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Introduction
Among vertebrates, the only feature that distinguishes 

mammals is that they secrete milk. Living mammals consist 
of monotremes, marsupials, and eutherians. Monotremes only 
have oviparous mode reproduction, whereas marsupials have 
a short gestation period as they do not have the developed 
placenta and the females give birth to extremely immature 
newborns. Immediately after birth, the new-born kangaroo 
(a marsupial) enters the mother’s pouch to reach one of the 
nipples, and then, milk secretion starts from only this nipple 
among the four nipples. Eutherian females have a developed 
placenta to have a long gestation, and mothers deliver rather 
developed newborns. In eutherians, the nutrients are trans-
ferred from mother to fetus via placenta, while in marsupials 
the immature newborns receive them by suckling the mother’s 
milk after birth.

It is hypothesized that during the evolutionary step from the 
ancestor to mammals, the mammary gland had evolved from 
the ancestral gland to establish lactation step by step, while the 
milk-specific components, including caseins, α-lactalbumin, 
β-lactoglobulin, and lactose, would have been acquired at some 
stages during this evolutionary step.

It is speculated that the milk-specific proteins were acquired 
by molecular evolution from the other proteins, which existed in 
body fluids or body tissues in mammals and other vertebrates. 
It is interesting to perform investigations for determining the 
proteins from which milk-specific proteins evolved. Kawasaki 
(2011) of Pennsylvania State University has hypothesized that 
αs-, β-, and κ-caseins evolved from the enamel proteins in 
teeth, as the ancestral proteins, based on a comparison of these 
DNA sequences.

It has been found that α-lactalbumin, a milk protein, resem-
bles lysozyme, which exists in body fluids, such as tear, saliva, and 
milk, in primary and tertiary structures (McKenzie and White, 
1991). Lysozyme is an enzyme that cleaves the bond between 
N-acetylglucosamine and muramic acid of peptidoglycans 
of bacterial cell walls. It functions as an anti-infective agent 
against pathogenic bacteria. As lysozyme is an older protein 
that exists in avian egg whites and mammalian body fluids, the 
mammalian-specific new protein, α-lactalbumin, should have 
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Implications

• α-Lactalbumin, a milk protein, had evolved from 
c-type lysozyme, and it can associate with β4-
galactosyltransferase 1 within the mammary epithe-
lial cells. The acceptor specificity of this enzyme had 
changed by result of the association of two proteins to 
biosynthesize lactose.

• Milk oligosaccharides are biosynthesized in addition to 
lactose, as lactose is the preferred acceptor for several 
glycosyltransferases present within the cells.

• Milk oligosaccharides can be utilized as signifi-
cant energy sources for the suckling neonates of 
 monotremes and marsupials even though the small 
intestinal mucosa of  these neonates lacks a lactase.

• Lactose has become a predominant saccharide in the 
milk of  most eutherians, resulting from a hypothet-
ical increase in the expression level of  α-lactalbumin. 
It has become to be utilized as a significant energy 
source for the suckling neonates, as a result of  the 
acquisition of  lactase in the microvilli of  small intes-
tinal cells.

• Human milk contains the oligosaccharides at signifi-
cant concentrations along with lactose among euther-
ians, which should be advantageous for symbiosis with 
beneficial colonic bifidobacteria.
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evolved from lysozyme. As described below, α-lactalbumin as-
sembles with β4-galactosyltransferase 1 for the biosynthesis of 
lactose, a specific carbohydrate in milk (Rajput et  al., 1996). 
There is no doubt that the acquisition of α-lactalbumin and 
caseins is a critical event for the establishment of lactation 
during the evolutionary step.

