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Abstract

Previous experimental evidence has shown the effect of temperature on the action potential

duration (APD). It has also been demonstrated that regional cooling of the heart can prolong

the APD and promote the termination of ventricular tachycardia. The aim of this study is to

demonstrate the effect of hypothermia in suppressing cardiac arrhythmias using numerical

modeling. For this purpose, we developed a mathematical model that couples Pennes’ bio-

heat equation and the bidomain model to simulate the effect of heat on the cardiac action

potential. The simplification of the proposed heat–bidomain model to the heat–monodomain

model is provided. A suitable numerical scheme for this coupling, based on a time adaptive

mesh finite element method, is also presented. First, we performed two-dimensional numeri-

cal simulations to study the effect of heat on a regular electrophysiological wave, with the

comparison of the calculated and experimental values of Q10. Then, we demonstrated the

effect of global hypothermia in suppressing single and multiple spiral waves.

1 Introduction

Several experimental studies have demonstrated the significant effect of induced hypothermia

on cardiac and neurological outcomes for patients (see [1] for a review). Hypothermia is now

recommended as a therapeutic treatment for cases of spinal cord and brain injuries (see [2]

and [3]), and it is used as a standard treatment for cardiac arrest [4]. Numerical modeling can

provide valuable contribution for the understanding of the role of temperature effects in the

cardiac electrical dynamics, which is the main aim of this paper.

In literature, the modeling of the effects of temperature on the cardiac electrical wave has

previously been performed mostly by modifying the ionic activity. For cells, an ionic model

that considers the temperature dependence of electrical parameters was presented in [5]. It has

been shown that the variations in the cellular responses due to changes in temperature can

have profound effects on the behavior of the transmembrane potential, including action poten-

tial durations (APDs) (see [6] and [7]). In 2006, a modified FitzHugh–Nagumo monodomain

model combined with the Pennes’ equation was proposed [8] to include the influence of tem-

perature on the behavior of a simulated nerve. In 2009, this work was extended [9] by
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including the effect of temperature in the Hodgkin–Huxley model to further increase the accu-

racy of the description of this behavior. Similarly, temperature dependence was added to ionic

intestine models [10] to estimate its possible effects during surgery.

Considering the cardiac dynamics, a cell model has recently been developed [11, 12] that

includes the influence of temperature on ventricular electrical activity. Regional cooling has

been studied in different tissue sizes [12] and it has been shown that it can be suitable as an

anti-arrhythmic therapy for small tissue sizes and pro-arrhythmic therapy for large tissue sizes.

However, the effect of temperature has been included only in ionic cardiac activity. To the best

of our knowledge, the effect of global hypothermia on the cardiac electrophysiological wave,

which is the main contribution of this paper, has not been previously reported in literature.

Therefore, based on the idea of Bini and coworkers [8, 9, 11, 12], we have developed a mathe-

matical model that combines Pennes’ bioheat equation with the bidomain model. The simplifi-

cation of the proposed heat–bidomain model to the heat–monodomain model is presented. In

the proposed heat–bidomain model, heat source terms considering the Joule heating effects in

the intra- and extracellular regions are added. These source terms induced by the Joule effect

strongly depend on the gradient of the action potential, and in cardiac tissue, this potential has

a steep slope during the de- and repolarization phases; thus, the simulation becomes challeng-

ing. Owing mostly to this challenge, the spatial temperature effects on cardiac tissue have not

been previously studied. This difficulty, reported in [9], limits the generalization of the meth-

odology to the case of cardiac tissue. Therefore, in this paper, we also present a time-dependent

adaptive mesh algorithm to address this challenge. The main advantage of this method is that

it can concentrate the spatial resolution along the areas with large gradients, enabling the sim-

ulation of the heat–bidomain coupling. In this paper, numerical simulations are presented to

study the effect of temperature variations on a regular electrophysiological wave and to investi-

gate the effect of hypothermia in suppressing cardiac arrhythmias.

This paper is organized as follows. Section 2 discusses the proposed mathematical models

for the coupling of the heat with the bi- and monodomain models. The finite element discreti-

zation and the time-dependent adaptive algorithm is presented in section 3. Finally, multiple

simulations are provided in the last section, to study the effects of temperature variations on

the action potential in two-dimensional tissues.

2 Models

The bi and monodomain models are widely used in electrocardiology to simulate the spatial

propagation of the transmembrane potential in the myocardium. These classical models do

not consider the effect of temperature on the electrical wave; therefore, heat–bidomain and

heat–monodomain couplings are required.

2.1 Heat–bidomain model

In the bidomain model, the cardiac muscle is considered as two separate domains, namely, the

intracellular domain, which considers the electric potential inside the cell, and the extracellular

domain, which considers the electric potential outside the cell. The relationship between the

intra- and extracellular currents ii and ie, respectively, the potentials are ohmic and given by

Ji ¼ � Gir�i and Je ¼ � Ger�e; ð1Þ

where ϕi is the intracellular potential, ϕe is the extracellular potential, and Gi and Ge are the

intra- and extracellular conductivity tensors, respectively. Assuming that the total current is
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conserved, the following elliptic equation can be written:

r � ðGir�i þ Ger�eÞ ¼ 0: ð2Þ

At each point of the myocardial tissue, the transmembrane potential is considered as the

difference between the intra- and extracellular potentials, Vm = ϕi − ϕe. For any biological

membrane, the transmembrane current is the sum of the ionic and capacitive currents given

by

wCm
@Vm

@t
þ wIion ¼ Im; ð3Þ

where Cm is the capacitance of the cell membrane, χ is the ratio of the membrane surface area

to the volume, and according to the current conservation law, Im =r � (Girϕi).
The total ionic current across the membranes, Iion, depends on the ionic models. In this

paper, we consider two simplified two-variable ionic models. One is the Mitchell–Schaeffer

model [13], introduced in 2003, which is derived from the Fenton–Karma ionic model [14].

