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ABSTRACT
Objectives  The purpose of this scoping review is to: 
(1) identify existing supervised machine learning (ML) 
approaches on the prediction of cancer in asymptomatic 
adults; (2) to compare the performance of ML models with 
each other and (3) to identify potential gaps in research.
Design  Scoping review using the population, concept and 
context approach.
Search strategy  PubMed search engine was used from 
inception to 10 November 2020 to identify literature 
meeting following inclusion criteria: (1) a general 
adult (≥18 years) population, either sex, asymptomatic 
(population); (2) any study using ML techniques to derive 
predictive models for future cancer risk using clinical and/
or demographic and/or basic laboratory data (concept) and 
(3) original research articles conducted in all settings in 
any region of the world (context).
Results  The search returned 627 unique articles, of which 
580 articles were excluded because they did not meet 
the inclusion criteria, were duplicates or were related to 
benign neoplasm. Full-text reviews were conducted for 
47 articles and a final set of 10 articles were included in 
this scoping review. These 10 very heterogeneous studies 
used ML to predict future cancer risk in asymptomatic 
individuals. All studies reported area under the receiver 
operating characteristics curve (AUC) values as metrics of 
model performance, but no study reported measures of 
model calibration.
Conclusions  Research gaps that must be addressed 
in order to deliver validated ML-based models to assist 
clinical decision-making include: (1) establishing model 
generalisability through validation in independent cohorts, 
including those from low-income and middle-income 
countries; (2) establishing models for all cancer types; 
(3) thorough comparisons of ML models with best 
available clinical tools to ensure transparency of their 
potential clinical utility; (4) reporting of model calibration 
performance and (5) comparisons of different methods 
on the same cohort to reveal important information about 
model generalisability and performance.

INTRODUCTION
Cancer remains a leading cause of morbidity 
and mortality, with an estimated 1.8 million 
new cases and 0.6 million deaths in the USA 
in 2019 and approximately 367 000 new cases 
and 165 000 cancer deaths in the UK each year 
between 2015 and 2017.1 2 Annual death rates 

only modestly decreased (1.4% and 1.8% 
in women and men, respectively) between 
2012 and 2016, despite significant research.1 
Cancer cases also continue to increase, not 
least due to increased life expectancy, which 
increases the risk of developing cancer.3

Early cancer diagnosis is associated with 
significantly higher survival rate and lower 
mortality and associated costs. Early-stage 
cancers require less complex treatment 
regimens and reduced hospital utilisation, 
resulting in reduced healthcare costs, whereas 
late-stage cancers require complex multi-
modal management, several rounds of 
extremely expensive drugs over significant 
periods of time, and the treatment of recur-
rences, equating to a staggering economic 
burden. Therefore, the importance of 
early diagnosis cannot be overestimated.4–6 
Treating cancer early has significant cost-
saving benefits. In the USA, during the 
first 24 months after diagnosis, there is an 
increase in cancer treatment costs with stage: 
US$72 000 for stage 0, US$97 000 for stage I/
II, US$159 000 for stage III and US$182 000 
for stage IV.7 An estimate of the cost savings 
from early cancer diagnosis is US$26 billion 

Strengths and limitations of this study

►► This study used a recognised scoping review ap-
proach (population, concept and context) to explore 
the machine learning techniques used to derive pre-
dictive models for future cancer risk.

►► Identified studies were not subjected to comprehen-
sive qualitative assessments.

►► Only 10 studies were identified, making it diffi-
cult to draw firm conclusions about their relative 
performance.

►► Area under the curve values (AUC) alone do not al-
low for meaningful comparisons of models as they 
have been trained and evaluated on different data-
sets under different circumstances and conditions.

►► This scoping review is limited to papers published 
in English until 2020 and only the PubMed search 
engine was used.
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per annum in the USA alone.8 Similarly, in the UK, 
early diagnosis of colorectal, ovarian, and lung cancer in 
England alone could provide savings of over £44 million 
and benefit nearly 11 000 patients.9

Survival rates significantly improve if cancer is diag-
nosed at stage I or II compared with later stages (stage 
III and IV),10 11 as once the cancer has metastasised, it 
becomes difficult to treat with radiotherapy or surgery, 
leading to treatment failure and death. For example, 
5-year survival rates for women diagnosed with localised 
breast or ovarian cancer are 99% and 92% compared 
with 27% and 29% for metastatic disease, respectively.1 
A report by Cancer Research UK indicated that, in the 
UK, the 10-year survival proportions of patients with eight 
cancers (combined) were around 80% for stage I and 
stage II detection (breast, bladder, ovarian, colorectal, 
uterine, testicular, cervical, and malignant melanoma) 
but only 26% for cancers detected at later stages, notably 
lung cancer (stage III and IV).12

Current approaches to diagnose incident cancer
One approach to the early detection of cancer is 
population-wide screening, which aims to find asymptom-
atic individuals so that they can be promptly referred for 
treatment. Examples include mammography for breast 
cancer, cervical screening for cervical cancer and faecal 
occult blood testing or sigmoidoscopy for colorectal 
cancer.13 There are three examples of national screening 
programmes in UK (bowel, breast and cervical cancer 
screening programs14 and two in the USA: the Colorectal 
Cancer Control Programme (CRCCP) and the National 
Breast and Cervical Cancer Early Detection Programme 
(NBCCEDP).15 However, significant proportions of indi-
viduals eligible for these programmes do not participate 
(eg, through fear or not prioritising time to attend for 
screening),16 and comprehensive screening programmes 
are costly to implement, especially in resource-poor 
settings or low-income and middle-income countries. 
Other approaches include public health campaigns to 
encourage individuals experiencing particular symp-
toms such as weight loss, anorexia and fatigue to visit 
their family doctors.17 However, patient help-seeking 
around cancer is complex, multistaged, and often leads 
to long delays of weeks or even months.18 Patients find it 
hard to interpret and recognise symptoms, with fears of 
embarrassment and having a potentially fatal or painful 
condition contributing to long and avoidable delays 
in help-seeking from health professionals.18 19 Patients 
often do not seek help from health professionals for early 
cancer symptoms, notably from general family physicians, 
for many reasons including a complex mix of fear, worry 
and of ‘wasting’ health professionals’ time19 or due to the 
high costs of medical care, a lack of health insurance or 
time constraints.20

