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Abstract

Background: Borrelia species are unusual in that they contain a large number of linear and circular
plasmids. Many of these plasmids have long intergenic regions. These regions have many fragmented
genes, repeated sequences and appear to be in a state of flux, but they may serve as reservoirs for
evolutionary change and/or maintain stable motifs such as small RNA genes.

Results: In an in silico study, intergenic regions of Borrelia plasmids were scanned for
phylogenetically conserved stem loop structures that may represent functional units at the RNA
level. Five repeat sequences were found that could fold into stable RNA-type stem loop structures,
three of which are closely linked to protein genes, one of which is a member of the Borrelia
lipoprotein_| super family genes and another is the complement regulator-acquiring surface
protein_| (CRASP-1) family. Modeled secondary structures of repeat sequences display numerous
base-pair compensatory changes in stem regions, including C-G—A-U transversions when
orthologous sequences are compared. Base-pair compensatory changes constitute strong evidence
for phylogenetic conservation of secondary structure.

Conclusion: Intergenic regions of Borrelia species carry evolutionarily stable RNA secondary
structure motifs. Of major interest is that some motifs are associated with protein genes that show
large sequence variability. The cell may conserve these RNA motifs whereas allow a large flux in
amino acid sequence, possibly to create new virulence factors but with associated RNA motifs
intact.

Background

Intergenic regions of bacterial chromosomes carry impor-
tant functional units such as transposable elements [1].
Small regulatory RNA genes are also abundantly found in
regions between protein coding genes [2-7]. In E. coli,
many intergenic regions and non-coding strands of
known genes are transcribed, resulting in a heterogeneous
collection of RNA transcripts, many of which are <65 nt
[8]. Bacterial intergenic chromosomal regions also carry
numerous small repeat sequences that can fold into RNA-
type secondary structures [9-12]. Some represent non-

autonomous miniature inverted repeat transposable ele-
ments (MITEs) [13,1]. Many are found immediately
downstream of, or overlapping terminal codons [14-16]
and may be regulatory units [14,15,17]. Small repeat ele-
ments carry a variety of motifs at either the DNA, tran-
scribed RNA or translated protein levels and they may be
engines for evolutionary change [16,17].

Borrelia burgdorferi was first isolated and shown to be the
etiologic agent of Lyme Disease in the early 1980s [18,19].
The chromosomes of Borrelia burgdorferi str. B31 and its
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related species, B. afzelii PKo and Borrelia garinii PB, have
been sequenced, as well as many of the associated plas-
mids [20-23]. These organisms possess multiple plasmids.
For example, B.bugrdorferi strain B31 has 12 linear plas-
mids and 9 circular plasmids [20,21]. Borrelia chromo-
somes are small relative to many bacterial genomes, e.g.,
the genome of Borrelia burgdorferi str. B31 is ~0.9 Mb and
Yersinia pestis str. Co92 genome is 4.6 Mb. Borrelia chromo-
somes represent a tight packing of protein genes where
there is little intergenic space. On the other hand, plas-
mids contain a much larger amount of intergenic space.
These regions are known to have sequences that translate
to repeat units of small peptides. In addition, they contain
a high percentage of fragmented genes, including those
from transposase genes, and interesting fusions of protein
motifs as well as [21]. This shows a rapid evolutionary
trend in these regions and perhaps plasmid intergenic
regions are where new protein and RNA genes and other
functional units may evolve.

A small number of Borrelia non-coding RNA genes have
been detected [24,25]. It has been assumed that Borrelia
has few small RNA genes, based on comparative genomic
searches for similarities to known bacterial small RNA
sequences [24]. However many regulatory RNA gene
sequences diverge between species, e.g., micC, micF and
ryhB (see Rfam website [26,27]), and analogous genes in
other species can be missed, especially between distantly
related species. In some cases, such as the regulatory RNA
DsrA, nucleotide sequences from different species show
few similarities [25]. Intergenic regions have not been fur-
ther analyzed for evolutionarily conserved RNA secondary
structure motifs. These motifs can signal the presence of
functional units.

In a bioinformatics study, we show that several repeat
sequences in plasmid intergenic spaces and/or sequences
immediately downstream of coding regions sustained
multiple mutations, yet these sequences fold into highly
conserved RNA-type stem loop structures. Evolutionary
conservation indicates an essential role for these struc-
tures in the cell. In contrast, super family protein genes
associated with some conserved RNA-type structures dis-
play marked amino acid and peptide chain length differ-
ences and appear to be in a process of change and/or
decay. This raises interesting questions concerning how
these peptide-RNA linked elements will evolve with time.

Results

Repeat sequences of intergenic nucleotide sequences of
Borrelia plasmids were analyzed for secondary structure
motifs using the Zuker m-fold program [28,29]. In addi-
tion, the RNAz program was used to confirm thermody-
namically stable and evolutionarily conserved RNA
secondary structures [30]. Intergenic sequences from plas-
mids Ip60 and 1p28 of B. afzelii Pko were completely
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scanned manually for repeat sequences and RNA motifs.
In addition, selected regions that contain relatively large
intergenic regions from B. burgdorferi B31 and Borrelia
garinii PB plasmids were also scanned. Most regions did
not yield conserved stem loop structures, however five
intergenic nucleotide sequences were found to display
evolutionary conserved stem loop structures (Table 1).

Sequence #I

A 60 nt intergenic sequence (Sequence #1, Table 1) was
found in nine plasmids from B. afzelii Pko and B. burgdor-
feri B31. Alignment of these sequences reveals a major
conserved region that is approximately at the center of the
polynucleotide nucleotide chain (Figure 1). The EMBL-
EBI CLUSTALW 2.0.8 multiple sequence alignment pro-
gram [31,32] was used for alignment. Twenty out of 60
nucleotide positions show base substitutions. A compari-
son of sequences shows a 77-100% sequence identity
between the nine plasmid sequences. Sequences homolo-
gous to Sequence #1 have not been detected in B. garinii
PBi plasmids or Borrelia chromosomal sequences.

