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The paucity of traditional epidemiological data during epidemic emergencies calls for alternative data streams to characterize the key
features of an outbreak, including the nature of risky exposures, the reproduction number, and transmission heterogeneities. We
illustrate the potential of Internet data streams to improve preparedness and response in outbreak situations by drawing from recent
work on the 2014-2015 Ebola epidemic in West Africa and the 2015 Middle East respiratory syndrome (MERS) outbreak in South
Korea. We show that Internet reports providing detailed accounts of epidemiological clusters are particularly useful to characterize
time trends in the reproduction number. Moreover, exposure patterns based on Internet reports align with those derived from ep-
idemiological surveillance data on MERS and Ebola, underscoring the importance of disease amplification in hospitals and during
funeral rituals (associated with Ebola), prior to the implementation of control interventions. Finally, we discuss future developments

needed to generalize Internet-based approaches to study transmission dynamics.
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Mathematical models of disease transmission have the potential
to guide public health control strategies during epidemic emer-
gencies [1]. However, transmission models require careful
ground-truthing in epidemiologic data to generate accurate in-
cidence forecasts, estimate key transmission parameters such as
the reproduction number, and assess the strength of interven-
tions required for control. Detailed epidemiological data are
typically scarce, however, during the early stages of an emerging
infection, owing to delays in identification of early transmission
events, especially in regions with limited surveillance, and reluc-
tance to rapidly release data in the public domain [2].

In the absence of detailed epidemiological information rapid-
ly available from traditional surveillance systems, alternative
data streams are worth exploring to gain a reliable understand-
ing of disease dynamics in the early stages of an outbreak. The
world of social media and the Internet offers great opportunities
to explore the performances of nontraditional surveillance sys-
tems in outbreak situations [3-6]. Of particular interest is the
reconstruction of transmission chains between successive
cases (termed “transmission trees” or “clusters”), which is crit-
ical to understand the nature of exposure events and transmis-
sion heterogeneities, and the temporal evolution of the
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reproduction number over disease generations. Indeed, the ef-
fective reproduction number estimated during the early epi-
demic growth phase quantifies the transmission potential of
an infectious pathogen, in turn informing the likelihood of
large-scale outbreaks and the intensity of control interventions
needed to stamp out the outbreak [7, 8]. Early estimates of >1.0
for the reproduction number indicate the potential for a major
outbreak, and estimates of <1.0 indicate that small transmission
chains are possible but that the infection will quickly die out be-
fore a large-scale epidemic can be generated. The reproduction
number is a dynamic and complex quantity, however, that de-
pends on local conditions that may change over the course of
the outbreak, including behavioral and environmental factors,
and control interventions.

Here we review recent efforts to collate and analyze Internet
reports from authoritative media outlets and public health au-
thorities to gain reliable information on exposure patterns and
transmission chains for emerging infections, in the near absence
of granular epidemiological reports. We illustrate the potential
of Internet data streams by drawing from recent work on the
2014-2015 Ebola epidemic in West Africa and the 2015 Middle
East Respiratory Syndrome (MERS) outbreak in South Korea
and discuss how to expand this work in the context of the
big-data revolution.

THE 2015 MERS OUTBREAK IN SOUTH KOREA

Our first example of the use of Internet-based information
draws from a recent large-scale outbreak of infection due to
MERS coronavirus, a zoonotic virus that has caused sporadic
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but recurrent outbreaks in humans since March 2012, particu-
larly in the Middle East [9]. The concentration of human infec-
tions has been linked to the local population of dromedary
camels, which may serve as an intermediate host for MERS
[10, 11]. The human-to-human transmission potential of
MERS in the community at large appears to remain subcritical;
however, outbreaks tend to be amplified via nosocomial trans-
mission [9,12,13]. Case importation from the Middle East con-
tinues to represent a substantial risk for outbreaks, as recently
exemplified by the 2015 MERS outbreak in South Korea. We
concentrate on this large outbreak, sparked by a single index
case who arrived in South Korea on 4 May 2015. The index
case developed symptoms 7 days later and did not receive a di-
agnosis of MERS until 20 May 2015, after having sought treat-
ment in several healthcare facilities [14].

In the case of the 2015 South Korean MERS outbreak, epide-
miological information was available from traditional surveil-
lance systems, but detailed, high-resolution data had to be
parsed out from online reports emanating from disparate health
authorities, including the Korean Centers for Disease Control,
the Ministry of Health and Welfare of South Korea, and the
World Health Organization [14-17]. Systematic near real-time
analysis of these online reports allowed reconstruction of MERS
transmission chains, which can be considered a single giant
cluster in this outbreak (Supplementary Figure 1) [18]. The

full transmission tree comprised 150 cases linked to nosocomial
events, where each case was classified according to occupational
and social exposure. It became clear relatively early on that all
cases were linked to exposure in the healthcare setting: 150
cases, included 107 hospital patients (including the index pa-
tient), 28 visitors or family members, 12 healthcare workers,
and 3 nonclinical staff.