Detecting future risk of cancer by modelling data
Screening approaches represent a patient identification 
(or ‘phenotyping’ problem) that aims to detect whether 

the individual has cancer at a particular point in time. 
However, the ultimate goal of cancer prediction is to 
determine whether an individual will develop cancer at 
some point in the future. A simple approach is to stratify 
populations according to the presence and absence of 
risk factors, which have been extensively characterised 
for most cancer types through epidemiological studies 
over many decades. For example, age, gender, ethnicity, 
family history and lifestyle factors are well-established risk 
factors for many types of cancer.21 The cancer prediction 
problem can either be regarded as a regression problem, 
where the input variables are clinical-demographic vari-
ables and the output variable is the probability of devel-
oping cancer at some point in the future, or as a binary 
classification problem to determine whether or not a 
patient will develop cancer at a specific point in time.

Big data and machine learning for medical prediction models
Advances in digital medicine and computational science 
have altered the landscape of data available for cancer risk 
prediction models. For example, in the data-driven health-
care era, there is an increasing amount of ‘big’ medical 
data, as most individuals have had interactions with the 
healthcare system where data is collected in the form of 
electronic health records (EHRs), which are systematic 
collections of longitudinal patient health data collected 
in real time.22 23 Such large datasets provide powerful new 
opportunities to develop and refine predictive models 
and to explore potentially unknown predictor variables.22 
Leveraging often massive amounts of data generated from 
large populations, much of which may be unstructured, 
and building optimal models requires the exploitation 
of advanced computational tools and supporting infra-
structure. Machine learning (ML) is a branch of artificial 
intelligence and an extension of traditional statistical 
techniques that uses computational resources to detect 
underlying patterns in high-dimensional data, and it is 
increasingly being used in different areas of medicine 
requiring predictions.24 For example, ML has successfully 
been used with EHR data to predict incident hyperten-
sion25 and incident chronic kidney disease,26 and wider 
popular uses of ML in medicine include the automatic 
interpretation of medical images such as in radiology27 
and histopathology28 images.

A brief description of ML
A comprehensive description of ML models is beyond the 
scope of this scoping review. However, relevant ML tech-
niques relate to the problem of learning from data samples 
(eg, EHR data) rather than being preprogrammed with 
existing knowledge or rules. ML models can either be 
supervised (ie, where the data are labelled and the algo-
rithm uses these data to learn to predict the output) or 
unsupervised (ie, where the data are unlabelled and the 
algorithm learns a structure inherent in the data).29 The 
cancer prediction problem is, therefore, a supervised 
problem; examples are provided as inputs (or features) 
such as cancer risk factors like age, history, ethnicity or 



3Abdullah Alfayez A, et al. BMJ Open 2021;11:e047755. doi:10.1136/bmjopen-2020-047755

Open access

blood count parameters and outputs (or labels) such 
as whether or not the individual subsequently develops 
cancer. A variety of available algorithms learn the best way 
to map the features to the labels by learning from the 
observations.30 31 The resulting model, ideally, will then 
be able to generalise the information so that it can be 
applied with high precision to new and unseen data.30 31

Some of the main supervised ML models used in medical 
applications include decision trees (DTs; and their adap-
tation, random forests (RFs)), support vector machines 
(SVMs) and artificial neural networks (ANNs).30 31 DTs 
produce an output similar to a flow chart formed from 
feature nodes (risk variables) that best discriminate 
between different labels (future cancer occurrence) to 
split the tree.30 31 In this way, new cases can be assessed by 
traversing the tree based on the feature values to deter-
mine the output for that example.30 31 DTs are easy to 
interpret, since users are usually able to visualise the steps 
leading to a particular classification, which may be useful 
in a clinical setting where experts might wish to see how 
a particular decision was made.30 31 In RFs, several trees 
are built using subsets of data and features, with predic-
tions decided based on majority voting after the example 
is assessed with respect to all the constructed trees.30 31

In SVMs, each feature (risk factor) is mapped into a 
higher-dimensional space and the hyperplane that opti-
mally separates the output (future cancer occurrence) 
modelled.30 31 SVMs tend to generalise well to unseen 
data and work well with complex (multidimensional) 
data but can be hard to interpret.30 31

ANNs are inspired by the neural connections in the 
human brain and are developed by creating nodes 
(neurons) that weight certain features and produce an 
output value.30 31 By layering nodes in between the input 
layer (features; cancer risk factors) and output layer 
(label; future cancer occurrence) and modifying the 
weights during learning through a process called back-
propagation, the resulting model forms a prediction for 
unseen data when one of the nodes in the output layer 
is positive.30 31 The terms ‘deep neural network’ and 
‘deep learning’ are applied to ANNs with large numbers 
of layers.30 31 While proving extremely powerful across a 
range of applications, ANNs can be computationally very 
expensive and the way in which they classify (ie, the inter-
mediate ‘hidden’ layers) is opaque, making it difficult to 
determine exactly how they performed the classification 
problem.30 31

Rationale for performing a scoping review
ML remains a relatively recent field, so it is unclear exactly 
to what extent advances have impacted specific health-
care domains. There are currently no extended system-
atic reviews or scoping reviews on the application of ML 
to cancer risk prediction in asymptomatic individuals. 
This prompted us to perform a scoping review of studies 
using supervised ML techniques to predict the future risk 
of developing cancer or specific cancers within a general 
asymptomatic adult (≥18 years) population using clinical 

and/or demographic and/or basic laboratory data (eg, 
complete blood counts (CBC)) that are likely to be readily 
available within the primary care setting. This approach, 
therefore, allowed to: (1) identify the types of evidence 
available; (2) clarify key concepts and definitions; (3) 
examine how research is currently being conducted and 
(4) to identify knowledge gaps.32

Objectives
The objective of this study was to perform a scoping review 
and to synthesise knowledge of the nature and effects 
of current ML techniques for early cancer detection in 
asymptomatic adults. The scoping review was guided by 
the following research questions:
1.	 Which, if any, ML methods are being developed for 

cancer risk prediction in asymptomatic individuals in 
the community?