This model quantitatively reproduces the behavior of the ventricular action potential, and it

has similar de- and repolarization isochrons to those obtained by the more complex cardiac

ionic models. In this work, the parameters for this model are adjusted to have a fast upstroke,

which enables this model to be suitable for our study. The other is the Aliev–Panfilov model

[15], introduced in 1996, which can reproduce more realistic shapes of the cardiac action

potential as well as the APD restitution characteristic observed in experiments. This model has

widely been used for simulating specific types of cardiac arrhythmia, such as those character-

ized by rotating waves, which are also explored in this study. In this paper, we scaled both the

Mitchell–Schaeffer and the Aliev–Panfilov models to obtain physiologically interpretable val-

ues, based on the following equations. The Mitchell–Schaeffer model is given by

IionðVm;WÞ ¼
vamp

tin

� �

W
Vm � vrest

vamp

 !2

Vm � vrest
vamp

� 1

 !

þ
Vm � vrest
toutvamp

 !

;

FionðVm;WÞ ¼

1 � W
topen

for
Vm � vrest

vamp
< vgate;

�
W
tclose

for
Vm � vrest

vamp
� vgate:

8
>>>><

>>>>:

The Aliev–Panfilov model is given by

IionðVm;WÞ ¼
k

v2
amp

 !

ðVm � vrestÞðVm � vaÞðVm � vpeakÞ þ ðVm � vrestÞW;

FionðVm;WÞ ¼
1

12:9
�0 þ

m1W
Vm � vrest
vamp
þ m2

 !

� W � k
Vm � vrest

vamp

 !
Vm � vrest

vamp
� a � 1

 ! !

:

Modeling and simulation of hypothermia effects on cardiac electrical dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0216058 May 3, 2019 3 / 23

https://doi.org/10.1371/journal.pone.0216058


Assuming that the transmembrane potential Vm is ϕi − ϕe, the bidomain model considered

in this paper is given by

wCm
@Vm

@t
� r � ðGirVmÞ ¼ r � ðGir�eÞ � wIionðVm;WÞ;

r � ððGi þ GeÞr�eÞ ¼ � r � ðGirVmÞ;

@W
@t
¼ FionðVm;WÞ:

8
>>>>>><

>>>>>>:

ð4Þ

The bidomain model is not capable of studying any temperature effects. To address this

problem, we first consider Pennes’ bioheat equation [16]. This equation, first introduced in

1948, describes the transfer of heat in biological tissues, and it can be written as

rcp
@T
@t
¼ r � ðkrTÞ þ bcðT

� � TÞ ð5Þ

where k is the thermal conductivity, T is the temperature of the tissue, T� is the temperature of

the supplied arterial blood, bc is the strength of the heat sink due to blood perfusion, ρ is the

density of the tissue, and cp is the heat capacity of the tissue. However, this equation does not

consider the effect of the heat due to the propagation of the electrical wave across the tissue.

This response can be included simply by considering the Joule effect (see [17] and [8]). In our

work, we consider the heat generation rate per unit volume from an electric field in the intra-

and extracellular regions pi and pe, respectively, as

pi ¼ Ji � ð� r�iÞ and pe ¼ Je � ð� r�eÞ: ð6Þ

These equations are incorporated as internal source terms in Eq (5) as follows:

rcp
@T
@t
¼ r � ðkrTÞ þ bcðT

� � TÞ þ pi þ pe: ð7Þ

Thus, using the expressions of Ji and Je given in 1, the coupling between the heat transfer in the

tissue and the transmembrane potential in the myocardium can be given by equation

rcp
@T
@t
¼ r � ðkrTÞ þ bcðT

� � TÞ þ Gir�i � r�i þ Ger�e � r�e: ð8Þ

Nevertheless, the temperature also has a significant effect on the ionic behavior in the cells.

The above ionic models still do not consider the effect of temperature; therefore, they need to

be modified to accurately represent the effects of temperature variation on the APD. For this

purpose, we refer to the original study by Hodgkin and Huxley [18], in which the effect of the

temperature on the rate of change of the conductance variables is considered. Subsequent

modifications were performed [6], and the linear changes of the ionic conductances with

respect to temperature were also considered [7]. Based on these studies, the temperature prop-

erties can be added directly to the Mitchell–Schaeffer and Aliev–Panfilov models as

IðVm;W;TÞ ¼ ðAð1þ BðT � TaÞÞÞIionðVm;WÞ; ð9Þ

FðVm;W;TÞ ¼ ðQðT� TaÞ=10ÞFionðVm;WÞ; ð10Þ

where A, B, and Q are constants and Ta is a reference temperature, which is 37 ˚C in the case

of cardiac cells. Therefore, the proposed heat–bidomain model for the simulation of the effect
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of temperature on the cardiac tissue can be written as

wCm
@Vm

@t
� r � ðGirVmÞ ¼ r � ðGir�eÞ � wIðVm;W;TÞ;

r � ððGi þ GeÞr�eÞ ¼ � r � ðGirVmÞ;

