cancer, from tumor initiation and progression to metastasis
formation. Chronic inflammation, in response to microbial
infections or persistent chemical insults, may provoke DNA
damage in the surrounding tissue and induce cellular trans-
formation [2–5]. Newly transformed cells can be eliminated
or kept in a dormant state under the control of innate
and adaptive immune cells, but ultimately the surviving
“immunoedited” cancer cells are less immunogenic and
more aggressive [6, 7]. Within the organoid context of a
tumor, normal physiological functions of stromal cells—
including a large fraction of leukocytes—are harnessed in
favour of tumour progression, leading to modifications in
the local extracellular matrix, neoangiogenesis, stimulation

of cancer cell proliferation, and survival and promotion of
cancer cell motility and invasiveness [8]. In each of these
aspects of the tumor/immune interface, cells belonging to the
mononuclear phagocyte system (including lineage commit-
ted bone marrow precursors, monocytes, and macrophages)
have been implicated, functioning in different compartments
(tumor site, periphery) and, mainly dictated by the context,
having the potential to contribute to such diametrically
opposed processes as tumor destruction or tumor promo-
tion. The latter stresses the heterogeneity and polyvalency of
this type of cells, making them indispensable for develop-
ment, tissue homeostasis, inflammation, pathogen clearance,
and wound healing [9]. As a consequence, drugs with the
capacity of modifying macrophage activation are of potential
interest in the treatment of different pathologies, including
cancer. One such class of drugs is the ligands for peroxisome
proliferator-activated receptors (PPARs), which are ligand-
activated transcription factors belonging to the nuclear
hormone receptor superfamily. The three PPAR isoforms
(PPARα, PPARβ/δ, and PPARγ) are encoded by different
genes and display differences in their tissue distribution,
suggestive of specialized functions. Upon heterodimerization
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with retinoid X receptors (RXRs), PPARs bind to specific
response elements (PPREs) in the promoter regions of a wide
array of PPAR-regulated genes. As a consequence, PPARs
have a broad range of effects on metabolism, cellular prolif-
eration, differentiation, and immunity [10]. Of importance
in the context of this review, each of the PPAR isoforms
is expressed in cells of the monocyte/macrophage lineage
and influences the phenotype of these cells [11–13]. This
knowledge, in combination with the potential impact of
monocytes/macrophages on tumor development, provides a
rationale for investigating the modulation of PPAR activity
in mononuclear phagocytes as therapeutic strategy in cancer
research.

2. PLASTICITY OF MACROPHAGE ACTIVATION

2.1. The M1/M2 conceptual frame of
macrophage activation

Macrophages belong to the most versatile cells of the
body. Heterogeneity arises as macrophages differentiate
from monocyte precursors and is determined by the
genetic background as well as by specific tissue-related and
immune-related stimuli [9, 14]. In this regard, microbial
antigens, tumor products, immune complexes as well as
Th1 or Th2 effector T cells and their secretory products
influence the heterogeneity and the state of activation
of macrophage populations [15, 16]. The better charac-
terized response of macrophages to microbial molecules,
cancer cells, and host cytokines is the release of inflam-
matory/microbicidal/tumoricidal products. This “classical
activation” profile occurs in a type I cytokine environment
(IFN-γ, TNFα) or upon recognition of pathogen-associated
molecular patterns (LPS, lipoproteins, dsRNA, lipoteichoic
acid, etc.) and endogenous “danger” signals (heat shock
proteins, extracellular matrix components, HMGB1, etc.)
[17]. As such, it plays an important role in protection
against intracellular pathogens, and under certain conditions
also cancer cells. Classically activated macrophages or M1
typically produce high levels of IL-12 and IL-23 [18]
combined with low levels of IL-10 and are consequently
strong promotors of Th1 immune responses. In addition,
these cells exert antiproliferative and cytotoxic activities,
resulting partly from their ability to secrete reactive nitrogen
and oxygen species (NO, peroxynitrite, hydrogen peroxide,
superoxide) and proinflammatory cytokines (TNF, IL-1, IL-
6) [19–22]. Although such short-term inflammatory activity
could be beneficial for the host in a tumor setting, the persis-
tence of inflammatory processes often results in detrimental
tissue and DNA damage contributing to cancer development
[2–5]. Therefore, in the course of a response, inflammation
is usually counteracted through the development of anti-
inflammatory mechanisms. Ideally, this regulation must be
spatially and temporally controlled.