2.	 How do these models perform compare to each other?
3.	 Which research or knowledge gaps need to be ad-

dressed in order to advance the field?

METHODS
Inclusion and exclusion criteria
We used the population, concept and context approach33 
with the following inclusion criteria: (1) general adult 
(≥18 years) population, either sex, asymptomatic (popu-
lation); (2) any study using ML techniques to derive 
predictive models for future cancer risk using clinical 
and/or demographic and/or basic laboratory data 
carried out prior to 7 August 2020 (concept) and (3) 
original research articles conducted in all settings in any 
region of the world (context).

For the purposes of this study, and recognising that ‘ML’ 
algorithms fall along a continuum with statistical tech-
niques,34 all modelling approaches were included were 
defined as ML in the respective papers (such as logistic 
regression (LR)). Exclusion criteria were any ML model 
used to predict future events in patients with pre-existing 
or symptoms of cancer; ML models developed using 
specialised tests such as genetic profiling or imaging tests 
not generally available in the community; unsupervised 
ML models; and studies not written in English.

Literature search
To identify relevant studies, the PubMed database was 
searched from inception through to November 10, 2020 
using the search string: (“Cancer” Or “Cancers” OR 
“Oncology”) AND (“Machine Learning” OR “ML” OR 
“Data Mining” OR “Decision Support System” OR “Clin-
ical Support System” OR “Classification” OR “Regression” 
OR “Support vector machines” OR “Gaussian process” OR 
“Neural networks” OR “Logical learning” OR “Bayesian 
network” OR “linear model”) AND (“prognosis” OR 
“prognostic estimate” OR “predictor” OR “prediction” 
OR “model” OR “diagnosis” OR “diagnostic”). This 
search was supplemented with manual searching of the 
references and citations of previously published studies. 
All abstracts identified by the initial search were screened 
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for inclusion and checked for accuracy. For the included 
studies, data were extracted from full papers. In instances 
where more information was required to determine inclu-
sion, the full text of the article was retrieved and assessed 
against the eligibility criteria.

Study assessment
The quality of the included studies was assessed using the 
Newcastle Ottawa Scale (NOS) for observational studies 
included in the review.35 The strength of the predictive 
ability of the included models was assessed using area 
under the receiver operating characteristics curve (AUC) 
data, a valid measure for evaluating classification algo-
rithms and one that has been used to compare different 
algorithms in other meta-analyses.36 37

Patient and public involvement
This study was not explicitly informed by patient prior-
ities, experiences and preferences, although the appli-
cation of predictive models to assess cancer risk would 
have a direct bearing on identifying those most at risk 
and implementing investigations in a timely manner. No 
patients were involved in the design or conduct of the 
study and since this was a scoping review of the literature, 
there were no study participants.

RESULTS
Main findings
Identified risk models
Using the search strategy, 627 initial studies were identi-
fied where 10 studies met the inclusion criteria (table 1 
and figure  1).31 38–47 The most common reasons for 
exclusion of studies were: (1) models were derived to 
predict outcomes or responses to therapy in patients 
with pre-existing cancer and/or (2) the studies used 
features other than clinical and/or demographic and/
or basic laboratory data, such as genetic biomarkers. All 
studies were retrospective cohort or case-control studies 
conducted between 2011 and 2020, with 8 out of 10 
studies completed in the last 2 years. Eight studies were 
conducted in the USA and two in Taiwan. One model 
was built for breast cancer, three for colorectal cancer, 
one for lung cancer, one for melanoma, two for non-
melanoma skin cancer, one for pancreatic cancer and 
one a general cancer prediction model. Two studies 
performed external validations of a previously developed 
colorectal cancer prediction model (table 1).39 43 In terms 
of quality assessment, four studies were graded as ‘good’ 
quality by the NOS,39 43 44 46 while six studies were graded 
as ‘poor’, in all cases due to comparability of cohorts on 
the basis of the design or analysis adequately controlling 
for confounders.31 38 40 42 45 47

Development of the risk models
The models developed in the studies employed a wide 
range of ML techniques. Two studies compared different 
modelling approaches on the same dataset,41 44 while the 

other eight developed a model using a single approach. 
The following ML approaches were used: ANNs (8 out 
of 10 studies), LR (2/10 studies), Gaussian naïve Bayes 
(1 out of 10 studies), Bayesian network inference (1/10 
studies), DTs (1/10 studies) and RFs (2/10 studies), 
linear discriminant analysis (LDA) (1/10 studies), and 
SVMs (1/10 studies) (table  1). Data for training and 
testing were from medical insurance databases (4/10 
studies), EHR data repositories (3/10 studies), surveys 
(2/10 studies) or represented a retrospective analysis of 
prospectively collected data from a clinical trial (1/10 
studies).

As a result of the diverse cancer types being modelled, 
study aims and the available data, a range of different 
predictors, features and/or risk factors were included the 
developed predictive models, which can be grouped into 
the following categories: (1) patient demographic data, 
for example, age, gender, ethnicity, family history; (2) 
social and lifestyle data, for example, cigarette smoking 
and intensity of exercise; (3) comorbidities, for example, 
diabetes mellitus, hypertension, congestive heart failure 
and chronic obstructive pulmonary disease; (4) clinical 
and practice data, for example, World Health Organisa-
tion - Anatomical Therapeutic Chemical (WHO-ATC) 
prescription codes and clinical encounters and (5) labo-
ratory tests, for example, CBC (table 1). The models that 
automatically extracted features from EHR records used 
features that were not always explicitly defined in the 
respective articles.