@W
@t
¼ FðVm;W;TÞ;

rcp
@T
@t
¼ r � ðkrTÞ þ bcðT

� � TÞ þ GirðVm þ �eÞ � rðVm þ �eÞ þ Ger�e � r�e:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð11Þ

2.2 Heat–monodomain model

A widely applied method of reducing the computational time of the bidomain is to reduce the

two-by-two set of partial differential Eq (4) to a scalar partial differential equation, resulting

in the monodomain model. A similar technique can be used for the heat–bidomain model

mentioned above. However, only the heat source due to Joule effect terms in Pennes’ bioheat

Eq (8) needs to be considered in this study. Thus, we assume that the wavefront of the trans-

membrane potential is not fully curved (see [19], page 110); thus the sum of the intra- and

extracellular current densities is required to be equal to zero:

Gir�i þ Ger�e ¼ 0 or ðGi þ GeÞr�e þ GirVm ¼ 0: ð12Þ

Therefore, the heat source term in Eq (8) can be expressed as

GirðVm þ �eÞ � rðVm þ �eÞ þ Ger�e � r�e

¼ GirVm � rVm þ ðGi þ GeÞr�e � r�e þ 2Gir�e � rVm:

¼ GirVm � rVm þ Gir�e � rVm:

Under the assumption of equal anisotropy ratios, Gi = λGe and from Eq (12) we can write,

Gir�e ¼
� l

1þ l
GirVm;

which gives

GirðVm þ �eÞ � rðVm þ �eÞ þ Ger�e � r�e ¼
1

1þ l
GirVm � rVm:

Thus, the coupling of the heat–bidomain model in Eq (11) can be simplified as

wCm
@Vm

@t
� r � ðGrVmÞ ¼ � wIðVm;W;TÞ;

@W
@t
¼ FðVm;W;TÞ;

rcp
@T
@t
¼ r � ðkrTÞ þ bcðT

� � TÞ þ GrVm � rVm;

8
>>>>>>>><

>>>>>>>>:

ð13Þ

where the conductivity tensor G can be considered as 1

1þl
Gi.

Although the derivation of the heat–monodomain was presented, all our numerical simula-

tions were performed using the heat–bidomain model. In addition, the assumption in Eq (12)
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is restricted to non-curved wavefronts, which is not universal. To overcome this limitation, we

suggest, in the case of the bidomain model, the consideration of the Joule heat source gener-

ated by the membrane voltage, GirVm � rVm, instead of that generated by the intra- and

extracellular regions, Girϕi � rϕi + Gerϕe � rϕe. Therefore, the Pennes’ bioheat Eq (8) can be

replaced by

rcp
@T
@t
¼ r � ðkrTÞ þ bcðT

� � TÞ þ GirVm � rVm: ð14Þ

The numerical experiments [20] show that Eq (14) also provides appropriate results when

combined with the bidomain model. For the sake of simplicity, in the following, the heat–bido-

main model used for all numerical simulations is given by

wCm
@Vm

@t
� r � ðGirVmÞ ¼ r � ðGir�eÞ � wIðVm;W;TÞ;

r � ððGi þ GeÞr�eÞ ¼ � r � ðGirVmÞ;

@W
@t
¼ FðVm;W;TÞ;

rcp
@T
@t
¼ r � ðkrTÞ þ bcðT

� � TÞ þ GirVm � rVm:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð15Þ

All parameters for both the heat–bidomain model in Eq (15) and its simplified heat–mono-

domain version in Eq (13) are determined in the next subsection, enabling these models to be

more suitable for studying the effect of temperature on the cardiac transmembrane potential.

2.3 Model parameters setting

To study the effects of temperature on the cardiac action potential, first, we need to assign rea-

sonable values to all the necessary constants in the heat–bidomain model in Eq (11). Specifi-

cally, these parameters need to be suitable to reproduce the realistic stiffness of the slope in the

de- and repolarization phases of the cardiac transmembrane potential. This is crucial to this

study, as the source term in the heat equation in the model in Eq (11) strongly depends on the

gradient of the action potential. As shown in [21], this can be achieved using the Mitchell–

Schaeffer model and, by tuning the parameters of this model, it is possible to obtain an action

potential with nearly realistic amplitude, duration, and upstroke velocity. In this study, follow-

ing the adjustment of the Mitchell–Schaeffer parameters, the suitable values presented in

Table 1 provide an upstroke of *1 ms and a conduction velocity of *0.7 m/s at 37 ˚C. In

addition, for both the Mitchell–Schaeffer and the Aliev–Panfilov models, we use a resting

Table 1. Parameters used in the dimensional Mitchell–Schaeffer and Aliev–Panfilov models.

Mitchell–Schaeffer model Aliev–Panfilov model

constant value constant value

τin 0.05 (ms) k 8

τout 1 (ms) a 0.15

τopen 95 (ms) u1 0.2

τclose 162 (ms) u2 0.3

vgate 0.13(mV) �0 0.002

Va Vampa + Vrest(mV)

https://doi.org/10.1371/journal.pone.0216058.t001
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voltage of Vrest = −85 mV, a peak value of Vpeak = 40 mV, and a total amplitude of the action

potential as Vamp = Vpeak − Vrest, to obtain a dimensional version of the electrophysiological

wave.