RNA secondary structure modeling of the nine sequences
shows a high conservation of secondary structure with
multiple base substitutions that maintain base pairing. In
addition, a bulged U at position 23 is found invariant in
all nine sequences. Figure 2a-c depicts RNA secondary
structure models from three of the nine plasmid
sequences. Base substitutions at individual positions are
depicted in Figure 2c. Mutations at six base-paired posi-
tions in the upper portion of the stem loop show compen-
satory changes that conserve the stem structure (Figure
2c). Prominent are the base pair changes at positions C ;-
G, that result in A, ,-U,, pairing in the sequence of plas-
mid Bb pl17 (Fig. 2a) and U,,-A,; pairing in two other
plasmid sequences (Figure 2c). Base pair positions 14 and
47 appear to be "hot spots" for mutations, but neverthe-
less, Watson-Crick base pairing is maintained. The C,,-
G4,—A,,-U,, substitution is highly significant in that it
shows the double mutation, pyrimidine—purine,
purine—pyrimidine. This is a transversion and has a lower
probability of occurring than purine—purine and pyrimi-
dine—pyrimidine transitions. The C-G—U-G transition at
positions 19,20 and 41,42 (Figure 2c) are between orthol-
ogous genes in Bb 1p28-4 and Ba Ip60-2. The base pairing
at the terminal end of the stem differs between several
plasmid structures (e.g., compare Figure 2a and 2b with
2c). Although the three A-U base pairs at the base of the
stem (positions A;_gand Ug;_ ) are conserved in all plas-
mid sequences, in plasmids Bb 1p28-2 and Bb Ip36, a
Gs¢—>As substitution appears to partially destabilize the
base stem structure (data not shown). The cut off at the 60
nt length for Sequence #1 was made because sequences
extended from the 5' and 3' ends do not yield additional
conserved secondary structure motifs. This however does
not preclude that the 60 nt stem loop is part of a larger
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Table I: Nucleotide sequences that display secondary structure features

Species Plasmid Positions

Sequence

SEQUENCE #1

B. afzelii PKo Ip25 573-632

SEQUENCE #2
B. afzelii PKo Ip34 1711-1804
SEQUENCE #3

B. afzelii PKo Ip60 50661-50585

SEQUENCE #4

B. afzelii PKo Ip60 26239-26360

SEQUENCE #5

B. burgdorferi B3 | Ip54 1482014969

ATAACAAAGAATTCTCCACC
TATAATTTCTATGAAATTTAG
GTGGAGATGAATTTGTTAA

TAAAAGCATATCTTTTA
TTAAAGATATGCTTAAT

ATACTAAATAAACAAAAAATT
AATACGTTGCACTTTATATTT
TTTAAAAAAGAGAAGTTAATT
CTTCTCTTTTTTTT

ATTGGGTTTAAAACTACA
AATAGGGCCTTAAGGCC
CTATTTGTAGTTTTAAAGA
AGTTTTCAATGAATTGTTA
ATTTATAACAATAAACAAGT
ATATATCTCACTATAGTTT
TTTTCAAATA

AATATTTATTTGCAAAACTT
GAAAAGTTAGTGTATACTTT
ATAGGTACAGACTGACACGC
AATGTGTCGCTCTTAATATAA
GGACCTGTTACCTTAAAGGGT
TTATTGGGGATTCTTTTAAAA
GAATCCCCAATAAACCCTTTA
ACTTTT

functional unit that may not show prominent conserved
secondary structure motifs.

Sequence #1 was also analyzed by the RNAz bioinformat-
ics program [30], which predicts RNA structures that may
be evolutionarily conserved. The results as depicted on the
RNAz website are shown in Additional file 1. The second-
ary structure displayed at the bottom of Additional file 1
is identical to that depicted in Figure 2c. The descriptive
section at the top of the figure reveals a mean z-score of -
6.43 (a score less than 0.0 indicates that a structure is
more stable than one expected by chance). The prediction
is that Sequences #1 represents evolutionarily conserved
RNA structures. Base pairing for five individual sequences
is shown in the middle section of Additional file 1. Thus
the RNAz analysis confirms the predicted evolutionary
conservation of Sequence #1 secondary structures derived
manually.

In terms of nearest neighbor genes, the 60 nt repeat ele-
ment is not located upstream or downstream of plasmid
annotated genes in a consistent manner, both in terms of
spacing and type of gene, although it is close to two puta-

tive transposase genes. For example, the repeat element is
found 39 bp upstream of locus BAPKO_4522 in Ba Ip28.
This locus encodes a putative 378 aa transposase. In Bb
1p28-4, it is situated 37 base pairs downstream of locus
BB_I41, which encodes a putative 80 aa protein. BB_I41 is
a fragmented gene and shares the 5' end of a 155 aa trans-
posase encoded by BB_H40 in Bb 1p28-3. In Bb 1p28-2,
the 60 base pair repeat sequence overlaps the 3' end of
BB_GO1 by 3 bp. Locus BB_GO01 encodes a 297 aa hypo-
thetical protein.

Sequence #2

A second set of repeat sequences displays inverted repeats
and these are found in eleven loci in ten plasmids from
the three Borrelia species, B. burgdorferi, B. afzelii and B.
garinii. Alignment of nt sequences reveals there are a sig-
nificant number of base substitutions as well as inser-
tions/and or deletions [see Additional file 2]. Nucleotide
positions 4-31 (sequence numbering positions from Ba
1p34) comprise inverted repeats.

RNA secondary structure modeling of putative RNA tran-

scripts shows that all eleven sequences display stem loop
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Balp25_573-632
Bblp38_4348-4288
Balp28_20809-20866
Bblp28-4 26132-26073
Bblp28-3_27541-27482
Bblp28-2_1006-1065
Bblp36_1078-1137
Balp60-2_681-740
Bblpl7_14373-14432

Balp25 573-632 -
Bblp38 4348-4288 T 60
Balp28 20809-20866 -
Bblp28-4 26132-26073 -
Bblp28-3 27541-27482 -
Bblp28-2_1006-1065 -
Bblp36_1078-1137 -
Balp60-2 681-740 A 60
Bblpl7 14373-14432 -

Figure |
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ATAACAAAGARTTCTCCACCTATAATTTCTATGARAATTTAGGTGGAGATGRAATTTGTTAA 60
GTAACAAAGAATTCTTCACCTATAATTTCTATGAAATTTAGGTGGAGATGA-TTTGCTAA 59
ATCACAAAGAATACTCCACCTATAATTTCTATGAAATTTAGGTGGAGATGAATTTGTAAC 60
ATAACAAAGAATACTCCACCTATAATTTCTATGAAATTTAGGTGGAGATGAATTTGTAAC 60
ATAACAAAGAATACTCCACCTATAATTTCTATGAAATTTAGGTGGAGATGAATTTGTAAC 60
ATAACAAAGAATATTCCACCTATAATTTCTATGAAATTTAGGTGGAAATARATTTACAAR 60
ATAACAAAGRATATTCCACTTATAATTTCTATGAAATTTAGGTGGARATAAATTTACAAA 60
-TAATAAAGAATTCTCCATTTATAATTTCTATGARATTTAGGTGGAGATARATTTTTARA 59
ATAATAARAGAATTATCTACCTATGATTTCTGTGAAATTTAGGTAGATATGAATTTGTTAG 60

ko k

Alignment of plasmid nucleotide sequences related to B. afzelii PKo Ip25 Sequence #1. Adenosine residues are
colored red, all other residues are green. Color scheme is for ease of viewing only. The EMBL-EBI CLUSTALW 2.0.8 multiple
sequence alignment program [3 | ]http://www.ebi.ac.uk/Tools/clustalw2/index.html[32] was used for alignment. Numbers adja-

cent to plasmid names refer to nt positions in plasmid sequences. A star (*) denoted invariant positions.