Discrimination and calibration of the risk models
All studies provided AUC values as an assessment of 
model performance. Calibration (ie, whether the risk 
estimates were accurate), was not assessed in any study. 
Two models with particularly high AUC values were the 
Bayesian network inference model developed by Zhao 
et al47, which used 20 demographic, lifestyle, symptom, 
comorbidity and lab test results to predict the risk of 
pancreatic cancer with an AUC of 0.91, and the CRC 
predictive model developed by Wang et al46, which used a 
CNN learning on 1929 features (1099 International Clas-
sification of Diseases, Ninth Revision (ICD-9) codes and 
830 ATC codes). Models with particularly low AUC values 
were the range of models (LR, Gaussian naive Bayes, DT, 
LDA, SVM and feed-forward ANN) developed by Stark et 
al44; however, as discussed below, although these models 
only had AUCs between 0.51 and 0.61, two of the models 
compared favourably with the BRCAT clinical risk tool.

Comparison of the risk models with existing predictive 
algorithms
Hundreds of risk prediction models have been published 
in the literature for every cancer type, and some of these 
are already used in clinical practice. It is, therefore 
important to understand whether the performance of the 
newer ML-based cancer risk models is comparable to that 
of existing predictive algorithms. We, therefore, specifi-
cally examined whether the studies compared their ML 



5Abdullah Alfayez A, et al. BMJ Open 2021;11:e047755. doi:10.1136/bmjopen-2020-047755

Open access

Ta
b

le
 1

 
S

um
m

ar
y 

of
 s

tu
d

ie
s 

in
ve

st
ig

at
in

g 
M

L 
ap

p
ro

ac
he

s 
fo

r 
ea

rly
 c

an
ce

r 
d

et
ec

tio
n

Ty
p

e 
o

f 
ca

nc
er

R
ef

er
en

ce
Ye

ar
C

o
un

tr
y

M
et

ho
d

S
am

p
le

In
p

ut
Va

lid
at

io
n

P
er

fo
rm

an
ce

N
O

S
N

o
te

s

B
re

as
t

S
ta

rk
 e

t 
al

44
20

19
U

S
A

LR
, G

au
ss

ia
n 

N
B

, 
D

T,
 L

D
A

, S
V

M
 a

nd
 

fe
ed

-f
or

w
ar

d
 A

N
N

13
43

 b
re

as
t 

ca
nc

er
 

an
d

 6
3 

39
6 

no
n-

b
re

as
t 

ca
nc

er
 c

as
es

 (P
LC

O
 

C
an

ce
r 

S
cr

ee
ni

ng
 T

ria
l 

d
at

as
et

))

A
ge

, a
ge

 a
t 

m
en

ar
ch

e,
 a

ge
 a

t 
fir

st
 li

ve
 b

irt
h,

 n
o 

of
 

fir
st

-d
eg

re
e 

re
la

tiv
es

 
w

ho
 h

av
e 

ha
d

 b
re

as
t 

ca
nc

er
, e

th
ni

ci
ty

, a
ge

 
at

 m
en

op
au

se
, a

n 
in

d
ic

at
or

 o
f c

ur
re

nt
 

ho
rm

on
e 

us
ag

e,
 

nu
m

b
er

 o
f y

ea
rs

 
of

 h
or

m
on

e 
us

ag
e,

 
B

M
I, 

p
ac

k 
ye

ar
s 

of
 

ci
ga

re
tt

es
 s

m
ok

ed
, 

ye
ar

s 
of

 b
irt

h 
co

nt
ro

l 
us

ag
e,

 n
um

b
er

 o
f 

liv
e 

b
irt

hs
, a

nd
 a

n 
in

d
ic

at
or

 o
f p

er
so

na
l 

p
rio

r 
hi

st
or

y 
of

 
ca

nc
er

20
%

 t
es

tin
g 

d
at

a 
(2

69
 

b
re

as
t 

ca
nc

er
 a

nd
 

12
 6

79
 n

on
-b

re
as

t 
ca

nc
er

 c
as

es
)

LR
 0

.6
1 

(0
.5

8–
0.

65
); 

N
B

 0
.5

9 
(0

.5
6–

0.
62

); 
D

T 
0.

51
 (0

.5
0–

0.
52

); 
LD

A
 0

.6
1 

(0
.5

8–
0.

65
); 

S
V

M
 0

.5
2 

(0
.4

8–
0.

55
); 

N
N

 0
.6

1 
(0

.5
7–

0.
64

)

9 
(G

oo
d

)
A

t 
an

 0
.0

5 
le

ve
l, 

th
e 

LR
, L

D
A

, a
nd

 N
N

 
w

ith
 t

he
 b

ro
ad

er
 s

et
 

of
 in

p
ut

s 
w

er
e 

al
l 

si
gn

ifi
ca

nt
ly

 s
tr

on
ge

r 
th

an
 t

he
 B

C
R

AT

C
ol

or
ec

ta
l 

ca
nc

er
H

or
nb

ro
ok

 e
t 

al
39

20
17

U
S

A
C

ol
on

Fl
ag

 M
L 

m
od

el
17

 0
95

 U
S

 c
om

m
un

ity
-

b
as

ed
 in

su
re

d
 a

d
ul

ts
 

(1
6 

19
5 

co
nt

ro
ls

, 9
00

 
ca

se
s)

 (i
ns

ur
an

ce
 d

at
a)

A
ge

, g
en

d
er

 a
nd

 
b

lo
od

 c
ou

nt
 p

an
el

 
p

ar
am

et
er

s

S
tu

d
y 

w
as

 a
 

va
lid

at
io

n 
of

 a
 

p
re

vi
ou

sl
y 

d
er

iv
ed

 
m

od
el

61

A
U

C
 0

.8
0 

(0
.7

9–
0.