In the case of the bidomain tissue model, several values for the constants are available. In

this study, we use the calibrated parameters obtained from [22] for the surface to volume ratio

χ, the capacitance Cm, and the conductances Gi and Ge (see Table 2). In [23], a full discussion

of the experimentally measured values of the conductances can be found.

For the Pennes’ bioheat Eq (8), the available experimental data for the heat properties of

cardiac tissue is limited [9]; however, the values of thermal conductivity k, density ρ, and heat

capacity cp, were experimentally determined for cardiac muscle [24]. We were unable to find

an equivalent experimental value for the metabolic and blood perfusion term bc for cardiac tis-

sue. Nevertheless, in [25] and [26], the heat due to the propagation of the electric wave in both

the olfactory and the myelinated nerve fibers was rapidly reabsorbed by the medium (*30

ms). Therefore, despite the possible differences in the behavior of myocytes and nerve cells, we

performed a parametric study to reproduce this re-absorption as performed in [9]. The values

used in Pennes’ bioheat equation are given in Table 3.

As the Mitchell–Schaeffer and Aliev–Panfilov models have not been used previously to

study temperature effects, constants A, B, and Q in Eqs (9) and (10) are not available in litera-

ture in the context of these cell models. The values chosen for the simulations, shown in

Table 4, are within the range of the experimental values found in [11].

Table 2. Parameters used in the bidomain tissue model.

constants values units

χ 2000 cm−1

Cm 1 μF/cm2

Gi 3 0

0 0:315

 !
mS/cm

Ge 2 0

0 1:35

 !
mS/cm

https://doi.org/10.1371/journal.pone.0216058.t002

Table 3. Parameters used in Pennes’ bioheat equation.

constants values units

ρ 1.084 × 10−3 kg/cm3

cp 3676 J/(kg ˚C)

k 5.6 × 10−6 J/(mscm ˚C)

bc 8 × 10−5 J/(mscm3 ˚C)

https://doi.org/10.1371/journal.pone.0216058.t003

Table 4. Temperature parameters used in the models.

Mitchell–Schaeffer model Aliev–Panfilov model

constant value constant value

A 1 A 1

B 0.07 (˚C)−1 B 0.081 (˚C)−1

Q 2.4 Q 2.4

https://doi.org/10.1371/journal.pone.0216058.t004
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3 Methods

3.1 Finite element discretization

A second-order mixed finite element formulation in both space and time was used for the

bidomain model. For space discretization quadratic polynomials were used. A second-order

fully implicit backward scheme (Gear method) was employed for the time derivative discreti-

zation. For instance, starting from Tn−1 and Tn, the Gear scheme gives

@T
@t
ðtðnþ1ÞÞ ’

3Tðnþ1Þ � 4TðnÞ þ Tðn� 1Þ

2Dt
:

Using ψv, ψϕ, ψw, and ψT as test functions, the overall algorithm for solving the proposed

heat–bidomain model on a fixed mesh is as follows.

1. Starting from the solutions at time tn−1 and tn, approximations ðVðnþ1Þ
m ; �

ðnþ1Þ

e ;Wðnþ1ÞÞ are

obtained based on the following system:

Z

O

wCm
3Vðnþ1Þ

m � 4V ðnÞm þ Vðn� 1Þ
m

2Dt
cv dOþ

Z

O

GirV
ðnþ1Þ

m � rcv dO

¼ �

Z

O

Gir�
ðnþ1Þ

e � rcv dO �
Z

O

wIðVðnþ1Þ
m ;Wðnþ1Þ;TðnÞÞcv dO;

�

Z

O

ðGi þ GeÞr�
ðnþ1Þ

e � rc� dO ¼
Z

O

GirV ðnþ1Þ
m � rc� dO;

Z

O

3Wðnþ1Þ � 4WðnÞ þWðn� 1Þ

2Dt
cw dO ¼

Z

O

FðVðnþ1Þ

m ;Wðnþ1Þ;TðnÞÞcw dO;

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð16Þ

2. Starting from Vðnþ1Þ
m , the approximation (T(n+1)) is obtained based on the following system:

Z

O

rcp
3Tðnþ1Þ � 4TðnÞ þ Tðn� 1Þ

2Dt
cT dOþ

Z

O

krTðnþ1Þ � rcT dO

¼

Z

O

bcðT� � Tðnþ1ÞÞc
ðnþ1Þ

T dOþ
Z

O

ðGirVðnþ1Þ
m � rVðnþ1Þ

m ÞcT dO:

8
>>><

>>>:

ð17Þ

3. Return to step (1).

At each time step, the Newton’s method was used to solve the non-linear system mentioned

above. The linear systems resulting from the Newton’s method were solved by iterative meth-

ods using incomplete LU decomposition (ILU) generalized minimal residual (GMRES) solver

[27] from the PETSc library [28].

3.2 Time-dependent adaptive algorithm

Although a second-order mixed finite element formulation method for both space and time

was used, the above-mentioned algorithm presents complex computational challenges. In

addition to computational difficulties related to the bidomain model, the source term in the

Pennes’ bioheat Eq (8) strongly depends on the gradients of the action potential, and as the

transmembrane potential is a traveling wave with a very sharp depolarization front in cardiac

tissues, the numerical simulation is more intensive computationally and requires extremely
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fine meshes. Therefore, an accurate numerical method is necessary for suitable simulations of

the temperature effect on the electrical waves in the human heart.