structures which contain 11-13 base pairs. Additional file
3 shows representative secondary structures and depicts
several base-pair compensatory changes in the stem, e.g.,
Ag-U,, pairing in B. afzelii 1p34 changes to Cq4-G,, in B.
burgdorferi 1p25 and As-U,,—Us-A,, in B. burgdorferi 1p28-
3. Again, these are examples of pyrimidine—purine and
purine—>pyrimidine mutational transversions, and these
are found between orthologs. Additional base substitu-
tions in other plasmid sequences result in G-U non-
canonical pairing (data not shown). The presence of non-
canonical pairs implies that the conserved structure may
function at the RNA level as opposed to the DNA level.
The loop structure sustained base substitutions and inser-
tions/deletions, which resulted in major differences in
loop sequences [see Additional file 3]. The stem length
varies, but the invariant A,-Us, pair is always at the termi-
nal end of the stem and is straddled by invariant A; and
A5, (numbering position relative to the Ba Ip34 sequence
[see Additional file 3]. This arrangement is found in all
eleven of the stem loop structures (data not shown).

By bioinformatics methods, random mutations were
introduced in Sequence #2 to ascertain the probability of
compensatory base pair changes arising by random base
changes. For example, after adding 3 mutations to the 34
nt Sequence #2 and initiating 30 trials of random muta-
genesis, the stem was found disrupted (with mispairs) in
>90% of trials, and all 30 trials showed a resultant
decrease (towards [+] side) in delta G, and in some cases
there was a decrease by a factor of 10 in the delta G value.
The configuration of the stem was drastically altered in 10

of the 30 trials (data not shown). Single base compensa-
tory changes in the stem occurred in about 10% of trials,
but at the same time the accompanying mutations (again,
3 mutations/34 nt were induced) caused a partial disrup-
tion of the stem. Double compensatory mutations, such
as U-A — C-G and the less probable transversion, U-A —
G-C, did not appear. These trials show a trend towards dis-
ruption of an ordered structure by addition of random
mutations. In sharp contrast, biological mutations within
11 homologous sequences (23 positions showing muta-
tions out of ~34 nt of Sequence #2) display numerous
base-pair compensatory changes, including transversions,
show no mispairing, no stem alterations (such as forma-
tion of a bulged or looped positions), and several inser-
tions/deletions that were closely confined to the unpaired
looped region where they do not induce changes in the
stem loop configuration. Strong evolutionary pressures
appear to maintain the secondary structure motif of
Sequence #2.

Borrelia plasmids contain the superfamily of protein genes
that encode Borrelia_lipoprotein_1 [20,33,23]. Signifi-
cantly, the eleven stem loop sequences are found prima-
rily between 14 and 33 bp downstream of a family of
lipoprotein_1 genes, as well sequences that encode frag-
ments of lipoprotein_1. The stem loop-associated
lipoprotein_1/lipoprotein_1  fragment amino acid
sequences are shown in Figure 3. The stem loop sequence
in Ba 1p60 is 24 bp downstream of locus BAPKO_2001, a
putative lipoprotein_1 gene encoding a 237 aa protein.
On the other hand, there is no lipoprotein_1 gene anno-
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Figure 2

RNA secondary structure models of Sequence #I| nt
sequences from a) Bb Ip17 b) Ba Ip25 and c) Bb Ip28-
4. The mfold (version 3.2) program by Zuker and Turner
[28,29] was used for secondary structure modeling. Figure 2c
shows base substitutions (marked with red arrows) that are
found in all positions in the nine plasmid sequences.

tated upstream of the stem loop repeat element in Bb
Ip56. This upstream region has high nucleotide and
amino acid sequence identities to lipoprotein_1, but the
translated lipoprotein_1 amino acid sequence contains
several stop codons (Figure 3). With plasmid Bg Ip54, the
stem loop repeat element is located 93 bp from the left
end (5' end) of the plasmid. Thus, most of the upstream
sequence of the lipoprotein_1 gene would have been lost
upon a putative translocation of lipoprotein_1. Neverthe-
less, a C-terminal 14 aa fragment is found that is highly
similar to lipoprotein_1 C-terminal sequences (Figure 3).
The Bg Ip54 34 nt stem loop is 26 bp downstream of the
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3' end of the sequence encoding the 14 aa C-terminal frag-
ment. On the other hand, there is an 18 bp overlap of the
stem loop sequence with the 3' end sequence of locus
BB_H32 encoding a lipoprotein_1 gene in Bb 1p28-3, yet
the stem loop structure is conserved with multiple base-
pair compensatory changes (e.g., compare figures a and d,
Additional file 3). Thus in cases where the stem loop has
been detected, there is phylogenetic conservation of sec-
ondary structure and conservation of its location down-
stream of or partially overlapping lipoprotein_1 genes/
lipoprotein_1 gene fragments. The high conservation of
repeat element secondary structure suggests there is evolu-
tionary pressure to maintain a subset of lipoprotein_1
genes/gene fragments with downstream sequences that
can fold into a stem loop structure. However, not all
lipoprotein_1 genes have the conserved hairpin and the
stem loop may be specific to the subset of lipoprotein-1
genes outlined above. For example, locus BAPKO_4514 in
Ba 1p28 encodes a putative 261aa lipoprotein_1, which
does not have the characteristic stem loop.

Sequence #3

Borrelia sp. encode the virulence factor termed complement
regulator-acquiring surface protein 1 (CRASP-1) [34-36].
This protein binds factor H, resulting in inhibition of com-
plement activation in mammals. CRASP-1 proteins from B.
afzelii Ip54 and other Borrelia species plasmids have been
isolated and their properties characterized [36].

Multiple copies of sequences analogous to CRASP-1 genes
have been detected in Borrelia plasmids. These include
sequences in loci BAPKO_2065- BAPKO_2070 from B.
afzelii 1p60 [see Additional file 4]. A comparison shows
that the translated aa sequence from Ba Ip60 locus
BAPKO_2068 and the aa sequence derived experimentally
from the Ba Ip54 CRASP-1 protein (whose gene locus is
termed Ba_Ip54 mmsa71) are almost identical and show
only 5 aa changes out of 241 aa. In addition, the factor H
binding motif, ,;,KDLDSENP,., is present in locus
BAPKO_2068 and the Ba lp54 CRASP-1 mmsa71 gene [see
Additional file 4]. BAPKO_2068 and Ba Ip54 mmsa71
(CRASP-1) probably are paralogous genes and the
BAPKO_2065-2070 superfamily are also paralogs result-
ing from gene duplication. However an amino acid
sequence alignment of this family of loci shows several
major insertions/deletions and amino acid substitutions
[see Additional file 4]. The bottom figure in Additional
file 4 shows a phylogram of this gene family.