α-Lactalbumins
α-Lactalbumins are metalloproteins capable of binding dif-

ferent monovalent, divalent, and trivalent metal ions such as 
Na+, K+, Ca2+, Sc3+, Mn2+, Co2+, Cu2+, Zn2+, Sr2+, Y3+, Cd2+, 
Ba3+, Pb2+, La3+, Tb3+, and Lu3+ (Segawa and Sugai, 1983; 
Permyakov et  al, 1985; Acharya et  al, 1989; Ren et  al, 1993; 
Aramini et  al, 1996). Among them, Ca2+ is most commonly 
found in crystal structures of α-lactalbumins. There are two 
different Ca2+-binding sites, namely high affinity Ca2+-binding 
and low affinity Ca2+-binding sites. High affinity Ca2+-binding 
site is constituted of four or five aspartic acid residues with a 
conserved motif  of Lys-x-x-Asp-Asp-Asp/Glu/Asn-x-x-Asp-
Asp, consisting so-called “Ca2+-binding elbow”. Calcium ion 
is not necessarily required for the lactose synthase activity, 
but it significantly increase folding stability of α-lactalbumin. 
Ca2+-binding elbow is not found in mammalian lysozymes, 
but it is conserved among bird lysozymes. Hence, Nitta et al. 
(1988) assumed that gene duplication had occurred on Ca2+-
binding-lysozyme-coding gene before splitting of avian and 
mammalian lineages and that the Ca2+-binding lysozyme is the 
ancestral protein of α-lactalbumin. It is also assumed that Ca2+-
binding ability was lost during evolution among conventional 
(non-Ca2+ binding) lysozymes in mammalian species (Grobler 
et al., 1994). Whereas Zn2+ was found in α-lactalbumin to bind 
in a cleft located at the opposite side of Ca2+-binding elbow. 
Catalytic Glu-35 and Asp-53 are located in the corresponding 
cleft in c-type lysozyme (Ren et al., 1993). In fact, Zn2+ can bind 
to the cleft in c-type lysozyme, resulting in inhibition of the 
enzymatic, i.e., bacterial peptide glycan—hydrolyzing activity 
(Ostroy et al., 1978). Binding of Zn2+ induces a time-dependent 
conformational change in α-lactalbumin, and this change pro-
motes lactose synthase activity (Kronman et al., 1981).

Urashima et al. (2012) proposed the hypothesis of the mo-
lecular evolution of c-type lysozyme to α-lactalbumin, as 
shown in Figure 1. The mutation occurred in lysozyme at posi-
tions that were not the catalytic sites, and then, at a time, the 
hypothetical bifunctional protein, which had two functions 
of lysozyme and α-lactalbumin, was acquired. As a result of 
the additional mutation Asp-53 was lost, while Glu-35 was re-
tained. This protein should be equivalent to α-lactalbumins of 
living monotremes. Subsequently, Glu-35 was lost due to the 
additional mutation. The resulting proteins must be equiva-
lent to α-lactalbumins of living marsupials and eutherians. It 
has been reported that the hypothetical bifunctional protein-
like protein was separated from the milk of an echidna caught 
on Kangaroo Island, South Australia, in 1974 (Hopper and 
McKenzie, 1974), but this finding has never been reproduced 
since that time.

Which Is Predominant in Milk, 
Oligosaccharides or Lactose? What Is the 

Selective Advantage?
After the acquisition of α-lactalbumin, lactose biosyn-

thesis started as a result of the assembly of this protein with 
β4-galactosyltransferase 1 within lactating mammary epithe-
lial cells. As lactose could be the preferential acceptor substrate 
for several glycosyltransferases within these cells, the biosyn-
thesis of milk oligosaccharides, which have a lactose unit at 
the reducing end, had also begun (Messer and Urashima, 2002; 
Urashima et al., 2022). Lactose can be co-present with oligo-
saccharides in the milk. The predominance of lactose or milk 
oligosaccharides in the carbohydrate fractions of milk should 
be controlled by the rate of lactose and milk oligosaccharide 
biosynthesis. If  the reaction rate for the synthesis of lactose 
is greater than that of milk oligosaccharides, due to the in-
creased expression of α-lactalbumin, lactose should be more 
abundant than oligosaccharides in milk. However, if  the reac-
tion rate for the biosynthesis of milk oligosaccharides is higher 
than that of lactose because of the higher activities of sev-
eral glycosyltransferases, oligosaccharides should be predom-
inant in milk. We assume that the key to this proposition is 
the balance between the expression rate of α-lactalbumin and 
several glycosyltransferases in the mammary epithelial cells 
(Figure 2).