Distinct mediators have been reported to inhibit the
development of M1 and impart anti-inflammatory prop-
erties on macrophages, which were collectively termed
“alternatively activated” or M2: Th2 cytokines, such as IL-
4 and IL-13, deactivating cytokines, such as IL-10 and

TGF-β, hormones, such as the glucocorticoids and vitamin
D3, and apoptotic cells [23]. M2 have been reported
to actively contribute to the pathology of helminth and
protozoan infections, but also cancer [24–28]. The hetero-
geneity of these anti-inflammatory macrophages, whereby
each stimulus induces both unique and overlapping gene
expression repertoires, has urged the need for a more
refined nomenclature. Gordon and colleagues proposed
to restrict the definition of “alternative activation” to IL-
4 and/or IL-13-elicited macrophages [29]. Subsequently,
Mantovani and coworkers used a high production of IL-10
and low production of IL-12 as unifying theme for M2 [15].
Following this logic, a further subdivision was suggested
between M2a, b, and c, representing IL-4/IL-13-stimulated
(alternatively activated sensu strictu), immune complexes +
TLR ligand-stimulated [30], and IL-10-stimulated (deacti-
vated) macrophages, respectively. Though a usefull working
scheme, it should be realised that any form of classification
underscores the complexity of the in vivo situation, where
macrophages are exposed to mixtures of stimuli and will
adopt mixed functional profiles accordingly. This is exempli-
fied by the determination of a consensus gene signature for
in vivo induced M2 in different pathologies, which contains
genes that are not inducible in vitro by any of the known M2
inducing stimuli [31].

2.2. Impact of PPARs on the macrophage
activation state

All three isoforms of PPAR have been reported to be consti-
tutively expressed in macrophages, with their mRNAs being
upregulated during monocyte to macrophage differentiation
[11, 32–34]. Though not all reports are in agreement, PPARγ,
but not PPARα or -β/δ, may actually promote macrophage
differentiation and contribute to the development of typical
macrophage-associated features, such as phagocytosis of
apoptotic cells [33–36]. The further regulation of PPARs in
M1- or M2-conditioning environments has been thoroughly
investigated in the case of PPARγ. PPARγ mRNA and protein
are strongly induced in resident peritoneal macrophages and
peripheral blood monocytes by the typical M2 inducers IL-
4 and vitamin D3, suggesting a preferential association of
high PPARγ activity with M2 [33, 37]. Indeed, M1 stimuli
such as IFNγ, LPS, TNFα, or IL-1β either have no effect on
PPARγ expression or were even inhibitory [37, 38]. On top
of a higher level of PPARγ receptors, M2 also produce more
endogenous PPARγ ligands, in part as a consequence of IL-4-
mediated induction of 12/15 lipoxygenase [37, 39, 40]. This
lipid-peroxidating enzyme generates the PPARγ ligands 13-
HODE and 15-HETE through the oxygenation of linoleic
acid and arachidonic acid, respectively [40, 41]. In addition,
both in mouse peritoneal macrophages and in human
monocytes, IL-13 is able to increase the production and the
nuclear localization of the PPARγ ligand 15-deoxy-Δ12,14-
prostaglandin J2 (15d-PGJ2) by a mechanism dependent on
phospholipase A2 activation [42, 43].

Very few data are available on PPARα gene regulation
by pro- or anti-inflammatory stimuli, with only one study
demonstrating a relatively unaltered PPARα mRNA content
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in macrophages upon LPS treatment [44]. In general,
systemic LPS treatment tends to decrease overall PPARα
expression levels, though it is unclear whether macrophages
account for this phenomenon [45].