Alignment of nucleotide sequences immediately down-
stream of open reading frame stop codons from
BAPKO_2065 to BAPKO_2070 and CRASP-1 genes from
Bg 1p54 zqa68 and Ba 1p54 mmsa71 (reference position,
TAG,,, BAPKO_2068) shows that these sequences are
highly conserved (Figure 4). Secondary structure mode-
ling of putative transcripts of downstream sequences
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show two stem loop structures [see Additional file 5].
Stem loop #2 is highly conserved with numerous base pair
compensatory changes, but it also has a 3' terminal oli-
gouridine. It probably represents a Rho-independent tran-
scription termination site for CRASP-1 and related
putative gene transcripts. Stem loop 1 is present in all
repeat sequences but shows variations in secondary struc-
ture (e.g., compare figures a and b in Additional file 5).
The significance of this stem loop is unknown, but it may
reside within a putative 3'UTR region. The high conserva-
tion of the stem loop 2 secondary structure contrasts with
the variability in overall amino acid sequence, differences
in factor H binding site sequence (,5,KDLDSFNP,,,) and
peptide chain length of associated protein genes [see
Additional file 4].

Figure 5 shows a diagrammatic representation of viru-
lence protein genes lipoprotein_1 and CRASP-1 with their
associated RNA motifs at the 3' ends. The amino acids
sequences of both genes vary between homologous
sequences and some gene copies are degenerate. However,
the associated RNA secondary structures are evolutionar-
ily highly conserved.

Sequence 4

Sequence #4 (Table 1) is 122 nt and has an inverted repeat
segment (positions 26245-26290 in Ba Ip60). This sequence
is not located near any protein genes. It is 233 bp down-
stream of locus BAPKO_2033, which encodes an oligopep-
tide ABC transporter, and 171 bp upstream of BAPKO_2034,
a putative lipoprotein gene. Sequence #4 from Ba lp60 is
highly conserved in Bg Ip54, but only a part of the sequence
is conserved in Bb Ip54 [see Additional file 6]. Comparison
of positions 52-122 show less than 40% similarity between
sequences of Bb Ip54 and Ba lp60. A comparison and analy-
sis of Sequence #4 and flanking regions in plasmid Bb 1p54
shows that the 122 bp sequence has been recombined in the
opposite orientation (data not shown). This resulted in a
major change in sequence between Bb p54 and Ba Ip60 and
Bg Ip54 downstream of position 53 [see Additional file 6].
The approximate 5' half of the sequences are very similar due
to the inverted repeat, which provides a similar sequence in
the opposite orientation.

Secondary structure models of the 122 nt sequence reveal
that a structural motif is conserved between the three
sequences [see Additional file 7]. The three models dis-
play two stem loops and one small stem (stem 3). Stem
loop 1 consists of the inverted repeat and has 21 contigu-
ous Watson-Crick base pairs (positions 7-52 in Ba 1p60).
The sequence in Bb 54 is not a perfect inverted repeat but
there are base compensatory changes that maintain the 21
Watson-Crick base pairs, i.e., there are two G-C pairs in Bb
Ip54 in place of two non canonical G-U pairs in Ba Ip 60
and Bg Ip54. The presence of stem loop 2 is of major sig-
nificance in that it is in a region with very low nt sequence
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identity, yet a similar stem loop is maintained but with
extensive differences in base pairing (compare stem loop
2, figures 1a and 1b, see Additional file 7). This type of
phylogenetically conserved motif is characteristic of sec-
ondary structural properties of some small non-coding
RNAs, where secondary structure and not necessarily
sequence is conserved, e.g., see [37]. This conservation
implies a functional importance for this 122 nt sequence,
which may represent a non-coding RNA.

Sequences #5

Sequence #5 is 150 nt in length and is found in plasmids
of three Borrelia species, Ba Ip60 from B. afzelii PKo, Bb
Ip54 from B. burgdorferi str. B31 and Bg Ip54 in B. garinii
PB. This sequence is highly conserved with nt sequence
identities > 95% between the three sequences. The
sequence at positions 14913-14964 from B. burgdorferi
B31 plasmid Ip54 represent a perfect inverted repeat. Sec-
ondary structure modeling shows the presence of three
stem loops in all three plasmid sequences. The structure
from Bb 1p54 is shown in Additional file 8. It is highly sta-
ble thermodynamically with a delta G of -53.3 kcal/mol.
A comparison of different plasmid structures shows three
base substitutions in stem 3 that maintain the base-pair-
ing, but two other substitutions produce A-A and A-G
non-canonical pairs (data not shown). Stem 3 is not
destabilized, but there are small decreases in the delta G
value to -43.3 kcal/mol (Bg Ip54) and -43.6 kcal/mol (Ba
1p60). In the context of surrounding base pairs, non-
canonical pairs such as A-A and A-G are present in RNA
double helices [38] and have been found to contribute to
RNA stem double helical conformations [39,40].

An analysis of Sequence #5 by the RNAz bioinformatics
program shows a predicted evolutionarily conserved RNA
structure with a mean z-value of -6.04 [see Additional file
9].

Sequence #5 is immediately downstream of loci
BAPKO_2021, BGA_19 and BB_A21. These loci represent
highly conserved proteins that have been annotated as
hypothetical proteins. However they have amino acid
sequence and putative protein domain similarities to a
plasmid partition protein (PF-49 encoded on plasmid
cp32-11 in B. burgdorferi) when analyzed by Pfam [41-44].
The aa sequence identity to PF-49 is 55% as determined
by the ExPASy Proteomics Server [45,46]. Although the
Sequence #5 stem loops reveal an interesting highly stable
structure that is linked to a conserved protein, additional
sequences homologous to Sequence #5 would be needed
to further support a proposed phylogenetic conservation
of secondary structure.

Discussion
In genomes of many bacterial species, intergenic regions
are found to be rich in repeat elements such as MITEs
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Bb_H32

BAPKO_2504
BAPKO_6028

BB E31

BAPKO_3000
BAPKO 2001
BAPKO_2519

Bb_1p56
Bglp54
BBI_34
Bb_1pl7

Bb H32

BAPKO_2504
BAPKO_6028

BB_E31

BAPKO_3000
BAPKO_2001
BAPKO_2519

Bb_1p56
Bglp54
BBI_34
Bb_lpl?7

Bb_H32

BAPKO_2504
BAPKO_6028
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AL 2
NCLYPKKDNLEKLETSVLKKLKDSLENFLEIKKIASEMMHKLLLDYQONNTNRIQTDENEL 232
77777777777777777 LVLLKYYLGKFLSTKTTVSEMMQQLLLDYQNNINNIQTDENAL 57
GSYVVALSNQIQEKYNEAERLKSEITLIYTL---- 249
KSYVIELYKQLVKKREESENLKNDIISIYTLKVMY 274
ESHTTTLONQILEKNKEGTELGGDILSTIKDLLDTY 97
ESHLTELYKQIEKKSSQATKLKNNILSISNL--~- 243
KSYVITLCNQTEEKQKEAENLENEIFTIQKKL-—- 275
EPRVITFSNQMLEKQKEAENIRNEIFTIQKNL--- 269
KLHVEEIIKQIEENQEEAEKLKSDILSTKNF---- 327
KSHANTLFNQLTKKIEESEKLKNDIYSIENL——-— 253
im e m o e LEKNDIFSIENF---- 14
KSYADTLFNQMTKKPEEALKLKNTICSIEDL---~ 263
KSHTEDICNQVSEKRKEAEKLKNDIYSIYSSL-~- 89