The ratio of milk oligosaccharides to lactose in milk varies 
among mammalian species (Messer and Urashima, 2002;  
Urashima et  al., 2022). Milk oligosaccharides predominate 
over lactose in milk of monotremes (Messer and Kerry, 1973), 
marsupials (Messer and Green, 1979), and some species of 
eutherians, including bears (Urashima et al., 2020b), and rac-
coons (Urashima et al., 2020b), while lactose is a predominant 
saccharide in most eutherian milk (Jenness et al., 1964). In add-
ition, even in the species in which lactose is predominant, the 
concentration of oligosaccharides in milk varies among spe-
cies. For example, its concentration in human milk is 100 times 
higher than that in bovine milk (Urashima et al., 2013). The 
speculation that the concentrations of oligosaccharides and 
lactose in milk must be related to their physiological signifi-
cance for neonates has attracted attention toward mammalian 
evolution and the living strategies of animals, such as the en-
ergy acquisition method by the suckling neonates and symbi-
osis with colonic beneficial bacteria.

Small Intestinal Digestion of Milk 
Oligosaccharides in Suckling Young of 

Monotremes and Marsupials
The milk oligosaccharides of monotremes of platypus and 

echidna as well as monotremes, including tammar wallaby, red 
kangaroo, common brushtail possum, koala, common wombat, 
eastern quoll, and tiger quoll, were characterized (Urashima 
et al., 2017). Some of them are shown in Figure 3a and b.

As described above, milk oligosaccharides predominate over 
lactose in the milk of monotremes and marsupials during the 
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early and middle lactation stages. Because the milk oligosac-
charides predominate over lactose in the milk of monotremes, 
which have the ancestral characters not shared by other mam-
mals, such as oviparous mode reproduction and cervical ribs 
and dwarf nephrons, it is hypothesized that the oligosaccharides 
would have been predominant saccharides in milk or milk-like 
secretions of primitive early mammals (Messer and Urashima, 
2002; Urashima et al., 2022).

What is the physiological significance of milk oligosacchar-
ides for the suckling young monotremes and marsupials? In 
eutherian neonates, lactose, a dominant saccharide in milk, is 
hydrolyzed by lactase in the microvilli of small intestinal epi-
thelial cells to glucose and galactose; these monosaccharides 
are absorbed by the active transport system into the cell when 
they drink their mother’s milk. Glucose enters the circulation 
to be utilized as an energy source, whereas galactose is con-
verted to glucose in the liver (Figure 4, left). This indicates that 
lactose is a significant energy source for young eutherians.

It has been found that the activity of small intestinal lac-
tase is lacking in the suckling neonates of monotremes (Stewart 
et  al., 1983) and Macropodidae marsupials (Walcott and 
Messer, 1980; Crisp et al., 1987; Messer et al., 1989), including 
wallabies and kangaroos. Based on the histochemical observa-
tions of the small intestine of the suckling echidna and tammar 
wallaby, it has been concluded that the milk oligosaccharides 
are transported by pinocytosis or endocytosis into the small 
intestinal cells and then enclosed in the supranuclear vacuoles 
to be moved to the lysosome. Oligosaccharides are then hydro-
lyzed to monosaccharides by lysosomal acidic glycosidases 
(Messer and Urashima, 2002; Urashima et al., 2022) (Figure 4, 
right). It is speculated that the oligosaccharides are utilized by 
the suckling young as an energy source; this mechanism must 
differ from that of lactose in milk by the eutherian young.

However, the activity of small intestinal lactase has been 
found in suckling brushtail possums during the late lactation 
stage (Crisp et al., 1989). It is no contradiction that lactose pre-
dominates over oligosaccharides in the mother’s milk of this 
species during late lactation (Crisp et al., 1989). This suggests 
that young brushtail possums mainly use milk oligosaccharides 
as the energy source in the early and middle suckling stages, 
while preferring lactose only in the late stage. The finding that 
small intestinal lactase activity exists even over a short period 
in the suckling brushtail possum indicates that this enzyme 
should have been acquired in the common ancestor of mar-
supials and eutherians after the divergence of monotremes. It 
is hypothesized that the young macropods and other marsu-
pials in most suckling stages should prefer oligosaccharides to 
lactose in the mother’s milk as their energy source (Urashima 
et al., 2022).