Mesh adaptative methods can be more suitable to address these difficulties. The main

advantage of these methods is that finer mesh cells can be located near the front, while a

coarser mesh can be used away from the front. Therefore, the accuracy of the prediction of the

electrical wavefronts is enhanced, and the total number of mesh elements can be greatly

reduced, along with the computational time. Several adaptive strategies have been introduced

in the context of simulating the cardiac electrical activity (see [29], [30], [31], [32] and the ref-

erences therein). An adaptive method, based on a hierarchical error estimator, was developed

for the two-dimensional simulation of electrical waves in the heart [33]. A three-dimensional

adaptive method, based on the definition of edge lengths using a solution-dependent metric,

was employed in [34]. In this work, we adopt an adaptive mesh technique based on the defini-

tion of edge lengths using a solution-dependent metric. A complete description of this tech-

nique is presented in [34, 35] and not repeated here. The computational efficiency of our

adaptive algorithm was previously assessed on single and complex cardiac wave dynamics

[36]. However, the heat–bidomain model presented in this paper requires a different time-

dependent algorithm which is described in the following.

The overall adaptive algorithm has the following steps:

1. Start from the solutions T(n), V ðn� 1Þ
m , VðnÞm , W(n−1), W(n), �

ðn� 1Þ

e , and �
ðnÞ
e and a mesh MðnÞ

at

time t(n);

time t(n);

2. Solve the system in Eq (16) on mesh MðnÞ
to obtain a first approximation of the solutions

(denoted by ~Vm
ðnþ1Þ, ~W ðnþ1Þ and ~�e

ðnþ1Þ) at time t(n+1);

3. Start from the solutions ~Vm
ðnþ1Þ, T(n−1), T(n) and the mesh MðnÞ

at time t(n);

time t(n);

4. Solve the system in Eq (17) on mesh MðnÞ
to obtain a first approximation of the solution

(denoted by ~T ðnþ1Þ) at time t(n + 1);

5. Adapt the mesh starting from mesh MðnÞ
and the solution-dependent metric calculated

from the solutions Vðn� 1Þ
m , VðnÞm , ~Vm

ðnþ1Þ, W(n−1), W(n), ~W ðnþ1Þ, �
ðn� 1Þ

e , �
ðnÞ
e , ~�e

ðnþ1Þ, T(n−1), T(n),

and ~T ðnþ1Þ to obtain a new mesh Mðnþ1Þ
;

6. Reinterpolate V ðn� 1Þ
m , VðnÞm , W(n−1), W(n), �

ðn� 1Þ

e , �
ðnÞ
e , T(n−1), and T(n) on the mesh Mðnþ1Þ

;

7. Solve the system in Eq (16) on the mesh Mðnþ1Þ
for Vnþ1

m , Wn+1, and �e
nþ1

.

8. Solve the system in Eq (17) on the mesh Mðnþ1Þ
for Tn+1.

9. Next time step: go to step 2.

According to step 5, adapting the mesh using all different numerical solutions at each time

step is more favorable, which depends on the time discretization scheme. In this work, a sec-

ond-order fully implicit backward scheme was employed for the time stepping. Thus, the

mesh is required to represent the solutions at times t(n−1), t(n), and t(n+1). We adopted a com-

mon metric on which the mesh is adapted by considering the errors on all these solutions.

Moreover step 5 indicates that 12 variables need to be considered. This is costly and therefore

to reduce the computational time, a linear combination of the different solutions can be

Modeling and simulation of hypothermia effects on cardiac electrical dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0216058 May 3, 2019 9 / 23

https://doi.org/10.1371/journal.pone.0216058


adapted. In our experience, the following four variables provide satisfactory results:

V ðn� 1Þ
m þ V ðnÞm þ

~Vm
ðnþ1Þ

3
;
Wðn� 1Þ þWðnÞ þ ~W ðnþ1Þ

3
;
�
ðn� 1Þ

e þ �
ðnÞ
e þ

~�e
ðnþ1Þ

3
and

Tðn� 1Þ þ TðnÞ þ ~T ðnþ1Þ

3
:

4 Results

In this section, we discuss the performance of the model and the numerical method introduced

in the previous sections. First, we present the effect of heat on regular electrophysiological

wave. The cardiac transmembrane potential is demonstrated at different temperatures and the

results are validated by comparing the calculated and the experimental values of Q10, which is

a commonly used quantification in biology to describe the rate of change of a system subjected

to a temperature increase of 10 ˚C. Then, the effect of hypothermia in suppressing cardiac

arrhythmias is investigated.