In the case of PPARβ/δ,current data suggest that this
gene could be upregulated in both M1 and M2 polarizing
conditions. On the one hand, PPARβ/δ mRNA is upregulated
by LPS in macrophages, suggesting an association with M1
[44]. In keratinocytes, LPS and inflammatory cytokines not
only induce PPARβ/δ gene transcription through an AP-
1 site in the promoter, but also initiate the production of
endogenous PPARβ/δ ligands [46, 47]. Of importance, the
anti-inflammatory cytokine TGF-β1 counteracts PPARβ/δ
expression in these cells [47]. This dynamic control of
PPARβ/δ expression is particularly important in tissue injury
and wound control [48]. If extendible to macrophages, these
data would imply an enhanced PPARβ/δ transcriptional
activity in an M1 context. On the other hand, in a very recent
paper, IL-4 and IL-13 were shown to induce macrophage
PPARβ/δ expression through a STAT6 binding site on its
promoter [49]. Taken together, PPARβ/δ could be unique in
its capacity to contribute to both M1 and M2 characteristics.

2.3. PPARs and M1 activation of macrophages

In macrophages, numerous inflammatory signalling path-
ways downstream of cytokine receptors or pattern recogni-
tion receptors orchestrate the inflammatory process. Central
players in these signalling cascades are the NF-κB, AP-1,
and STAT family of transcription factors, whose binding
sites can be found in the promoters of inflammatory
cytokines, chemokines, metalloproteinases, iNOS, and other
inflammatory genes [50, 51].

2.3.1. PPARγ

PPARγ agonists dose-dependently inhibit the upregulation
of inflammatory genes in macrophages in response to Toll-
like receptor ligands and interferons. These effects are at least
partially PPARγ-dependent and can be attributed to an inhi-
bition of NF-κB, AP-1, and STAT1 transcriptional activities
[52–54]. By now, the molecular machinery behind PPARγ-
mediated repression of NF-κB-regulated genes has been
uncovered and appears to depend on a mechanism termed
ligand-dependent transrepression [55, 56]. Under steady-
state conditions, some genes (e.g., iNOS) are occupied and
actively repressed by the multisubunit NCoR repressor com-
plex. Upon NF-κB activation, the NCoR complex is degraded
by the proteasome, NF-κB p65-p50 heterodimers enter the
nucleus, bind to NF-κB elements in the promoter, and
recruit coactivator complexes to initiate gene transcription.
However, simultaneous ligand binding of PPARγ leads to
SUMOylation of a fraction of the PPARγ molecules, which
bind to NCoR and prevent its clearance from the promoter,
leading to a sustained repressed state [57]. The requirement
for the NCoR corepressor complex explains why only a
subset of LPS-inducible genes is truely PPARγ-regulated
[54]. Remarkably, also AP-1-mediated gene transcription
depends on the loss of NCoR complexes, suggesting a

similar mechanism of PPARγ-mediated repression of AP-1-
regulated genes [58]. Of note, PPARγ agonists such as 15d-
PGJ2 and thiazolidinediones suppress a broader range of NF-
κB-regulated genes, irrespective of their NCoR dependence,
and are even able to do so in PPAR null macrophages
[54, 59]. In the case of 15d-PGJ2, this can be explained by a
direct, PPARγ-independent modification of critical cysteine
residues in the IκB kinase and the DNA-binding domains of
NF-κB subunits, inhibiting NF-κB activity [60, 61].

The in vivo relevance of macrophage-expressed PPARγ
in attenuating inflammation has been demonstrated in
macrophage-specific PPARγ−/− animals. Unstimulated
macrophages from these mice display an increased
production of inflammatory mediators, indicating that
endogenous PPARγ ligands modulate macrophages under
steady-state conditions. In addition, PPARγ−/− macrophage
recruitment to inflammatory sites is increased, and these
macrophages overreact to inflammatory stimuli, resulting
in increased severity of DSS-induced colitis [62]. Of
importance, thiazolidinediones still improve colitis severity
in colonic epithelium-specific PPARγ−/− mice, but not
in macrophage-specific PPARγ−/− mice, suggesting that
macrophages are the relevant targets of these compounds
in this disease [63]. Also in models of insulin resistance and
atherosclerosis, macrophage-specific PPARγ was shown to
inhibit inflammation and improve insulin sensitivity and
reduce atherosclerotic lesion size, respectively [64, 65].