What is the advantage for young marsupial in utilising oligo-
saccharides rather than lactose in milks? The osmotic pressure 
of the aqueous solution of the saccharides is expressed by the 
equation of πv = nRT (π: osmotic pressure in the solution, v: 
volume of the solution, n: molar concentration of the solute, R: 
proportional constant, T: absolute temperature). The osmotic 
pressure was proportional to the molar concentration of the so-
lution. Because the molecular weights of monosaccharides and 
disaccharides are 180 and 342, respectively, the osmotic pres-
sure of the aqueous solution of the monosaccharide is twice 
that of the disaccharide at 180 g/L. This shows that the osmotic 
pressure is less in the aqueous solution of the milk oligosac-
charides than in that of lactose at the same w/w concentration. 
Even though tammar milk contains 14% of carbohydrates at 
the greatest concentration during the lactation period (Messer 
and Green, 1979), the osmotic pressure must not be so high be-
cause the milk predominantly contains oligosaccharides. The 

Figure 1. Schematic picture of a hypothetical scenario of molecular evolution from lysozyme to α-lactalbumin in complex with β4-galactosyl transferase 1 (lac-
tose synthase). Based on the observation that monotremes maintain Glu-35, a catalytic residue of lysozymes, it is hypothesized that acquisition of amino acid 
residues such as Gln-117 (hydrogen bonding to β4-galactosyl transferase 1), Phe-33 (forming the hydrophobic pocket), and His-34 (forming the hydrophobic 
pocket, hydrogen bounding to donor glucose) had occurred before entire loss of catalytic activity of lysozyme. From this point of view, presence of a hypothet-
ical bifunctional lysozyme/lactose synthase can be predicted, but no clear evidence has yet found to date.
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predominance of oligosaccharides over lactose is advantageous 
for marsupial and monotreme young because they function as 
a significant energy source in milk without stress due to high 
osmotic pressure (Urashima et al., 2022). It has been hypothe-
sized that this is a selective advantage for survival.

Physiological Significance of Human Milk 
Oligosaccharides

It is hypothesized that lactose has become a dominant sac-
charide in eutherian milk, probably due to the increase in the 
expression of α-lactalbumin in the lactating mammary glands. 
As described above, suckling eutherian young use lactose, but 
not milk oligosaccharides, as the energy source in the mother’s 
milk using intestinal lactase in the digestive tract. Even though 
milk oligosaccharides are not digested and absorbed in the 
small intestine in most eutherian young, the milk of some eu-
therian species, including humans, still contains milk oligo-
saccharides as well as the predominant lactose. Why have the 
oligosaccharides remained in the eutherian milk, even though 
these have no direct nutritional values for the young? What are 

the advantages of eutherian milk containing oligosaccharides? 
We discuss this by highlighting a human case.

Human mature milk and colostrum contain 1.2-1.3% and 
2.2-2.4% of human milk oligosaccharides (HMOs), respect-
ively, that constitute the third largest solid component after 
lactose and lipid. Accordingly, while lactose accounts for 80 % 
of the free carbohydrates in human milk, HMOs comprise up 
to 20% of them (Urashima et al., 2018, 2020a). Thus, HMOs 
should not be considered a minor component of human milk. 
To date, approximately 250 molecular species of HMOs have 
been separated, and more than 200 chemical structures have 
been characterized (Urashima et al., 2018, 2020a). Some of the 
representing HMOs are shown in Figure 3c.

A large portion of HMOs reach the colon without being ab-
sorbed in the small intestine (Engfer et al., 2000). HMOs thus do 
not serve as the energy source for suckling infants, but instead 
they exert a prebiotic effect in the intestine and promote the 
growth of specific beneficial bacteria, especially bifidobacteria. 
Indeed, the colonic microbiota of breastfed infants is generally 
rich in HMO-utilizing bifidobacteria (Sakanaka et al., 2019), 
which is directly linked with the increased amounts of short-
chain fatty acids and aromatic lactic acids in the intestines, 

Figure 2. Which is predominant in milk, oligosaccharides or lactose? Lactose is biosynthesized as a result of the assembly of α-lactalbumin with β4-
galactosyltransferase 1 within lactating mammary epithelial cells. As lactose could be the preferential acceptor substrate for several glycosyltransferases within 
these cells, the milk oligosaccharides, which have a lactose unit at the reducing end, are also biosynthesized. When the reaction rate for the synthesis of lactose 
is higher than that of milk oligosaccharides, due to the high expression of α-lactalbumin, lactose should be more abundant than oligosaccharides in milk, such 
as the eutherians. However, when the reaction rate for the biosynthesis of milk oligosaccharides is higher than that of lactose because of the higher activities of 
several glycosyltransferases, oligosaccharides should be predominant in milk, such as the monotremes and marsupials.
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thereby consequently benefiting human health (Henrick et al., 
2021; Laursen et al., 2021). Thus, the ability of bifidobacteria 
to utilize HMOs should provide a selective advantage for the 
bacteria to establish a symbiotic relationship with humans 
during infancy.