82
)

7 
(G

oo
d

)
 �



C
ol

or
ec

ta
l

W
an

g 
et

 a
l46

20
19

Ta
iw

an
C

N
N

10
 1

85
 w

ith
 C

R
C

, 4
7 

96
7 

co
nt

ro
ls

 (i
ns

ur
an

ce
 d

at
a)

IC
D

-9
 d

ia
gn

os
tic

 
co

d
es

, W
H

O
-A

TC
 

p
re

sc
rip

tio
n 

co
d

es

5-
fo

ld
 c

ro
ss

-v
al

id
at

io
n

A
U

C
 0

.9
2

7 
(G

oo
d

)
 �



C
ol

or
ec

ta
l 

ca
nc

er
S

ch
ne

id
er

 e
t 

al
43

20
20

U
S

A
C

ol
on

Fl
ag

 M
L 

m
od

el
30

8 
72

1 
in

su
ra

nc
e 

he
al

th
 

p
la

n 
m

em
b

er
s 

(in
su

ra
nc

e 
d

at
a)

A
ge

, g
en

d
er

 a
nd

 
b

lo
od

 c
ou

nt
 p

an
el

 
p

ar
am

et
er

s

S
tu

d
y 

w
as

 a
 

va
lid

at
io

n 
of

 a
 

p
re

vi
ou

sl
y 

d
er

iv
ed

 
m

od
el

61

A
U

C
 0

.7
8 

(9
5%

 C
I 

0.
77

 t
o 

0.
78

)
8 

(G
oo

d
)

Th
e 

al
go

rit
hm

’s
 

ac
cu

ra
cy

 d
ec

re
as

ed
 

w
ith

 t
he

 t
im

e 
in

te
rv

al
 

b
et

w
ee

n 
b

lo
od

 t
es

t 
re

su
lt 

an
d

 C
R

C
 

d
ia

gn
os

is

G
en

er
al

M
io

tt
o 

et
 a

l40
20

16
U

S
A

D
ee

p
 N

N
 a

nd
 R

Fs
M

od
el

 t
ra

in
in

g 
on

 7
04

 
58

7,
 t

es
tin

g 
on

 7
6 

21
4 

(E
H

R
 d

at
a)

Fe
at

ur
es

 e
xt

ra
ct

ed
 

fr
om

 E
H

R
 r

ec
or

d
s

Te
st

in
g 

on
 7

6 
21

4
C

ol
or

ec
ta

l c
an

ce
r 

A
U

C
 0

.8
9,

 li
ve

r 
ca

nc
er

 
0.

89
, p

ro
st

at
e 

ca
nc

er
 

0.
86

6 
(P

oo
r)

O
ut

p
er

fo
rm

ed
 

R
aw

Fe
at

 a
nd

 P
C

A

Lu
ng

H
ar

t 
et

 a
l38

20
18

U
S

A
A

N
N

19
97

–2
01

5 
N

at
io

na
l 

H
ea

lth
 In

te
rv

ie
w

 S
ur

ve
y 

ad
ul

t 
d

at
a;

 6
48

 c
an

ce
r 

an
d

 4
88

 4
18

 n
on

-c
an

ce
r 

ca
se

s 
(s

ur
ve

y 
d

at
a)

G
en

d
er

, a
ge

, B
M

I, 
d

ia
b

et
es

, s
m

ok
in

g 
st

at
us

, e
m

p
hy

se
m

a,
 

as
th

m
a,

 e
th

ni
ci

ty
, 

H
is

p
an

ic
 e

th
ni

ci
ty

, 
hy

p
er

te
ns

io
n,

 h
ea

rt
 

d
is

ea
se

s,
 v

ig
or

ou
s 

ex
er

ci
se

 h
ab

its
 a

nd
 

hi
st

or
y 

of
 s

tr
ok

e

30
%

 o
f d

at
a;

 1
95

 lu
ng

 
ca

nc
er

 c
as

es
 a

nd
 

14
6 

52
4 

ne
ve

r 
ca

nc
er

 
ca

se
s

A
U

C
 0

.8
6 

(tr
ai

ni
ng

; 
95

%
 C

I 0
.8

5 
to

 0
.8

8)
 

an
d

 0
.8

6 
(v

al
id

at
io

n;
 

95
%

 C
I 0

.8
4 

to
 0

.8
9)

6 
(P

oo
r)

R
Fs

 a
nd

 S
V

M
 a

ls
o 

ap
p

lie
d

 w
hi

ch
 t

ra
in

ed
 

w
el

l (
R

F 
A

U
C

 o
f 1

.0
0 

(9
5%

 C
I 1

.0
0 

to
 1

.0
0)

 
an

d
 S

V
M

 A
U

C
 o

f 
0.

96
 (9

5%
 C

I 0
.9

5 
to

 
0.

97
). 

H
ow

ev
er

, n
ot

 
ge

ne
ra

lis
ab

le
: A

U
C

 
S

V
M

 0
.5

5 
(9

5%
 C

I 
0.

51
 t

o 
0.

58
); 

A
U

C
 R

F 
0.

81
 (9

5%
 C

I 0
.7

8 
to

 
0.

84
).

M
el

an
om

a
R

ic
ht

er
 a

nd
 

K
ho

sh
go

ft
aa

r41
20

19
U

S
A

LR
, R

F,
 X

G
B

oo
st

4 
06

1 
17

2 
p

at
ie

nt
s,

 
10

 1
29

 w
ith

 m
el

an
om

a 
(E

H
R

 d
at

a)

Fe
at

ur
es

 e
xt

ra
ct

ed
 

fr
om

 E
H

R
 r

ec
or

d
s

Fi
ve

fo
ld

 c
ro

ss
-

va
lid

at
io

n
A

U
C

 L
R

 0
.7

6;
 A

U
C

 R
F 

0.
69

; A
U

C
 X

G
B

oo
st

 
0.

80

7 
(P

oo
r)

S
m

al
le

r 
am

ou
nt

s 
of

 
d

at
a 

im
p

ro
ve

d
 t

he
 

A
U

C
s

C
on

tin
ue

d



6 Abdullah Alfayez A, et al. BMJ Open 2021;11:e047755. doi:10.1136/bmjopen-2020-047755

Open access�

Ty
p

e 
o

f 
ca

nc
er

R
ef

er
en

ce
Ye

ar
C

o
un

tr
y

M
et

ho
d

S
am

p
le

In
p

ut
Va

lid
at

io
n

P
er

fo
rm

an
ce

N
O

S
N

o
te

s

N
on

-
m

el
an

om
a 

sk
in

 c
an

ce
r

R
of

fm
an

 e
t 

al
42

20
18

U
S

A
A

N
N

19
97

–2
01

5 
N

H
IS

 a
d

ul
t 

su
rv

ey
 d

at
a,

 2
05

6 
N

M
S

C
 

an
d

 4
60

 5
74

 n
on

-c
an

ce
r 

ca
se

s 
(s

ur
ve

y 
d

at
a)