2.3.2. PPARα

PPARα ligands are able to lower the secretion of inflamma-
tory mediators in several cell types, including macrophages
[66–70]. Similar to PPARγ, PPARα is able to transrepress
NF-κB and AP-1 transcriptional activity, though it does
so in a different way. Inhibition of these transcription
factors by PPARα is independent of the promoter context
but appears to depend on a physical interaction between
PPARα and the p65 Rel homology domain or the JNK-
responsive part of c-Jun [71]. In addition, ligand-bound
PPARα transactivates the IκBα promoter in a DNA binding-
independent fashion, as such further attenuating NF-κB
activation [72]. Another parallel with PPARγ is the impor-
tance of posttranslational modifications in the activity of
PPARα. Inflammatory stimuli such as LPS activate protein
kinase C (PKC), which subsequently phosphorylates and
inactivates PPARα. However, statins inhibit PKC activation,
increasing the pool of unphosphorylated transrepression-
competent PPARα which is entirely responsible for the
anti-inflammatory activity of statins [73]. Also the well-
characterised anti-inflammatory potential of glucocorticoids
partially depends on PPARα, possibly through a similar
impact on PKC [74].

The in vivo significance of macrophage PPARα is illus-
trated by enhanced atherosclerosis in low-density lipoprotein
receptor-deficient mice transplanted with PPARα−/− bone
marrow, which is due to an increased inflammatory response
of macrophages [75]. In the same vein, PPARα−/− spleno-
cytes produce significantly higher levels of inflammatory
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cytokines in aged mice, both under basal conditions or in the
presence of LPS [76].

2.3.3. PPARβ/δ

In contrast to PPARγ and -α, PPARβ/δ can also be asso-
ciated with M1 (besides M2) and may contribute to the
proinflammatory phenotype of these macrophages. Indeed,
under basal conditions PPARβ/δ−/− macrophages display a
reduced expression of some (MCP-1, IL-1β, and MMP9),
but not all (TNFα, IKKβ) inflammatory mediators. As such,
inflammation-driven atherosclerotic lesion formation is sig-
nificantly reduced in PPARβ/δ−/− bone marrow chimeras.
Mechanistically, PPARβ/δ forms a complex with the tran-
scriptional repressor Bcl-6, preventing Bcl-6 from repressing
inflammatory genes. However, upon synthetic ligand bind-
ing (e.g., GW501516) PPARβ/δ releases Bcl-6 and inflamma-
tion is dampened [77]. On top of that, PPARβ/δ activation
induces the expression of mediators suppressing inflamma-
tory cytokine/chemokine action (RGS, TIMP-3), altogether
explaining the beneficial effects of PPARβ/δ agonists in
inflammatory diseases such as atherosclerosis [78, 79].

2.4. PPARs and M2 activation of macrophages

PPARs not only antagonize M1 activation, but actually
support M2 activation. Indeed, at least some of the reported
anti-inflammatory effects of IL-4 or IL-13 are mediated
through enhanced PPARγ activity [80]. IL-4/IL-13 strongly
increase the production of different endogenous PPARγ
ligands (13-HODE, 15-HETE, and 15d-PGJ2) and PPARγ
coactivators (PGC-1β), thereby stimulating the PPARγ
transactivating activity [37, 42, 43, 81]. As a matter of fact,
some of the hallmark IL-4/IL-13-inducible M2 markers, such
as MMR, arginase I, CD36, and dectin-1, depend on PPARγ
for full induction [42, 43, 82–84]. Following this logic,
administration of PPARγ ligands could be a valuable means
of inducing M2 markers in vivo and altering macrophage
functions [85]. The significance of these findings was recently
established in macrophage-specific PPARγ−/− mice [86].
Although LPS-induced release of IL-6 was not significantly
different between w.t. and PPARγ−/− macrophages, only in
the PPARγ-deficient cells was IL-4 unable to suppress IL-
6, corroborating the notion that a subset of IL-4-dependent
anti-inflammatory responses is regulated by PPARγ [86].
These mice are defective in the in vivo generation of M2
to a similar extent as macrophage-specific IL-4Rα−/− mice
or STAT6 null mice. As a consequence, these mice are more
resistant to Th2/M2-driven pathologies, such as cutaneous
leishmaniasis.