Alignment of amino acid sequences that have similarities to lipoprotein_| family proteins, which are linked to
Sequence #2. Peptide sequences are from eleven loci in Borrelia plasmids. Sequences identified by plasmid names are those
that have not been anotated. X denotes a stop codon found at positions 38 and 98 of Bb Ip56. Amino acid color code: red,
hydrophobic and aromatic amino acids, blue, acidic, magenta, basic, green, hydroxyl and amine containing as specified by the
EMBL-EBI CLUSTALW 2.0.8 multiple sequence alignment program [31,32].
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Figure 4
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Alignment of 3' segment of nt sequences from CRASP-1 in Bg Ip54, CRASP-1 in Ba Ip54 and CRASP-I-related
loci BAPKO_2065-2070. Adenosine residues are colored red, all other residues are green. Colors are for ease of viewing.
The EMBL-EBI CLUSTALW 2.0.8 multiple sequence alignment program was used. A star (*) denoted invariant positions.

Page 8 of 12

(page number not for citation purposes)



BMC Genomics 2009, 10:101

L

lipoprotein_1 gene RNA-like

stem loop
b.

CRASP_1 gene  RNA-like stem loop +
p—independent termination
motif

Figure 5

Diagrammatic representation of lipoprotein_|I and
CRASP-1 genes with conserved RNA structures
linked to the 3' ends of the genes.

[9,12,13,1,17], other small nucleotide sequence repeats
[11,47] and small non-coding RNA genes [48,3-7]. Here
we analyzed intergenic plasmid regions from three species
of Borrelia and have detected intergenic sequences that can
fold into conserved RNA secondary structures. Compel-
ling evidence for evolutionary conservation comes from
comparisons of homologous sequences, where numerous
base-pair changes are found to maintain stem loop struc-
tures. These stem loops are specific to plasmid sequences,
and none have been detected in Borrelia chromosomes or
in sequences from other bacterial species.

Two RNA-motifs associated with super families of protein
genes (lipoprotein_1 and CRASP-1) show a high conser-
vation of secondary structure between homologs, yet
these gene families show extensive amino acid substitu-
tions and deletions/insertions. Perhaps the cell maintains
these RNA motifs as reservoirs and as potential functional
units in the formation of new variant proteins. A major
focus in future work should be to determine if variant
CRASP-1 and lipoprotein-1 loci are translated.

Sequence #2 contains inverted repeats and is located less
than 35 bp downstream of putative lipoprotein_1 genes,
and in one case overlaps the terminal codon sequences.
This is very similar to the location of several miniature
inverted repeats, the MITEs that are present in other bac-
terial species. These inverted repeats are also found down-
stream of genes, and in some cases are found to overlap C-
terminal codons [13,14,16,17,49]. In Yersinia, genes situ-
ated upstream of MITEs appear to be regulated by these
inverted repeat elements, which are transcribed into RNA
[50]. Although Sequence #2 differs from bacterial MITEs
in not having a large nucleotide segment between inverted
repeats, the proximity of this sequence to C-terminal cod-
ing ends of genes is similar to that of several MITEs.

http://www.biomedcentral.com/1471-2164/10/101

Borrelia contains transposase genes that are found in other
bacterial species [20]. Some plasmids show a high percent-
age of transposase-specific nucleotide sequences which may
not be evident from gene annotations, e.g., the first ~ 1400 bp
of the left side of B. afzelii PKo plasmid Ip28 starting at nucle-
otide position 1 consists entirely of transposase-related
sequences (unpublished results). There may also be non-
autonomous transposable elements present in Borrelia that
are moved and replicated by transposases. As many other
bacteria contain these elements [1], it would not be surpris-
ing if Borrelia had its own set of non-autonomous small
transposable elements, possibly with their own specific sig-
natures. Repeat Sequence #2 described above should be fur-
ther analyzed for a possible relationship to bacterial MITEs.

Stem loops that are proximal to protein genes have been
reported before. Dunn et al [51] described two inverted
repeat sequences in tandem with perfect base paired stems
in B. burgdorferi in circular plasmid cp8.3. The hairpins are
adjacent to putative -35 promoter sequences of an open
reading frame. Also, an inverted repeat sequence is found
in the 5' flanking region of the bba64 (P35) gene in B.
burgdorferi [52]. However the above sequences, which are
upstream of genes in promoter regions, are unrelated to
those reported here.

Stem loop 2, from Sequence #3 is downstream of the
CRASP-1-related genes and appears to have classic Rho-inde-
pendent termination signatures in terms of size and oligo U
tail. The adjacent stem loop 1 may be part of a putative 3'
UTR of CRASP-1 and CRASP-1-related proteins. Functions
can not presently be assigned, but it should be noted that
some small RNAs in E. coli represent 3' UTR transcripts which
show different expression levels from associated mRNAs and
may have independent functions [8]. Sequences #1, #4, and
#5 appear to have typical RNA signatures with long stem
loops and bulged/looped positions. Without further charac-
terization, functional roles cannot be assigned. But of partic-
ular interest is the conservation of the bulged U at position
23 of the Sequence #1 stem loop. Many RNA secondary
structures display conserved bulged positions and these have
functional roles in RNA/RNA interactions [53,54]. Sequence
#1 does not appear to be linked to any protein genes and is
present in nine different plasmids. This poses the question of
how it was transferred and why the sequence is duplicated.
Interestingly, Sequence #4 is found in three different species,
B. burgdorferi str. B31, B. afzelii PKo and B. garinii PB but in
only one copy number. Thus this RNA motif may provide an
essential function in Borrelia, as it is found in all three species.
Once complete genome sequences of other Borrelia species
are determined, it would be of interest to see if Sequence #4
and/or its characteristic secondary structural model is also
present in these species.

Only a limited number of plasmids have been analyzed
for repeat sequences that fold into RNA motifs, but a more
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comprehensive search is necessary to assess their abun-
dance. Experimental RNA analyses such as Northern blots
needs to be done to determine if these sequences are tran-
scribed, but in view of the strong evidence for evolution-
ary conservation of secondary structure, they may
function at the RNA level. In E. coli, many intergenic
sequences are transcribed, which results in the presence of
a large number of heterogeneous small RNAs [8]. These
elements also have not been analyzed for function.