G
en

d
er

, a
ge

, B
M

I, 
d

ia
b

et
es

, s
m

ok
in

g 
st

at
us

, e
m

p
hy

se
m

a,
 

as
th

m
a,

 e
th

ni
ci

ty
, 

H
is

p
an

ic
 e

th
ni

ci
ty

, 
hy

p
er

te
ns

io
n,

 h
ea

rt
 

d
is

ea
se

s,
 v

ig
or

ou
s 

ex
er

ci
se

 h
ab

its
 a

nd
 

hi
st

or
y 

of
 s

tr
ok

e

30
%

 fo
r 

va
lid

at
io

n 
(7

52
 N

M
S

C
 c

as
es

 a
nd

 
13

8 
17

2 
ne

ve
r 

ca
nc

er
 

ca
se

s)

A
U

C
 v

al
ue

s 
of

 0
.8

1 
(tr

ai
ni

ng
, 9

5%
 C

I 0
.8

0 
to

 0
.8

2)
 a

nd
 0

.8
1 

(v
al

id
at

io
n,

 9
5%

 C
I 

0.
79

 t
o 

0.
82

)

6 
(P

oo
r)

 �


N
on

-
m

el
an

om
a 

sk
in

 c
an

ce
r

W
an

g 
et

 a
l45

20
19

Ta
iw

an
C

N
N

18
29

 p
at

ie
nt

s 
w

ith
 

no
nm

el
an

om
a 

sk
in

 
ca

nc
er

 a
s 

th
ei

r 
fir

st
 

d
ia

gn
os

ed
 c

an
ce

r 
an

d
 

76
65

 r
an

d
om

 c
on

tr
ol

s 
(in

su
ra

nc
e 

d
at

a)

A
ge

, s
ex

, I
C

D
-

9 
d

ia
gn

os
tic

 
co

d
es

, W
H

O
-A

TC
 

p
re

sc
rip

tio
n 

co
d

es
, 

an
d

 t
he

 t
ot

al
 

nu
m

b
er

s 
of

 c
lin

ic
al

 
en

co
un

te
rs

Fi
ve

fo
ld

 c
ro

ss
-

va
lid

at
io

n
A

U
C

 0
.8

9 
(0

.8
7–

0.
91

)
6 

(P
oo

r)
 �



P
an

cr
ea

tic
Z

ha
o 

et
 a

l47
20

11
U

S
A

B
ay

es
ia

n 
ne

tw
or

k 
in

fe
re

nc
e

98
 c

as
es

 a
nd

 1
4 

97
1 

co
nt

ro
ls

 (E
H

R
 d

at
a)

D
em

og
ra

p
hi

cs
, 

lif
es

ty
le

, s
ym

p
to

m
s,

 
co

m
or

b
id

iti
es

 a
nd

 
la

b
 t

es
t 

re
su

lts
 (2

0 
va

ria
b

le
s)

N
ul

l
0.

91
 (0

.8
7–

0.
95

)
4 

(P
oo

r)
 �



A
N

N
, a

rt
ifi

ci
al

 n
eu

ra
l n

et
w

or
k;

 A
U

C
, a

re
a 

un
d

er
 t

he
 c

ur
ve

; B
C

R
AT

, B
re

as
t 

C
an

ce
r 

R
is

k 
P

re
d

ic
tio

n 
To

ol
; B

M
I, 

b
od

y 
m

as
s 

in
d

ex
; C

N
N

, c
on

vo
lu

tio
na

l n
eu

ra
l n

et
w

or
k;

 C
R

C
, c

ol
or

ec
ta

l c
an

ce
r;

 D
T,

 d
ec

is
io

n 
tr

ee
; E

H
R

, e
le

ct
ro

ni
c 

he
al

th
 r

ec
or

d
; I

C
D

-9
, 

In
te

rn
at

io
na

l C
la

ss
ifi

ca
tio

n 
of

 D
is

ea
se

, N
in

th
 R

ev
is

io
n;

 L
D

A
, l

in
ea

r 
d

is
cr

im
in

an
t 

an
al

ys
is

; L
R

, l
og

is
tic

 r
eg

re
ss

io
n;

 M
L,

 m
ac

hi
ne

 le
ar

ni
ng

; N
B

, n
ai

ve
 b

ay
es

; N
M

S
C

, n
on

-m
el

an
om

a 
sk

in
 c

an
ce

r;
 N

N
, n

eu
ra

l n
et

w
or

k;
 N

O
S

, N
ew

ca
st

le
 O

tt
aw

a 
sc

al
e;

 P
C

A
, 

p
rin

ci
p

al
 c

om
p

on
en

t 
an

al
ys

is
; P

LC
O

, P
ro

st
at

e,
 L

un
g,

 C
ol

or
ec

ta
l a

nd
 O

va
ria

n 
; R

F,
 r

an
d

om
 fo

re
st

; S
V

M
, s

up
p

or
t 

ve
ct

or
 m

ac
hi

ne
; W

H
O

-A
TC

, W
or

ld
 H

ea
lth

 O
rg

an
is

at
io

n 
- 

A
na

to
m

ic
al

 T
he

ra
p

eu
tic

 C
he

m
ic

al
.

Ta
b

le
 1

 
C

on
tin

ue
d



7Abdullah Alfayez A, et al. BMJ Open 2021;11:e047755. doi:10.1136/bmjopen-2020-047755

Open access

algorithms with existing algorithms or, if not, how model 
performance as described by AUCs compared with other 
published data, despite the limitations of this approach 
(see below).