Similar to PPARγ, PPARβ/δ ablation was shown to
diminish the M2 phenotype in macrophages, notably Kupffer
cells and adipose tissue-resident macrophages, in vitro
and in vivo (in PPARβ/δ−/− bone marrow chimeras or
myeloid-specific PPARβ/δ−/− mice), and to increase inflam-
mation.This results in systemic insulin resistance, increased
adipocyte lipolysis, and hepatic dysfunction [49, 87].

Overall, it is clear from previous paragraphs that the
regulation of PPARs by pro- or anti-inflammatory signals

is one of the important factors that triggers macrophage
polarization. It is however important to realize that the exact
effects of PPARs on macrophages can depend on the source
from which macrophages have been isolated (mouse versus
human, different tissues, different pathogenic conditions, in
vitro versus in vivo studies, etc.) and on the maturation stage
of the macrophage population before PPAR activation.

3. M1 MACROPHAGES IN TUMOR INITIATION

Epidemiological studies clearly established a causal link
between chronic inflammation—triggered by microbial
infections or autoimmune diseases—and tumor develop-
ment [2–5, 88]. Consequently, prolonged intake of nons-
teroidal anti-inflammatory drugs has been proven to lower
cancer incidence [89]. M1 macrophages are central orches-
trators of the inflammatory response and are of critical
importance in some of the well-known cancer-predisposing
malignancies: Helicobacter pylori infection for gastric cancer
[90], inflammatory bowel disease for colon carcinoma [91],
and hepatitis for hepatocellular carcinoma [92]. Hence,
inflammatory macrophages are actively involved in de novo
carcinogenesis and the first steps of tumor development
Figure 1.

3.1. Tumor-initiating role of NF-κB in macrophages

The NF-κB transcription factor is the master regulator of
inflammation and has been shown to function as a tumor
promoter in inflammation-associated cancers [50, 93]. NF-
κB can be activated both in cancer cells and immune
cells, in particular M1 macrophages. The presence of such
macrophages, bearing activated forms of NF-κB and other
inflammatory signaling molecules such as p38 MAPK, is seen
in premalignant lesions (e.g., colonic polyps) [94]. Hence, it
is of interest to gain insight into the relative importance of
the NF-κB cellular context (cancer cell versus macrophage)
for carcinogenesis. A number of seminal papers have shed
light on this issue in the past few years. In colitis-associated
colon carcinoma formation, a prototypical example of
inflammation-driven carcinogenesis, tumor formation, was
reduced to the same extent in mice with either an enterocyte-
specific or a myeloid cell-specific defect in the IKKβ-
dependent NF-κB pathway. In the case of the myeloid cells,
NF-κB-mediated carcinogenesis depends on the production
of inflammatory mediators that act as tumor-promoting
paracrine factors [95]. In agreement with these findings,
the absence of SIGIRR/TIR8, a negative regulator of NF-κB,
aggravates colitis-associated carcinogenesis. SIGIRR/TIR8
functions as a tumor suppressor both in colon epithe-
lium and in bone marrow-derived cells [96]. Surprisingly,
even in a model of noninflammatory tumor formation
(DEN-induced hepatocarcinogenesis), NF-κB activation in
macrophages (Kupffer cells) appears to stimulate tumorige-
nesis through the secretion of hepatomitogens such as TNFα
and IL-6 [97].

Apart from virally or bacterially induced cancers, how
does NF-κB get activated in macrophages during carcino-
genesis? Recent findings demonstrate an important role
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Figure 1: Simplified scheme of the role of M1 macrophages in inflammation-driven carcinogenesis and the potential anticarcinogenic effect of
PPAR ligands. In the context of chronic pathogen infection or chemically induced chronic inflammation, exogenous and/or endogenous
ligands for Toll-like receptors are present, which stimulate NF-κB activation via the MyD88 pathway. Also inflammatory cytokines such as
TNFα and IL-1β stimulate NF-κB activatity through their respective cytokine receptors (CRs). Subsequently, NF-κB transcribes a number
of carcinogenic mediators, including IL-6, TNFα, COX-2, and iNOS amongst others. PPAR ligands are able to interfere with the induction
of these inflammatory mediators, using different mechanisms. Activated PPARγ tranrepresses NF-κB activity, activated PPARα physically
interacts with NF-κB, and activated PPARβ/δ unleashes the transcriptional repressor Bcl-6. Note that the anticarcinogenic actions of the
PPAR agonists are only seen in inflammatory tumorigenesis but not in noninflammatory carcinogenesis.