4.1 Effect of heat on action potential duration and conduction velocity

In this section, a two-dimensional regular wave is presented. The simulation was performed

for 750 ms on a sheet of size of 10 cm × 10 cm. The heat–bidomain model combined with the

Mitchell–Schaeffer model was used for the ionic representation. All physical parameters are

summarized in Tables 1, 2 and 3. Homogeneous Neumann conditions were applied on all

sides as boundary condition, with the following initial conditions:

Vm ¼
40

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � 5Þ
2
þ ðy � 5Þ

2

q

< 0:5;

� 85 otherwise;

8
<

:

�e ¼ 0; W ¼ 0:9:

Six different values were considered for T�: 28, 31, 34, 37, 40, and 43 ˚C. The initial tempera-

ture was set to be equal to the value of T�. A time step of t = 0.3 ms was employed in all calcula-

tions. This time step was relatively large because a fully implicit method combined with an

adaptive mesh technique was used. However, a smaller time step is be required when using

regular meshes or at T� = 43 ˚C, where the wavefront is sharper. The effects of these changes in

temperature on the APD and the rise time is shown in Fig 1. As can be seen in Fig 1a), the

increase in temperature significantly decreases the APD, while a decrease in temperature

increases it. This is the expected non-linear behavior, compared to the experimental results

presented in [37]. Fig 1b) shows that the rise time decreases when the temperature is

increased.

Several studies were performed using the Q10 temperature coefficient. The Q10 value can

be used to describe the temperature sensitivity of properties in cardiac tissue, such as the tem-

perature dependence of the APD and the conduction velocity. The experimental value of

Q10(CV) = 2.3 was determined in rat cardiomyocytes [38] and a value of Q10(APD) = 2.5 [39]

was determined through measurements of guinea pig ventricular myocytes. Using the results

of our simulations, it is possible to measure these values based on the following equations:

Q10ðAPDÞ ¼
APD27 �C

APD37 �C

� �10=ð37 �C� 27 �CÞ
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Q10ðCVÞ ¼
CV27 �C

CV37 �C

� �10=ð27 �C� 37 �CÞ

The APDs were calculated as the duration at which the voltage is maintained above −80

mV at point (6, 5). Additionally, the conduction velocity was calculated using the time differ-

ence between the first front crossing −80 mV at locations near (6, 5). Table 5 shows the

obtained calculated values, which are in good agreement with the experimentally measured

values in [38] and [39].

Furthermore, owing to the inclusion of Pennes’ bioheat equation to the bidomain model, it

is possible to study the effect of heat on the electrical wave propagation. Fig 2 shows the trans-

membrane potentials at T� = 31 ˚C and T� = 37 ˚C obtained at a single time instant. As can be

seen in the figure, the area of the excited potential is larger for the warmer tissue. This is due to

the higher propagation speed at higher temperatures. For these simulations, the Mitchell–

Schaeffer model was employed, and at 37 ˚C, the applied parameters result in a conduction

velocity of *0.7 ms and a rise time of 1.07 ms. Higher upstroke and conduction velocities

were obtained when the temperature was increased; thus, this model is suitable to demonstrate

the performance of the presented adaptive strategy. Fig 3 shows these adapted meshes at differ-

ent time instants for both T� = 31 ˚C and T� = 37 ˚C. This demonstrates that elongated ele-

ments are obtained at the appropriate position to capture the transmembrane potential wave.

The adapted mesh evolves with time, and at each time step, the adapted meshes are obtained

to accurately determine the stiffness of the depolarization wavefront, which enables the feasi-

bility of the technique for this study.

Fig 1. Effect of heat on APD and rise time. The APDs were calculated as the duration at which the voltage is maintained above −80 mV at point (6, 5). The rise

time is calculated as the time interval at which the action potential increases from −80 mV to 30 mV.

https://doi.org/10.1371/journal.pone.0216058.g001

Table 5. Measured APD, CV, and Q10 values from the simulations.

T� = 37˚C T� = 27˚C Q10 measured

APD(ms) 266 644 2.42

CV(m/s) 0.741 0.337 2.19

https://doi.org/10.1371/journal.pone.0216058.t005
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4.2 Effect of hypothermia in suppressing cardiac arrhythmias

One of the main advantages of the proposed model and the methodology used in this study is

that it enables the investigation of the effect of hypothermia and regional cooling on cardiac

tissue. For this purpose, we first study a single spiral wave generated by a similar technique

described in [36] and with an initial temperature of 37 ˚C. We consider the heat–bidomain

model combined with the Aliev–Panfilov ionic model. All physical parameters are given in

Tables 1, 2 and 3 except for a, which has a value of 0.1. The regional cooling is generated by the

source term in the model in Eq (11). In particular, we set T� to 30 ˚C in a circle of radius of 2

cm centered in the computational domain, while 37 ˚C is maintained in the rest of the domain.

The case of hypothermia is considered by setting T� to 30 ˚C in the entire computational

domain. The results are shown in Fig 4. The first column in this figure shows the transmem-

brane potential when there is no heat effect (T� = 37 ˚C), the effect of regional cooling is pre-

sented in the second column, and the last column shows the case of hypothermia. As can be

seen, the regional cooling prolongs the transmembrane potential, but it does not suppress the

spiral wave. However, the hypothermia at T� = 30 ˚C allows the termination of the spiral dur-

ing the first 1.68 s interval of the simulation.

These results were investigated in more complex spiral waves as well. The study begun with

three spiral waves and then the parameters of the Aliev–Panfilov model were set to the values

Fig 2. Time evolution of the transmembrane potential Vm. Results at a) t = 33 ms and b) t = 93 ms. Numerical

results at two different temperatures: T� = 31 ˚C (first column) and at T� = 37 ˚C (second column).

https://doi.org/10.1371/journal.pone.0216058.g002
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a = 0.1, μ1 = 0.135, and � = 0.001. The initial temperature and the value of T� were set to 37 ˚C.