Stark et al44 compared their ML models with an existing 
clinical prediction tool, the Breast Cancer Risk Predic-
tion Tool (BCRAT; https://​bcrisktool.​cancer.​gov/). The 
BCRAT tool is an implementation of the Gail model,48 
which is a statistical model that estimates 5-year breast 
cancer risk in women without a personal history of 
breast cancer and without known mutations in high-
risk breast cancer genes such as BRCA1 and BRCA2. In 
the Gail model, patients self-report their current age, 
age at menarche, age at first live birth, number of first-
degree relatives who have had breast cancer, ethnicity, 
and number of previous breast biopsies, variables which 
are weighted within the model by LR.48 In addition, 
BCRAT uses data on a personal history of atypical hyper-
plasia, where available. Although the AUC values for the 
models (LR, naïve Bayes, DTs, LDA, SVM and an ANN) 
tested using a broader set of features than BCRAT were 
only between 0.51 (DT) and 0.61 (LR, LDA, and ANN), 
four of the six models (LR, NB, LDA and ANN) outper-
formed BCRAT (AUC 0.56). Other metrics were also 
used to assess model performance (sensitivity, specificity 
and precision), which were comparable between the 
ML algorithms and the BCRAT, and both BCRAT and 
the ML models had low precision (~2%). Furthermore, 
when comparing the different ML models, LR and LDA 
produced higher AUCs than the ANN model, despite 
the potential for ANNs to better model noisy data and 
complex non-linear functions.49 The authors suggested 
that this might have been due to the limited amount of 

available training data or the selection of hyperparam-
eters.44 It was observed that (1) the derived ML models 
using an extended and set of features available in primary 
care can deliver improvements on current clinical algo-
rithms; (2) that adding additional features has a greater 
impact on improving model performance (ie, higher 
AUC) rather than simply using more complex models 
and (3) that AUC values must be interpreted in the 
context of existing methods, such as existing, clinically 
used risk prediction models such as the BCRAT or Gail 
model, rather than in isolation.

In a systematic review of 52 colorectal cancer models 
predicting future risk of disease in asymptomatic indi-
viduals,50 37 models reported AUC values, which ranged 
from 0.65 and 0.75. These included five models that used 
routine data exclusively and did not include question-
naires or genetic biomarkers. In comparison, the AUC 
values for ColonFlag,39 43 an ML model that uses age, 
gender and CBC features to predict the future occur-
rence of colorectal cancer up to 12 months prior to diag-
nosis, were 0.78–0.82.

In another systematic review involving 25 risk predic-
tion models for lung cancer that used only epidemiolog-
ical parameters as input (ie, no laboratory parameters),51 
AUCs ranged between 0.57 and 0.86, which compares to 
an AUC of 0.86 (in both training and validation cohorts) 
for the ANN model developed by Hart et al.38 In their 
systematic review of 25 melanoma risk prediction models, 
Usher-Smith et al52 showed in a summary ROC curve that 
most models had similar discrimination of 0.76, which 
compares to the highest AUC of 0.80 achieved using 
XGBoost ML by Richter et al41.

DISCUSSION
Strengths and limitations of existing ML approaches
The reviewed studies reviewed highlight that several 
different techniques have successfully been used to 
develop models and that ML can be applied to large-scale 
insurance and EHR data containing hundreds or thou-
sands of features in order to build predictive models. 
However, the survey also highlights a number of gaps 
in the application of ML to predicting the risk of future 
cancer in asymptomatic individuals. These can be divided 
into those relating to: (1) study populations; (2) model 
types and comparisons and (3) model validation, compar-
isons and calibration.

Study populations
To date, ML techniques have only been applied to or vali-
dated in datasets from developed countries, representing 
a fraction of the overall global population and their 
dietary and lifestyle factors. Given that the aetiology of 
cancer, risk factors and genetics differ in different popula-
tions,53 models developed in populations in high-income 
countries may not be generalisable to those from low- and 
middle-income countries (LMICs). The development and 
validation of models in LMICs could have two advantages: 

Figure 1  PRISMA flow chart depicting the search strategy. 
PRISMA, Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses.

https://bcrisktool.cancer.gov/
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first, it would determine the generalisability (and there-
fore utility) of that model in other populations, better 
serving the needs of individuals in LMICs; second, dispar-
ities between models developed in different geograph-
ical settings could provide valuable new information 
about factors contributing to cancer risk. Generalising 
risk prediction models is likely to be challenging, since 
resource-poor countries often do not have the necessary 
infrastructure nor the epidemiological research capabili-
ties of institutions in high-income countries.

Furthermore, current ML models predict the risk 
of a limited number of cancer types. Although breast, 
colorectal and lung cancer are the three most common 
cancers and therefore account for a large proportion of 
overall cancer burden, it is still important to detect all 
cancers early. This is especially true for those cancers 
that are usually silent (asymptomatic) for long periods 
of time, present late with advanced-stage disease, and for 
which there are currently no screening programmes in 
place, such as ovarian and pancreatic cancer. Predicting 
future risk of these cancers could allow closer monitoring 
of at-risk individuals.

Model types and comparisons
A wide variety of ML methodologies have been applied 
and, despite being applied to the same research problem, 
this scoping review has not identified a single ’best’ 
method. Two issues arose in studies that compared 
different ML approaches on the same datasets. First, 
although different models had similar AUCs during 
training, not all models generalised well to validation 
datasets; robust model validation is therefore important 
to ensure model validity (see below). Second, although in 
general it is assumed that larger amounts of training data 
improve model performance,54 Richter and Khoshgo-
ftaar41 found that equivalent or even better model perfor-
mance was achievable using reduced datasets (hundreds 
of thousands vs millions of datapoints). This might be 
due to high levels of homogeneity in the ‘no cancer’ class, 
resulting in fewer instances being required to produce a 
generalisable model, or as a result of overfitting. Although 
the requirement for less data for the cancer prediction 
problem could make ML techniques more accessible to 
researchers without extensive computing infrastructure 
and allow smaller datasets to be leveraged for model 
construction, ML requires over 10 times the amount of 
data per variable for stable discrimination compared with 
traditional approaches such as LR.54 Instead of regarding 
data requirements as ‘too high’ or ‘too low’, it might be 
better to consider how much data is required for a partic-
ular predictive context. Riley et al55 recently provided 
an implementation of how to calculate the sample size 
required to develop specific clinical prediction models, 
which will help researchers prospectively plan their in 
silico experiments and avoid using datasets that are too 
small for the total number of participants or outcome 
events.