for MyD88, the adaptor molecule in TLR and IL-1R
signaling, in inflammation-associated or noninflammatory
carcinogenesis alike [98–100]. Interestingly, functional poly-
morphisms in TLRs can predispose to certain types of
carcinoma [101]. TLRs can become activated by endogenous
ligands produced during cancer cell necrosis or extracellular
matrix degradation, or—as shown in a transgenic model
of gastric carcinogenesis—by the indigenous bacterial flora
[102]. Another interesting pathway has been suggested by
the Coussens lab, Calif, USA.Myeloid cells could become
activated in response to immunoglobulins, putting the B
cell-myeloid cell axis central in inflammation-associated
carcinogenesis [103].

3.2. NF-κB-regulated macrophage products
responsible for tumor initiation

A large body of evidence points to inflammatory cytokines
as major culprits for tumor stimulation. In the model of
DEN-induced hepatocarcinogenesis, the estrogen-regulated
difference in IL-6 production by male versus female Kupffer
cells entirely accounts for the gender differences in tumor
incidence [98]. While IL-6 is a hepatocyte mitogen, TNFα
induces hepatocyte NF-κB activation with a strong impact
on tumorigenesis. Even under noninflammatory conditions,
this carcinogenic TNFα is produced by endothelial cells
and Kupffer cells [104]. In addition, carcinogen-stimulated
chronic TNFα expression in liver inflammatory cells, pre-
sumably Kupffer cells, hyperactivates oval cells through TNF-
R1, resulting in liver tumor formation [105]. Comparable

mechanisms are at play in colitis-associated colon carcinoma,
where macrophage-derived TNFα interacts with TNF-R1 in
an autocrine way, creating an essential inflammatory loop
for carcinogenesis [106]. One of the target genes of TNFα-
stimulated NF-κB in this model is COX-2 [107]. COX-
2, via the production of PGE2, strongly promotes colon
carcinogenesis [108]. Importantly, in premalignant lesions
of both mice and humans, COX-2 is almost exclusively
expressed in macrophages [108, 109]. Similarly, the NF-κB
target gene MMP9 is important for skin carcinogenesis and
is exclusively produced by inflammatory cells [110]. Finally,
other prototypical inflammatory macrophages products,
such as nitric oxide and reactive oxygen species, have all been
shown to contribute to oncogenesis [97, 111, 112].

3.3. Role of macrophage-specific PPARs in
tumor initiation

Considering the importance of inflammatory macrophages
as a trigger of carcinogenesis and the anti-inflammatory
function of PPARs in macrophages, it seems logical to
pursue PPAR ligation as a strategy to block the initial steps
of tumor formation. Indeed, some of the most promi-
nent tumor-promoting mediators of macrophages—TNFα,
MMP9, iNOS—are known to be repressed by PPARγ ligation
[53, 113, 114]. In addition, PPARγ ligands, which had no
significant effect on tumor cell lines in vitro, were shown to
exert potent inhibitory effects on tumors from the same cells
in vivo, suggesting other targets besides cancer cells in the
tumor-environment [115].
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In line with this rationale, in vivo administration of
PPARγ, -α, and β/δ agonists invariably reduces tumor
initiation in typical models of inflammation-associated
carcinogenesis, such as colitis-driven colon carcinoma [116–
118]. The situation is more blurred in colon cancer induced
by genetic means ( APCMin mice) rather than by inflam-
matory stimulation, with contrasting reports describing
tumor stimulation or repression upon PPARγ ligation [119–
121]. A recent study employed genetic means to assess the
role of PPARγ in chemically-induced (inflammatory) versus
genetically-induced (noninflammatory) colon carcinogene-
sis. Haploinsufficiency of the PPARγ gene promotes inflam-
matory carcinogenesis but has no effect in APCMin mice
[122]. Similarly opposing data exist on the role of PPARβ/δ
in tumor formation in APCMin mice, even between studies
looking at APCMin in a PPARβ/δ null background [123, 124].