Conclusion

Small repeat sequences of Borrelia sp. linear plasmids
show numerous changes in nucleotide sequence, never-
theless, RNA-type motifs generated by these variable
sequences are highly conserved evolutionarily. Two of the
motifs may be candidates for non-coding RNAs. Two oth-
ers appear linked to C-terminal ends of super families of
protein genes/pseudogenes, but these genes display major
changes in amino acid sequence and peptide chain length.
Jacob Monod described evolutionary change in terms of
"tinkering", a trial and error process in formation of new
or modified genes with random mutations and/or ran-
dom fusion of motifs [55]. Perhaps the variable super
family virulence protein gene sequences show elements of
"tinkering", however the interesting question is why the
RNA motifs, which have also sustained mutations are well
conserved when at least some of the associated protein
genes are in a process of change or decay. We have men-
tioned the possibility of these being reservoirs for forma-
tion of variant or new proteins.

Methods
To search for conserved intergenic sequences, NCBI/
BLAST BLAST  Assembled Genomes http://

blast.ncbi.nlm.nih.gov/Blast.cgi[56] and BLAST with

microbial genomes http://www.ncbi.nlm.nih.gov/sutils/
genom_table.cgi[57] were used. Blast with microbial
genomes used a value of 10 for expect and the default fil-
ter. Nucleotide blast searches were optimized for both
highly similar sequences megablast and discontiguous
megablast. Default parameters were used. For similar
sequence megablast the parameters were: maximum tar-
get sequences, 100; automatically adjusted for short
sequences; expect, 10; word size, 28. Discontinuous
match/mismatch scores, 1,-2; gap costs, linear; filter, low
complexity regions. Discontinuous megablast: same
parameters as those of similar sequence megablast with
the exception word size, 11; match/mismatch scores, 2, -
3; gap costs, existence: 5 extension: 2.

The Swiss Institute of Bioinformatics SIB ExPASy Blast
server [46] was used to find protein homologies. The blast
program and data base used was: blastp - query against
the UniProt Knowledgebase (Swiss-Prot + TTEMBL) and
default parametes as shown under "Options" were used.
The database was the complete database.

http://www.biomedcentral.com/1471-2164/10/101

Initial searches for repeat sequences and RNA motifs were
performed by "walking" intergenic sequences from plas-
mid 1p28 of B. afzelii Pko. In addition, several regions that
contain relatively large intergenic sequenes from B. burgdor-
feri B31 and Borrelia garinii PB plasmids were also scanned.

Intergenic regions were scanned at 200 bp at a time for con-
served or partially sequences. These sequences were then
modeled for conserved RNA stem loops. Cut offs in regions
5'and 3' of a determined stem loop(s) were made when the
additional sequences failed to provide conserved stem-
loops. Reverse transcript sequences as well as overlapping
sequences at the 200 bp junctions were also structure mod-
eled. Repeat sequences were found that displayed stem-
loop structures, but these structures either were not found
conserved in homologous sequences in other Borrelia spe-
cies, or the nt sequence identity was too high and thus the
structures did not show base-pair changes. These were dis-
carded. The criteria for potential RNA identification were as
follows: 1) presence of the sequence in three or more differ-
ent plasmid regions and/or two or more Borrelia species, 2)
presence of a conserved stem loop with at least 9 contigu-
ous base-pairs, 3) two or more compensatory base changes
that maintain a stem, 4) in some cases, the presence of con-
served looped out or bulged positions.

RNA secondary structure modeling of repeat nt sequences
was performed with the Zuker and Turner mfold, version
3.2 [28,29]. Parameters used were: default window
parameter, maximum interior/bulge loop size = 30, Max-
imum asymmetry of an interior/bulge loop = 30, and no
limit on maximum distance between paired bases.

The RNAz Webserver: http://rna.tbi.univie.ac.at/cgi-bin
RNAz.cgi|58] of Gruber et al [30] was used to detect thermo-
dynamically stable and evolutionarily conserved RNA second-
ary structures from multiple sequence alignments. The
sequence alignment was ClustalW format. Default parameters
were used, except for the Reading Direction set at forward.

The ClustalW2 program http://www.ebi.ac.uk/[59] pro-
vided by the EMBL-European Bioinformatics Institute [31]
was used for amino acid and nucleotide sequence align-
ments. Parameters were as set on the EMBL-EBI web page:

http://www.ebi.ac.uk/Tools/clustalw?/index.html[32].

Random sequence analyses as described for Sequence #2
were performed using the Stothard mutagenesis program on

webpage: http://molbiol.ru/eng/scripts/01_16.html[60].

Abbreviations

nt: nucleotide; aa: amino acid; Ba 1pX: B. afzelii PKo plas-
mid 1pX; Bb 1pX: B. burgdorferi str. B31 plasmid IpX; Bg
1pX: B. garinii PB plasmid 1pX; CRASP-1: complement reg-
ulator-acquiring surface protein_1; MITEs: miniature
inverted repeat transposable elements.
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Additional file 1

Results of RNAz analysis of Sequence #1. The top table summarizes the
sequence input and RNA structure properties. The middle diagram shows
the base pairs formed between five of the repeat sequences as well as the
consensus sequence. The predicted RNA secondary structure is shown at
the bottom.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-101-S1.doc]

Additional file 2

Alignment of nucleotide sequences from eleven plasmid sequences
related to B. afzelii PKo Ip34 Sequence #2. The alignment shows invar-
iant positions as well base substitutions and deletions.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-101-S2.doc]

Additional file 3

RNA secondary structure models of Sequence #2-related nucleotide
sequences from different plasmids. Stem loop structures are highly con-
served between sequences displaying base substitutions and deletions.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-101-S3.jpeg|

Additional file 4

Amino acid sequence alignment of CRASP-1
(Ba_lp54_mmsa_71_experimentally determined) and related loci
BAPKO_2065-2070. The alignment shows conserved and modified
amino acid positions.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-101-S4.doc]

Additional file 5

RNA secondary structure models of Sequence #3 nt sequences. Second-
ary structure models show two conserved stem loops.

Click here for file
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2164-10-101-S5.doc]

Additional file 6

Alignment of Sequence #4 and related nucleotide sequences. Align-
ment shows major changes in nucleotide sequences from positions 53—
122.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-101-S6.doc]

Additional file 7

RNA secondary structure models of Sequence #4 and related
sequences. Conservation of overall secondary structure is maintained in
the presence of major changes in nucleotide sequence.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-101-S7.doc]
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Additional file 8

RNA secondary structure model of Sequence #5 from plasmid Bb Ip54.
Three stem loops are depicted that are conserved in related sequences.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-101-88.doc]

Additional file 9

RNAz analysis of Sequence #5. Conserved RNA secondary structure
parameters are shown.

Click here for file
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Acknowledgements

| thank Dr. Jorge Benach for original suggestions of analyzing Borrelia plas-
mids for RNA sequences and for constructive comments on the manu-
script. Work supported in part by Department of Molecular Genetic and

Microbiology, SUNY, Stony Brook.

References

I
2.
3.