The South Korean MERS outbreak comprised 3 disease gen-
erations, with the index patient representing generation 0. Esti-
mates of the reproduction number according to disease
generation can be derived by averaging the number of second-
ary cases in each generation [18]. The average reproduction
number followed a declining trend, from 30 cases in the first
generation to 3.8 in the second generation and 0.1 in the
third generation (Supplementary Figure 1). Overall, this out-
break followed a similar trajectory to previous hospital clusters
involving coronaviruses [18], with early super-spreading events
generating a disproportionate number of secondary infections,
followed by a rapid decline of the reproduction number to <1.0
in subsequent generations as infection control measures gained
strength.

THE 2014-2015 EBOLA EPIDEMIC IN WEST AFRICA

Our second example of using Internet data to characterize
transmission dynamics is based on the 2014-2015 Ebola
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Figure 1.

Set of representative clusters of Ebola transmission chains extracted from Internet reports. A, Cluster 1 (Supplementary Table 1). In March 2014, the index patient

traveled from his village to Conakry to be treated after visiting and infecting a physician. He stayed with family, 4 members of which became ill, and died in the hospital. His
body was taken back to the village for a traditional burial, where 3 uncles washed his body and soon became sick. B, Cluster 22 (Supplementary Table 1). During June—
September 2014, after the hospital from cluster 5 closed, a Monrovian patient resorted to receiving care from her church caretaker, who then went to a clinic and infected
a guard, whom a healthcare worker and father treated. The guard then infected his son, whose mother denied that it was Ebola. This led to the rest of the family becoming
infected. C, Cluster 47 (Supplementary Table 1). In October and November 2014, an imam developed symptoms in Guinea and then visited a family in Bamako, Mali. He went to
aclinic and died there, infecting a nurse, physician, and all members of the family he stayed with. His body was returned to Guinea, where at least 1 infection occurred from his
large traditional funeral. D, Cluster 62 (Supplementary Table 1). From December 2014 to February 2015, all of the cases in Liberia stemmed from one woman, who infected
family members, a neighbor, and an herbalist she went to for treatment. During the third generation of secondary cases, contact tracing efforts helped stop further spreading.

$422 o JID 2016:214 (Suppl4) e Chowell et al


http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw356/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw356/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw356/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw356/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw356/-/DC1
http://jid.oxfordjournals.org/lookup/suppl/doi:10.1093/infdis/jiw356/-/DC1

A

§4O 1
@
530
8
© 20 ﬁ
e
1]
o 10 .

.O f— - - - -

0 10 20 30 40
Cluster size
C —a—Household transmission

850 —~—Hospital transmission
% —»—Funeral transmission

80 ——

T T T T T T T T T T T T T T T T T

B —=—Number of clusters
—e—Number of cases

o5/ A
20! ]

%15} 0 ]

[=]-]

Figure 2. Characteristics of the Ebola virus disease (EVD) case clusters derived from Internet reports, January 2014—January 2016. A, The distribution of cluster sizes of
Ebola cases in our sample of clusters. B, The temporal variation in the number of clusters and total cases reported across clusters. C, The temporal changes in the distribution of
Ebola exposures through the family, hospitals, and funerals. D, The temporal variation in the maximum number of secondary cases per case across all disease generations in
each of the clusters with available information. The horizontal dashed line at A=1 is shown for reference.

outbreak in West Africa. In contrast to the MERS outbreak pre-
viously described, scarce epidemiological data were available
throughout the Ebola outbreak from traditional surveillance
systems. To alleviate the need for solid epidemiological infor-
mation and assess Ebola transmission characteristics, we de-
signed an approach to systematically collect information on
Ebola case clusters from Internet news reports published during
the outbreak [19]. Below we extend and update this work and
reflect on future developments needed to generalize Internet-
based approaches to study transmission dynamics more
broadly.

To obtain detailed information on Ebola transmission chains,
we reviewed news stories and investigative reports published be-
tween January 2014 and January 2016 and describing suspected,
probable, and confirmed cases of Ebola in the 3 most affected
countries (Guinea, Sierra Leone, and Liberia). We focused on
reports available from the World Health Organization Web
site, particularly news segments published in the section “Sto-
ries from the field on Ebola,” and Ebola situational reports, as
well as online authoritative media outlets (see Supplementary
Table 1 for a complete list of case clusters, their characteristics
and corresponding sources).