Recent studies have studied transplantable tumor growth
in PPARα−/− or PPARβ/δ−/− mice. In both cases, tumor
growth was strongly suppressed irrespective of the PPAR
status of the cancer cells, indicating that host PPARα and
PPARβ/δ are important determinants in tumor formation
[125, 126]. In the case of PPARα, absence of the receptor
resulted in overt inflammation and neutrophil-mediated
tumor clearance [125]. Hence, the level of PPARα stim-
ulation might instruct the anti- or protumor activities of
inflammatory cells: (i) absence of PPARα leads to inflam-
matory cell-mediated tumor destruction, (ii) physiological
levels of PPARα stimulation could allow lower, protumoral
levels of inflammation, and (iii) strong PPARα stimulation
with agonists could shutdown inflammation completely,
prohibiting inflammation-driven carcinogenesis. Following
this logic, scenarios (i) and (iii) reduce tumor growth, which
has indeed been demonstrated experimentally [125, 127].

4. M1/M2 MACROPHAGES IN TUMOR PROGRESSION

Established tumors are often heavily infiltrated by leukocytes,
of which tumor-associated macrophages (TAMs) can be a
significant portion. The relevance of TAM in tumor biology
is underscored by clinical studies showing a correlation
between TAM abundance and poor prognosis, data which
are particularly strong for breast, prostate, ovarian, and some
types of lung cancers [128–130]. In addition, macrophage-
deficient mice display reduced progression of tumors to a
more malignant phenotype [131, 132]. TAMs are able to
promote tumor progression via several mechanisms, includ-
ing (i) induction of angiogenesis [133], (ii) remodelling
of extracellular matrix [129], (iii) stimulation of cancer
cell proliferation, migration, and invasion [134], and (iv)
inhibition of adaptive immunity [135].

Current knowledge does not allow an unequivocal
classification of TAM as prototypical M1 or M2 [28]. While
TAMs are generally considered as anti-inflammatory M2,
characterized by an IL-10high/IL-12low cytokine profile and
defective NF-κB activation [27, 136, 137], these cells are
also known to contribute to angiogenesis and cancer cell
aggressiveness via the secretion of the M1-associated and NF-
κB-regulated mediators, such as TNFα, IL-1β, and MMP-
9 [138–140]. The relative abundance of M1 or M2 markers

in TAM could be related to the phase of tumor progression
[141].

In any case, the relative plasticity and diversity of TAM
make it difficult to predict the effect of PPAR ligation on these
cells and on tumor outcome. In a mouse lymphoma model,
we described an increased PPARγ mRNA expression in M2-
oriented TAM and splenic macrophages differentiated from a
monocytic CD11b+Gr-1+ precursor [135, 142]. Remarkably,
stimulation of TAM with PPARγ ligands completely reverses
TAM-mediated T-cell suppression,via an as yet unknown
mechanism.

5. CONCLUDING REMARKS

In recent years, it has become clear that macrophages and
other myeloid cells, such as mast cells and neutrophils, are
central orchestrators of both tumor initiation and tumor
progression. With the advent of the M1/M2 concept of
macrophage activation, it has become clear that inflamma-
tory M1 significantly participate in carcinogenic processes
initiated by strong inflammatory stimuli, such as pathogens
or certain chemicals. This finding opens a window of
opportunity for the use of PPARγ, -α, and β/δ agonists, some
of which are already in clinical use for metabolic disorders,
in chemoprevention of de novo tumor formation in patients
at risk. However, the applicability of these compounds as
anticancer agents is confounded by the often confusing
findings in mice. In our view, confusion is the consequence
of an insufficient insight in the participation of inflammatory
cells in the models under study, making it difficult to
extrapolate findings from one model to another. Overall, we
feel that the usefulness of PPAR agonists is directly correlated
with the extent to which inflammation is a driving force
for carcinogenesis. Though this might hold true for the
initial steps of tumor formation, the situation becomes more
complicated in established tumors. Considering the plasticity
and heterogeneity of tumor-associated macrophages, with a
mixture of M1 and M2 markers and considerable differences
between tumor types [28], it is more difficult to envisage
a broad applicability of PPAR ligands for the modulation
of TAM. However, treatment of certain typical macrophage-
driven malignancies, such as breast carcinoma, could poten-
tially benefit from these compounds.
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