Model validation, comparisons and performance evaluation
With the exception of the two studies evaluating a previ-
ously defined algorithm for colorectal cancer, no other 
study used external validation datasets to assess model 
generalisability, instead opting for either a single holdout 
validation sample or fivefold cross-validation. While 
useful for assessing overfitting,56 these approaches do not 
account for population bias in the training dataset nor 
differences in other target populations. Studies seeking 
to develop ML models should seek to validate models 
in independent populations, recognising that an advan-
tage of an ‘ungeneralisable’ model might be insights 
into cancer risk in other populations. Furthermore, since 
physicians may code diseases in EHRs differently over 
time (for instance, due to altered management or incen-
tives), even initially generalisable models may need reval-
idation over time.23 57

Discrimination (ie, the ability to distinguish a patient 
with a high(er) risk of developing cancer from one with 
a low(er) risk of developing cancer) was measured in 
every study using the AUC, as is common in the field. 
However, discrimination is not the only metric of model 
performance.58 Another important measure of model 
performance, particularly for the clinical setting, is cali-
bration, that is, establishing that the risk estimates are 
accurate.59 In this setting, this means that the model 
should not unduly overestimate or underestimate the risk 
that a patient will develop cancer; to do so would mean 
that a patient might be subjected to investigations and the 
associated worry of their likelihood of developing cancer 
(overestimated risk), or, conversely, underinvestigated 
and falsely reassured in the case of underestimated risk. 
Therefore, a highly discriminatory but poorly calibrated 
model is likely to have poor clinical utility.

None of the studies reviewed here performed calibra-
tion analysis, which is not uncommon in this field. Indeed, 
in their systematic review of 71 studies using ML for clin-
ical prediction for a wide variety of clinical purposes, 
Christodoulou et al reported that 79% of studies failed 
to address the calibration problem.37 Therefore, caution 
must be applied when interpreting and comparing the 
performance of current ML models based on AUC alone, 
since is an incomplete measure of performance that must 
be considered together with methodological aspects such 
overfitting, measurement error, and population hetero-
geneity that might influence the estimation of predictive 
performance.37 59

Implications for clinical practice
The ML models described in this scoping review gener-
ally show high AUC values. So, are any of these models 
ready for clinical use? The ColonFlag model39 43 is an 
example has recently been implemented at Barts Health 
NHS Trust60 to identify patients at particularly high risk 
of CRC, particularly as clinicians struggle to prioritise 
patients in the backlog created by the Coronaviruses 
(COVID-19) pandemic. The ColonFlag model is the 
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only model identified in this scoping review that has 
undergone extensive external validation in independent 
datasets.

New ML models need to be contextualised with 
currently available best clinical practice in order to fully 
evaluate their potential clinical value. Comparing the 
relatively poor AUC values of the Stark et al44 models with 
BCRAT revealed that they in fact outperformed it in many 
cases. In their comparison of their ANN with screening 
methods for lung cancer such as low-dose CT, chest X-ray 
and sputum cytology, Hart et al38 noted that (according 
to sensitivity and specificity) it outperformed most of the 
other available non-invasive methods. Thorough side-by-
side comparisons of newly developed models with other 
prediction tools would be helpful in establishing future 
clinical utility.

Finally, this scoping review highlights that model perfor-
mance should not be evaluated solely on the basis of AUC 
values but also in terms of other importance performance 
metrics such as calibration, without which a model might 
inaccurately assess risk and therefore prompt inappro-
priate management.

Unanswered questions and future research
The few models that are currently available are method-
ologically diverse, rarely validated in independent data-
sets to ensure generalisability, and do not cover all cancer 
types. Even if ML techniques offer only small improve-
ments in cancer detection rates, these improvements are 
likely to be of high clinical significance given the large 
size of the global population with or at high risk of cancer 
and the high mortality and costs associated with late 
cancer diagnoses.

However, the scoping review identifies a number of 
research gaps that will need to be addressed in order to 
deliver validated ML-based models to assist clinical decision 
making. First, future studies must take steps to establish 
model generalisability through validation in independent 
cohorts, including those from LMICs. Although the latter 
may be challenging, it could be argued that even negative 
generalisability studies might provide an opportunity to 
learn more about cancer risk factors in different popula-
tions. Second, the scoping review fails to establish which 
ML approach best suits the cancer prediction problem 
but does show that, where possible, side-by-side compari-
sons of different methods can reveal important informa-
tion about generalisability as well as performance and 
that these comparisons are desirable whenever possible. 
Third, many important cancer types, particularly ‘silent 
killers’ like ovarian cancer, have currently not been the 
subject of ML modelling approaches; ML could provide an 
important, low-cost, non-invasive method to identify indi-
viduals at high risk of clinically silent cancers that require 
closer monitoring. Fourth, progress has been made in 
defining approaches to tailor sample sizes to the specific 
setting of interest to minimise overfitting and targeting 
precise estimates of key parameters, and these principles 
must be applied when testing and validating models to 

ensure robust model performance. Finally, ML models 
need to be compared with the best available clinical tools 
so that their potential clinical utility is transparent.

Limitations of this study
Our study has a number of limitations. First, despite recog-
nising the need for a scoping review due to the paucity of 
literature on the topic, we were only able to identify ten 
papers meeting the inclusion criteria. It is therefore diffi-
cult to draw definitive conclusions about the performance 
of these models. Furthermore, although AUC values 
provide an indication of how discriminative the models 
are, they do not allow for meaningful comparisons of 
models trained and evaluated on different datasets. Six 
out of ten studies were defined as poor quality due to a 
lack of controlling for confounders in the study design, 
which may have introduced significant bias. Finally, we 
only search the PubMed database and articles published 
in English, so some papers in other languages or in data-
bases for non-medical disciplines may have been missed.

CONCLUSIONS
This scoping review highlights that applying ML to cancer 
prediction is a promising field provided that the identi-
fied issues such as generalisability, validation and clinical 
applicability, model calibration and dataset selection are 
addressed in future studies. We hope that the identified 
research gaps focus future research efforts to deliver vali-
dated ML-based models to assist and improve clinical 
decision making
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