We manually reviewed and selected articles that contained
detailed stories about Ebola case clusters arising within families
or via funerals or hospital exposure. Each patient with Ebola was
assigned one or several types of exposure (family/household,
hospital, sexual, or funeral). We also analyzed Ebola transmis-
sion dynamics for a subset of clusters for which transmission
chains were explicitly described in the articles or could be in-
ferred based on chronological information on the timing of
symptoms of successive cases (Figure 1).

Based on Internet news reports, we identified 104 Ebola virus
disease (EVD) clusters between January 2014 and January 2016
originating in Guinea (18 clusters), Sierra Leone (40 clusters),
and Liberia (46 clusters). The monthly number of clusters iden-
tified from news reports tracked the total number of EVD cases
reported by traditional surveillance systems during the study
period (Spearman rho = 0.86; P <.001; Figure 2B).

Of the 104 clusters, 101 (97%) were limited to a single coun-
try. The reported cluster size ranged from 1 to 37 cases
(Figure 2A) and included up to 6 disease generations. The
mean cluster size was estimated at 3.9 (95% confidence interval
[CI], 3.1-4.7) based on fitting a negative binomial distribution.
Most of the secondary cases were linked to the the index case
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(46.5%), while only 13.9% stemmed from first-generation cases,
and 8% stemmed from second-generation cases. Overall, the
mean reproduction number was estimated to be 2.4 (95% CI,
1.4-3.4) for index cases, ranging from 0 to 28. The maximum
reproduction number was higher during the first few months
of the epidemic, prior to November 2014 (Figure 2D), but the
temporal trend in the reproduction number was not significant.

Of particular interest is the cluster of EVD cases associated
with the outbreak in Nigeria, sparked by a single importation
from Liberia on 20 July 2014 [2]. The transmission tree com-
prises 20 Ebola cases, including 11 healthcare workers, 9 of
whom acquired the virus from the index case before the disease
was identified in the country. The index case generated 12 sec-
ondary cases in the first generation, 5 in the second generation,
and 2 in the third generation. This led to a declining reproduc-
tion number, from 12 in the first generation to <1.0 for subse-
quent generations, coinciding with the implementation of
stringent contact tracing.

Overall, in our 104 clusters, exposure via family contacts
(58.6%) was the most frequent, followed by hospital-based ex-
posures (23.9%) and funerals (17.5%). The frequency of Ebola
cases arising from funeral and hospital cases peaked during the
early months of the epidemic; hospital exposure in particular
declined considerably after July 2014.

DISCUSSION

Our study offers a proof of concept that publicly available on-
line reports released in real-time by ministries of health, local
surveillance systems, the WHO, and authoritative media outlets
are useful to identify key information on exposure and trans-
mission patterns during epidemic emergencies. We illustrate
our findings with data from recent and well-publicized out-
breaks of MERS and Ebola; EVD; our Internet-based findings
on exposure patterns are in good agreement with those derived
from traditional epidemiological surveillance data, which can be
available after considerable delays [20, 21]. Our reproduction
number analysis confirms or brings new light to important as-
pects of transmission characteristics, in particular amplification
of the outbreak in hospital or funeral settings and a rapid clamp
down in transmission rates as control interventions are
strengthened.

The 2014-2015 Ebola epidemic in West Africa is a particu-
larly interesting case study to explore the relevance of digital
data streams to elucidate transmission patterns in a data-poor
environment. Publicly available epidemiological data from the
WHO were largely limited to aggregate weekly EVD case counts
at the country level. In fact, this was the primary publicly avail-
able data set that many researchers around the world used to
calibrate epidemic models. Subnational case data became avail-
able later and revealed substantial spatial heterogeneity in trans-
mission patterns across West Africa, which could have affected
epidemic forecasts and transmission potential estimates [22].

And at the time of this writing, >2.5 years after the onset of
what may be one the most important outbreaks of the decade,
detailed transmission chain data arising from official contact
tracing efforts remain scarce and limited to a few clusters [20,
21, 23]. While our study is restricted by the amount of online
information that could be processed manually, scaling-up
would be possible with more-sophisticated computational
tools that scour the Internet, social media, and other big-data
streams to identify information on a larger set of transmission
chains. These automatically sensed data sets could then be fed
into modeling studies of the type we have shown here.

In our data, the main exposure to EVD was via family con-
tacts (58.6%), which is in line with exposure patterns from prior
Ebola outbreaks [24-27] and chains of transmission for the on-
going epidemic in Guinea (February-August 2014) [20]. The
frequency of Ebola cases arising from funeral and hospital
cases in our data peaked during the early months of the epidem-
ic, which suggests that amplified transmission events in the
healthcare setting and during funeral ceremonies facilitated
the transmission of the virus across communities. Hospital ex-
posures declined considerably after July 2014, likely as a result
of the improvement in infection control measures in healthcare
settings. Similarly, funeral exposures have occurred sporadically
during the later containment phase of the epidemic. The decline
in hospital-based transmission is in line with a decline in the
proportion of healthcare workers in our data and statistics re-
trieved from the WHO situational reports [28].