Siguier P, Filée |, Chandler M: Insertion sequences in prokaryotic
genomes. Curr Opin Microbiol 2006, 9:526-53 1.

Delihas N: Regulation of gene expression by trans-encoded
antisense RNAs. Mol Microbiol 1995, 15:411-414.

Wassarman KM: Small RNAs in bacteria: diverse regulators of
gene expression in response to environmental changes. Cell
2002, 109:141-144.

Gottesman S: The small RNA regulators of Escherichia coli:
Roles and Mechanisms. Annual Review of Microbiology 2004,
58:303-328.

Storz G, Altuvia S, Wassarman KM: An abundance of RNA regu-
lators. Annu Rev Biochem 2005, 74:199-217.

Vogel J, Papenfort K: Small non-coding RNAs and the bacterial
outer membrane. Current Opinion in Microbiology 2006, 9:605-61 1.
Vogel |, Wagner EG: Target identification of small noncoding
RNA:s in bacteria. Curr Opin Microbiol 2007, 10:262-270.

Kawano M, Reynolds AA, Miranda-Rios J, Storz G: Detection of 5'-
and 3'-UTR-derived small RNAs and cis-encoded antisense
RNA:s in Escherichia coli. Nucleic Acids Res 2005, 33:1040-1050.
Correia FF, Inouye S, Inouye M: A family of small repeated ele-
ments with some transposon-like properties in the genome
of Neisseria gonorrhoeae. | Biol Chem 1988, 263:12194-12198.
Martin B, Humbert O, Camara M, Guenzi E, Walker |, Mitchell T,
Andrew P, Prudhomme M, Alloing G, Hakenbeck R: A highly con-
served repeated DNA element located in the chromosome
of Streptococcus pneumoniae. Nucleic Acids Res 1992,
20:3479-3483.

Bachellier S, Clement J-M, Hofnung M: Short palindromic repeta-
tive DNA elements in enterobacteria: a survey. Res Microbiol
1999, 150:627-639.

Oggioni MR, Claverys |P: Repeated extragenic sequences in
prokaryotic genomes: a proposal for the origin and dynamics
of the RUP element in Streptococcus pneumoniae. Microbiology
1999:2647-2653.

De Gregorio E, Silvestro G, Venditti R, Carlomagno MS, Di Nocera
PP: Structural organization and functional properties of min-
iature DNA insertion sequences in yersiniae. | Bacteriol 2006,
188:7876-7884.

Mazzone M, De Gregorio E, Lavitola A, Pagliarulo C, Alifano P, Di
Nocera PP: Whole-genome organization and functional prop-
erties of miniature DNA insertion sequences conserved in
pathogenic Neisseriae. Gene 2001, 278:211-222.

De Gregorio E, Abrescia C, Carlomagno MS, Di Nocera PP: The
abundant class of nemis repeats provides RNA substrates for

Page 11 of 12

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2164-10-101-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-10-101-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-10-101-S3.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2164-10-101-S4.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-10-101-S5.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-10-101-S6.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-10-101-S7.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-10-101-S8.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-10-101-S9.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16935554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16935554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7540245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7540245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12007399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12007399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15487940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15487940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15952886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15952886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17055775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17055775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17574901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17574901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15718303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2842323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1630918
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10673002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10673002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10537186
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16963573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16963573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707339

BMC Genomics 2009, 10:101

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31

32.

33.

34.

35.

36.

JP: Lyme disease-a tick-borne spirochetosis?

ribonuclease Ill in Neisseriae.
1576:39-44.

Delihas N: Enterobacterial small mobile sequences carry
open reading frames and are found intragenically - evolu-
tionary implications for formation of new peptides. Gene Reg-
ulation and Systems Biology 2007, 1:191-295.

Delihas N: Small mobile sequences in bacteria display diverse
structure/function motifs. Mol Microbiol 2008, 67:475-481.
Burgdorfer W, Barbour AG, Hayes SF, Benach JL, Grunwaldt E, Davis
Science 1982,

Biochim Biophys Acta 2002,

216:1317-1319.

Benach JL, Bosler EM, Hanrahan JP, Coleman JL, Habicht GS, Bast TF,
Cameron D), Ziegler JL, Barbour AG, Burgdorfer W, Edelman R,
Kaslow RA: Spirochetes isolated from the blood of two
patients with Lyme disease. N Engl | Med 1983, 308:740-742.
Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R,
White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty
B, Tomb JF, Fleischmann RD, Richardson D, Peterson |, Kerlavage AR,
Quackenbush }, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams
MD, Gocayne |, Weidman |, Utterback T, Watthey L, McDonald L,
Artiach P, Bowman C, Garland S, Fuji C, Cotton MD, Horst K, Rob-
erts K, Hatch B, Smith HO, Venter JC: Genomic sequence of a
Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997,
390:580-586.

Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P,
Lathigra R, Sutton G, Peterson J, Dodson R}, Haft D, Hickey E, Gwinn
M, White O, Fraser CM: A bacterial genome in flux: the twelve
linear and nine circular extrachromosomal DNAs in an infec-
tious isolate of the Lyme disease spirochete Borrelia burgdor-
feri. Mol Microbiol 2000, 35:490-516.

Glockner G, Lehmann R, Romualdi A, Pradella S, Schulte-Spechtel U,
Schilhabel M, Wilske B, Siihnel ], Platzer M: Comparative analysis
of the Borrelia garinii genome. Nucleic Acids Res 2004,
32:6038-6046.

Glockner G, Schulte-Spechtel U, Schilhabel M, Felder M, Siihnel J,
Wilske B, Platzer M: Comparative genome analysis: selection
pressure on the Borrelia vis cassettes is essential for infectiv-
ity. BMC Genomics 2006, 7:21 1.

Ostberg Y, Bunikis |, Bergstrém S, Johansson J: The etiological
agent of Lyme disease, Borrelia burgdorferi, appears to con-
tain only a few small RNA molecules. | Bacteriol 2004,
186:8472-8477.

Lybecker MC, Samuels DS: Temperature-induced regulation of
RpoS by a small RNA in Borrelia burgdorferi. Mol Microbiol 2007,
64:1075-1089.

Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman
A: Rfam: annotating non-coding RNAs in complete genomes.
Nucleic Acids Res 2005:D121-124.

Rfam [http://rfam.sanger.ac.uk/]

Zuker M: Mfold web server for nucleic acid folding and hybrid-
ization prediction. Nucleic Acids Res 2003, 31:3406-3415.

Mfold [http:/frontend.bioinfo.rpi.edu/applications/mfold/]

Gruber AR, Neubdck R, Hofacker IL, Washietl S: The RNAz web
server: prediction of thermodynamically stable and evolu-
tionarily conserved RNA structures.  Nucleic Acids Res
2007:W335-338.

Labarga A, Valentin F, Andersson M, Lopez R: Web Services at the
European Bioinformatics Institute. Nucleic Acids Res
2007:W6-WI I.