After t = 600 ms we considered two cases of regional cooling, where T� was set to either 30 ˚C

or 28 ˚C in a circle of radius of 2 cm centered in the computational domain, while 37 ˚C was

maintained in the rest of the domain, and two cases of global hypothermia, where T� was set to

either 30 ˚C or T� = 28 ˚C in the entire computational domain. The transmembrane potential

in the case of regional cooling is shown in Fig 5, where the first column shows the transmem-

brane potential in the case of no temperature variation (T� = 37 ˚C), the effect of regional cool-

ing using 30 ˚C is presented in the second column, and the last column shows the effect of

regional cooling at 28 ˚C. Similarly, the transmembrane potential in the case of hypothermia is

shown in Fig 6, where the first column shows the transmembrane potential in the case of no

heat effect (T� = 37 ˚C), the first case of hypothermia (T� = 30 ˚C) is presented in the second

column, while the last column shows the second case of hypothermia (T� = 28 ˚C). As can be

seen, in the case of regional cooling (Fig 5) the spiral waves are not terminated and they are

breaking up into multiple spirals, which can be considered pro-arrhythmic. However, hypo-

thermia at T� = 30 ˚C promotes the prolongation of waves and reduces the number of spirals,

while hypothermia at T� = 28 ˚C terminates all spirals during the first 1.35 s interval of the

simulations.

To investigate if the spiral wave was terminated due to the physical boundary, we per-

formed simulations in a region of 13 cm × 13 cm. As shown in Fig 7, the hypothermia can

still suppress the spiral waves in this larger computational domain. Based on our numerical

Fig 3. Time evolution of adapted mesh. Results at a) t = 33 ms and b) t = 93 ms. Numerical results at two different

temperatures: T� = 31 ˚C (first column) and at T� = 37 ˚C (second column).

https://doi.org/10.1371/journal.pone.0216058.g003

Modeling and simulation of hypothermia effects on cardiac electrical dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0216058 May 3, 2019 13 / 23

https://doi.org/10.1371/journal.pone.0216058.g003
https://doi.org/10.1371/journal.pone.0216058


simulations, the spiral wave can remain in the tissue depending on the value of the cooling

temperature and independent of the size of the tissue. In the case of one spiral wave, a temper-

ature of 30 ˚C was sufficient to suppress the wave; however, for a more complex case, a temper-

ature of 28 ˚C was required to terminate the waves.

Fig 4. Effect of heat on a single spiral wave at five different time instances. Results at a) t = 300 ms, b) t = 450 ms, c)

t = 900 ms, d) t = 1350 ms, and e) t = 1680 ms. The first column shows results at body temperature (T� = 37 ˚C in the

tissue), the second column shows the case of a regional cooling (T� = 30 ˚C in the center of the tissue), and the third

column considers the case of hypothermia (T� = 30 ˚C in the tissue).

https://doi.org/10.1371/journal.pone.0216058.g004
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The heat induced by the Joule effect associated with the action potential is in the order of

magnitude of μ˚C. Although this change is small, it is of similar magnitude as that previously

found in nerves and intestinal tissues [8–10]. It was also found, that the heat due to the Joule

effect accumulated in these tissues at the spiral tip; therefore, it could be potentially used as an

Fig 5. Effect of heat on multiple spiral waves at five different time instances. Results at a) t = 900 ms, b) t = 1050 ms,

c) t = 1350 ms, d) t = 1650 ms, and e) t = 1950 ms. The first column shows results at body temperature (T� = 37 ˚C in

the tissue), the second column shows the results for the first case of regional cooling (T� = 30 ˚C in the center of the

tissue), and the third column shows the results of the second case of regional cooling (T� = 28 ˚C in the center of the

tissue).

https://doi.org/10.1371/journal.pone.0216058.g005
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alternative method for detecting the location of the spiral waves tips. Our simulations showed

similar results for the cardiac tissue. Fig 8 shows the temperature field, T − T�. As can be seen,

that in the case of no heat (T� = 30 ˚C), as the spiral wave evolves, an accumulation of heat

develops near the tip of the spiral wave (shown in the first column in Fig 8). However, this

Fig 6. Effect of heat on multiple spiral waves at five different time instants. Results at a) t = 900 ms, b) t = 1050 ms,

c) t = 1350 ms, d) t = 1650 ms, and e) t = 1950 ms. The first column shows results at body temperature (T� = 37 ˚C in

the tissue), the second column shows the results of the first case of hypothermia (T� = 30 ˚C in the tissue), and the

third column shows the results of the second case of hypothermia (T� = 28 ˚C in the tissue).

https://doi.org/10.1371/journal.pone.0216058.g006
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Fig 7. Effect of hypothermia (T� = 28 ˚C) on multiple spiral waves in two different tissue sizes. Results at a) t = 900

ms, b) t = 1050 ms, c) t = 1450 ms, d) t = 1950 ms, and e) t = 2550 ms. The first column shows results for the region of

10 cm × 10 cm and second column shows results for the region of 13 cm × 13 cm.

https://doi.org/10.1371/journal.pone.0216058.g007
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behavior is not present in the case of hypothermia, (T� = 28 ˚C), where the temperature in the

tissue is nearly constant in the entire computational domain (shown in the second column in

Fig 8). The accumulation of heat was not observed in the case of hypothermia, which provides

a potential explanation for the inhibition of spiral waves formation and for the promotion of

termination of these waves by hypothermia.