Our analysis of the temporal variation in exposure patterns
provides useful information to assess the impact of control mea-
sures and behavior changes during epidemics. Our mean esti-
mate of the reproduction number for EVD is on the higher
end of published estimates based on time series analysis of out-
breaks in Central [29, 30] and West Africa [31-35] or estimates
based on transmission trees in Guinea during March-August
2014 [20].

Overall, our transmission chains for EVD and MERS clusters
indicate a rapidly declining trend in the reproduction number
over disease generations, consistent with the presence of early
super-spreading events. This pattern could result from a combi-
nation of factors, including changes in population behavior that
mitigate transmission, characteristics of and spatial heterogene-
ity in the underlying network of contact over which the disease
spreads, and control interventions. Standard compartment
model theory stipulates that an outbreak should follow exponen-
tial growth before susceptible depletion or interventions set in.
In contrast, a number of real epidemics have been shown to fol-
low subexponential growth, with the effective reproduction
number declining toward 1.0 in the first 3-5 disease generations,
even in the absence of control interventions, depletion of suscep-
tible individuals, or population behavioral changes [36]. The ob-
served transmission patterns in EVD and MERS case clusters
presented in this study, particularly the decline in the effective
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reproduction number over few disease generations, are in agree-
ment with the subexponential growth rate behavior identified
from population-level time series data [22,37,38] Temporal var-
iation in exposure patterns and reproduction number should
provide crucial information for the design and calibration of ep-
idemic models particularly when these are intended to generate
forecasts of the epidemic trajectory.

The analysis of case clusters from Internet news reports is not
exempt of limitations. First, case clusters are subject to reporting
bias. For instance, news stories could be focused on survivor or
sensationalist stories or could reflect an American-centric bias,
with a higher coverage of news reports for countries that are
more connected to the United States. Second, larger clusters
tend to be included in news reports. Finally, the amount of in-
formation in each story or news report varies, with variables
such as age and sex missing in the great majority of the clusters.
Reassuringly, while our sample of case clusters extracted from
Internet reports corresponds to just a small fraction of the
total EVD case burden in the 3 most affected countries in
West Africa, the broad epidemiological features of the Inter-
net-based data (age, timing, and exposure) were well in line
with summary statistics from health authorities.

Our work is placed in the context of a growing body of digital
epidemiology studies promoting the use of nontraditional on-
line data sources to enhance detection, forecasting, and re-
sponse to infectious disease threats [3-6] even before official
surveillance reports are released. Other applications include
HealthMap [39], a system that extracts epidemiological out-
break data from the Internet in near real time and has been
used to analyze large-scale epidemics, such as the 2010 cholera
outbreak in Haiti [40, 41]. Other studies have related temporal
changes in the implementation of control interventions extract-
ed from Internet reports with the trajectory of the Ebola epi-
demic in West Africa (eg, variation in the reproduction
number) [42]. Here we have provided further evidence that sys-
tematic collection and analysis of unstructured news from au-
thoritative sources and surveillance reports may provide a
reliable mean to assess epidemiological patterns in near real
time. It is worth pointing out that translational research in
this field has been slow or has not been properly recorded. Care-
ful documentation and feedback from end users and stakehold-
ers (eg, clinicians, policymakers, and public health officials) is
warranted to foster further development and refinement of dig-
ital epidemiology tools.

Our work on analysis of transmission patterns from Internet
sources has relied on manual extraction and analysis of text in-
formation, a task that requires a significant amount of time that
grows approximately proportionally to the amount of data in
the sample. Moreover, our search focused on Internet reports
and did not capture other digital data streams, including Twitter
and other Web-based resources. Scaling-up the amount of in-
formation used would yield more powerful and potentially

less biased analyses but would require design of novel compu-
tational tools to search, extract, analyze, interpret and visualize
unstructured data from different sources. Highly flexible open
source programs have been developed to scrape Internet data
and could be the bedrock of such computational tools, especial-
ly in light of the rapid expansion of mining packages in R [43].
Yet the development of these tools poses several challenges re-
lated to the need for systematic and integrated search, extrac-
tion, and curation of diverse Internet data sets that contribute
information about travel patterns, changes in social behavior,
exposure settings, and healthcare demand and capacity. More-
over, the analysis tool kit could include the detection of critical
events (eg, effects of interventions), sentiment analysis [5], and
visualization of temporal and spatial epidemiological patterns.
Other challenges in this process include the classification of
large volumes of data with varying levels of reliability [39].
Clearly, further computational work and careful ground-truth-
ing are needed to assess the potential of state-of-the art text-
data-mining tools to compile information that can be used to
model the dynamics of emerging and reemerging infections.
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