ClustalW2 [http://www.ebi.ac.uk/Tools/clustalw2/index.html]
Skare JT, Foley DM, Hernandez SR, Moore DC, Blanco DR, Miller N,
Lovett MA: Cloning and molecular characterization of plas-
mid-encoded antigens of Borrelia burgdorferi. Infect Immun
1999, 67:4407-4417.

Kraiczy P, Skerka C, Brade V, Zipfel PF: Further characterization
of complement regulator-acquiring surface proteins of Bor-
relia burgdorferi. Infect Inmun 2001, 69:7800-7809.

Kraiczy P, Hellwage ], Skerka C, Becker H, Kirschfink M, Simon MM,
Brade V, Zipfel PF, Wallich R: Complement resistance of Borre-
lia burgdorferi correlates with the expression of BbCRASP-
I, a novel linear plasmid-encoded surface protein that inter-
acts with human factor H and FHL-I and is unrelated to Erp
proteins. | Biol Chem 2004, 279:2421-2429.

Wallich R, Pattathu |, Kitiratschky V, Brenner C, Zipfel PF, Brade V,
Simon MM, Kraiczy P: Identification and functional characteri-
zation of complement regulator-acquiring surface protein |

37.

38.

39.

40.

41.

42.
43.

44,

45.

46.
47.

48.

49.

50.

51,

52.

53.

54.

55.
56.
57.
58.
59.

60.

http://www.biomedcentral.com/1471-2164/10/101

of the Lyme disease spirochetes Borrelia afzelii and Borrelia
garinii. Infect Imnmun 2005, 73:2351-9.

Schmidt M, Zheng P, Delihas N: Secondary structures of
Escherichia coli antisense micF RNA, the 5'-end of the target
ompF mRNA, and the RNA/RNA duplex. Biochemistry 1995,
34:3621-3631.

Delihas N, Andersen J, Singhal RP: Structure, function and evolu-
tion of 5-S ribosomal RNAs. Prog Nucleic Acid Res Mol Biol 1984,
31:161-190.

Dallas A, Moore PB: The loop E-loop D region of Escherichia coli
5S rRNA: the solution structure reveals an unusual loop that
may be important for binding ribosomal proteins. Structure
1997, 5:1639-1653.

Vallurupalli P, Moore PB: The solution structure of the loop E
region of the 5S rRNA from spinach chloroplasts. | Mol Biol
2003, 325:843-856.

Finn RD, Mistry ], Schuster-Bockler B, Griffiths-Jones S, Hollich V,
Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Son-
nhammer ELL, Bateman A: Pfam: clans, web tools and services.
Nucleic Acids Research 2006:D247-D251.

Pfam [http://pfam.sanger.ac.uk/search?tab=searchSequenceBlock]
Stevenson B, Tilly K, Rosa PA: A family of genes located on four
separate 32-kilobase circular plasmids in Borrelia burgdorferi
B31. | Bacteriol 1996, 178:3508-3516.

Stevenson B, Casjens S, Rosa P: Evidence of past recombination
events among the genes encoding the Erp antigens of Borre-
lia burgdorferi. Microbiology 1998, 144:1869-1879.

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A:
ExPASy: the proteomics server for in-depth protein knowl-
edge and analysis. Nucleic Acids Res 2003, 31:3784-3788.

SIB BLAST Network Service [http://expasy.org/tools/blast/]
Espéli O, Moulin L, Boccard F: Transcription attenuation associ-
ated with bacterial repetitive extragenic BIME elements. |
Mol Biol 2001, 314:375-386.

Delihas N, Forst S: MicF: an antisense RNA gene involved in
response of Escherichia coli to global stress factors. | Mol Biol
2001, 313:1-12.

Claverie JM, Ogata H: The insertion of palindromic repeats in
the evolution of proteins. Trends Biochem Sci 2003, 28:75-80.

De Gregorio E, Silvestro G, Petrillo M, Carlomagno MS, Di Nocera
PP: Enterobacterial repetitive intergenic consensus sequence
repeats in yersiniae: genomic organization and functional
properties. | Bacteriol 2005, 187:7945-7954.

Dunn JJ, Buchstein SR, Butler LL, Fisenne S, Polin DS, Lade BN, Luft
BJ: Complete nucleotide sequence of a circular plasmid from
the Lyme disease spirochete, Borrelia burgdorferi. | Bacteriol
1994, 176:2706-2717.

Gautam A, Hathaway M, McClain N, Ramesh G, Ramamoorthy R:
Analysis of the determinants of bba64 (P35) gene expression
in Borrelia burgdorferi using a gfp reporter. Microbiology 2008,
154(Pt 1):275-285.

Hjalt TA, Wagner EG: Bulged-out nucleotides in an antisense
RNA are required for rapid target RNA binding in vitro and
inhibition in vivo. Nucleic Acids Res 1995, 23:580-587.

McManus CJ, Schwartz ML, Butcher SE, Brow DA: A dynamic bulge
in the U6 RNA internal stem-loop functions in spliccosome
assembly and activation. RNA 2007, 13:2252-2265.

Jacob F: Evolution and tinkering. Science 1977, 196:1161-1166.
NCBI/BLAST BLAST Assembled Genomes [htep://
blast.ncbi.nlm.nih.gov/Blast.cgi]
BLAST with microbial genomes
sutils/genom_table.cgi]

RNAz web server [http://rna.tbi.univie.ac.at/cgi-bin/RNAz.cgi]
Pearson WR, Lipman DJ: Improved Tools for Biological

Sequence Comparison. Proc Natl Acad Sci USA 1988,
85:2444-2448.

Stothard mutagenesis server
0l l6.html]

[http://www.ncbi.nlm.nih.gov/

[http://molbiol.ru/eng/scripts/

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12031482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18086200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18086200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7043737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6828119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6828119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9403685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10672174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15547252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15576797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15576797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17501929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608160
http://rfam.sanger.ac.uk/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824337
http://frontend.bioinfo.rpi.edu/applications/mfold/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17452347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17452347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17452347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17576686
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17576686
http://www.ebi.ac.uk/Tools/clustalw2/index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10456881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11705962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14607842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14607842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14607842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15784581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7534474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7534474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6397770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6397770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9438864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9438864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9438864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12527295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381856
http://pfam.sanger.ac.uk/search?tab=searchSequenceBlock
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8655548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9695920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824418
http://expasy.org/tools/blast/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11846552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11601842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11601842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12575994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12575994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16291667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16291667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16291667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8169221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18174146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7534907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7534907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7534907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17925343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=860134
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi
http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAz.cgi
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3162770
http://molbiol.ru/eng/scripts/01_16.html
http://molbiol.ru/eng/scripts/01_16.html

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Sequence #1
	Sequence #2
	Sequence #3
	Sequence #4
	Sequences #5

	Discussion
	Conclusion
	Methods
	Abbreviations
	Additional material
	Acknowledgements
	References