All numerical results were obtained using the adaptive method described in section 3.2.

The obtained meshes in the case of regional cooling and hypothermia are shown in Fig 9. As

can be seen, using the adaptive mesh, accurate numerical results can be obtained. In the case

of regional cooling (first column), the mesh is well adapted not only around the de- and repo-

larization fronts but also around the circle where T is set as 30 ˚C. Similarly, in the case of

hypothermia (second column), the adapted mesh provides noticeably better results, as only

few elements are obtained after the termination of the spirals waves.

As mentioned in the introduction, certain results in the literature include heat in the mono-

domain model via the ionic term only. Finally, we performed a comparison between the

approach in the literature and the approach developed in our work. We simply replaced T by

Fig 8. Joule effect on temperature in the case of multi-spiral waves. Results at a) t = 900 ms, b) t = 1450 ms, and c)

t = 2550 ms. The first column shows results without heat (T� = 37 ˚C in the tissue) and the second column shows the

case of hypothermia (T� = 28 ˚C).

https://doi.org/10.1371/journal.pone.0216058.g008
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T� in Eqs (9) and (10). Then, the Pennes’ bioheat equation does not affect the bidomain model

and the temperature is included via the ionic term only. We repeated the simulation for the

case of hypothermia for one spiral wave, as shown in Fig 4, and we compared it to the case

where T was replaced by T� in the ionic model. The simulations are illustrated in Fig 10. As

can be seen, there are considerable differences between the two methods as the approach in

the literature failed to terminate the spiral wave. Although our approach can be relatively more

expensive computationally, it can still be considered more logical, as it considers the heat over

Fig 9. Adapted mesh and the corresponding solutions for both regional cooling (first column) and hypothermia

(second column). a) Temperature T, b) transmembrane potential Vm, and c) the corresponding adapted mesh.

https://doi.org/10.1371/journal.pone.0216058.g009
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Fig 10. Effect of hypothermia (T� = 30 ˚C in the tissue) on a single spiral wave at five different time instances.

Results at a) t = 450 ms, b) t = 900 ms, c) t = 1350 ms, and d) t = 1680 ms. The first column shows results for the

proposed heat–bidomain model and the second column shows the results when heat is induced via the ionic model

only.

https://doi.org/10.1371/journal.pone.0216058.g010
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the entire cardiac tissue rather than just the ionic terms. However, experimental results are

needed to further validate the numerical results.

5 Conclusions and discussion

A mathematical model obtained by coupling Pennes’ bioheat equation with the bidomain

model is presented to simulate the effects of temperature variations on the cardiac APD. The

simplification of the proposed heat–bidomain model to the heat–monodomain model is also

presented. Several numerical experiments were performed. We demonstrated the effect of

temperature on the APD and the conduction velocity, and the obtained numerical results were

compared to the experimental results in the literature. We also investigated the effects of hypo-

thermia and regional cooling in suppressing cardiac arrhythmias. We clearly demonstrated

that hypothermia of short duration could terminate the spiral wave breakup. To our knowl-

edge, this is the first study that presents numerical modeling of the effect of hypothermia in

cardiac arrhythmias. As mentioned in the introduction, the effect of temperature has been

included in studies in the literature via the ionic terms. However, in our approach the effect of

spatial temperature on the cardiac electrical activity has been introduced directly. The compar-

ison between the two approaches presented in this paper demonstrates the advantages of the

proposed methodology.

The heat generated by the Joule effect was shown to accumulate at the tips of the spiral

waves under non-hypothermic conditions. Although this induced variation in temperature is

very small (* μ ˚C), such small temperature changes have previously been detected using

thin-film synthetic pyroelectric material, polyvinylidene fluoride (PVDF), when the heat pro-

duced by electrical propagation in myelinated nerve fibers was measured [26]. Therefore, there

is a potential to apply this heat-accumulation property as an alternative method for detecting

the location of spiral tips in cardiac tissues.

The coupling between the heat and the bidomain model depends on the gradient of the

transmembrane potential, which results in challenges in the simulation. Therefore, an appro-

priate numerical method is necessary for simulating the developed heat–bidomain model. In

our simulations we used a time adaptive mesh algorithm, which is suitable for this coupling.

However, any other appropriate numerical method can be used for simulating the developed

heat–bidomain model, including parallel computing on fixed meshes, high-order methods,

etc.

The overall methodology presented in this paper can be extended to further consider

important temperature effects on cardiac tissues, such as the heat generated by ionic pumps

and mechanical contraction. In this paper, a Mitchell–Schaeffer ionic model is used, which

provides a fast upstroke and reproduces similar behavior to the ventricular action potential.

However, more complex cardiac ionic models can be included to the proposed heat–bidomain

model to study the heat generated by ionic pumps that maintain ionic gradients crucial for the

action potential. Preliminary results were obtained, where the heat–monodomain model was

coupled to the Luo–Rudy model [20]. However, this type of coupled model requires different

numerical algorithms than the one used in our study, which are in the focus of a future work.

Heat generation by mechanical contraction is also important. However, it requires more com-

plex coupling where the heat–bidomain model needs to be coupled with a large-deformation

mechanical model. This is the subject of a future work, where our aim is to study the effects of

temperature and contraction on spiral wave breakup as well.
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