The metabolic pathways of bifidobacteria to utilize HMOs 
have been elucidated mainly in the last 20 years. The enzymes 
characterized so far to be responsible for HMO utilization 
are 1,2-α-l-fucosidase, 1,3/4-α-l-fucosidase, 2,3/6-α-sialidase, 
lacto-N-biosidase, 1,4-β-galactosidase, 1,3-β-galactosidase, 
and β-N-acetylglucosaminidase, galacto-N-biose/lacto-N-
biose I  phosphorylase, fucosyllactose transporters, LNnT 
transporter, and transporters for HMO degradation products 
(Kitaoka et  al., 2012; Sakanaka et  al., 2020). The homology 
search against the public database showed that the homo-
logues of the HMO utilization genes are almost exclusively 
present in the genomes of infant-type Bifidobacterium species 
(Bifidobacterium bifidum, Bifidobacterium longum subspecies 
infantis, Bifidobacterium breve, B.  longum subspecies longum, 
Bifidobacterium catenulatum subspecies kashiwanohense, and 
Bifidobacterium pseudocatenulatum). However, the preva-
lence of these homologues considerably varies not only at 
the species level but also at the strain level, indicating that 
bifidobacteria have acquired the varied HMO utilization path-
ways during co-evolution with humans (Sakanaka et al., 2020). 
In general, B.  bifidum and B.  longum subspecies infantis are 

equipped with the gene sets required for utilization of almost 
all HMO molecules. By contrast, B. breve, B. longum subspe-
cies longum, B.  catenulatum subspecies kashiwanohense, and 
B. pseudocatenulatum carry a limited set of genes required for 
HMO utilization.

Infant-type bifidobacteria have evolved two distinct strategies 
to digest HMOs, i.e., extracellular or intracellular glycosidase-
dependent types (Figure 5). Bifidobacterium bifidum has a rep-
ertoire of cell wall-anchored glycosidases, which enables the 
bacterium to liberate mono- and disaccharides Neu5Ac, fucose, 
lactose, lacto-N-biose I [Galβ1-3GlcNAc, LNB], Gal, GlcNAc, 
and Glc from HMOs outside the cells (Sakanaka et al., 2020). 
Interestingly, B.  bifidum does not utilize all of the degraded 
sugars and leaves Neu5Ac, fucose, and Gal unconsumed due 
to the lack of specific transporters for these monosaccharides. 
Accordingly, B. bifidum shares these HMO degradation prod-
ucts with other Bifidobacterium species (Tannock et al., 2013; 
Gotoh et al., 2018; Ojima et al., 2022a).

Bifidobacterium longum subspecies infantis harbors a 
set of ATP-binding cassette transporters and intracellular 
glycosidases that confers to this subspecies the ability to utilize 
almost all HMO molecules (Sela et al., 2008; Sakanaka et al., 
2020). Thus, the subspecies internalizes the HMO molecules 
as intact forms (Figure 5). This apparently selfish character-
istic enables B. longum subspecies infantis to dominate the in-
fant colonic microbiota in some cases (Olm et al., 2022). This 

Figure 3. Some milk oligosaccharides of monotremes, marsupials and humans. CGF symbols are used to express individual monosaccharides and different 
colors, whereas different glycosidic linkages are shown by different bond angles in a clockwise format; i.e., 1-2 linkage (6:00 O’clock), 1-3 (7:30), 1-4 (9:00), and 
1-6 (10:30). On the other hand, α and β anomers are represented by thin and thick lines, respectively.
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subspecies is however hardly detected in infants living indus-
trialized lifestyles, and in that case, B. breve, whose HMO util-
ization ability is essentially limited to LNT and LNnT only, is 
alternatively found to dominate the infant colonic microbiota 
regardless of the presence of B. bifidum. A recent study showed 
that B. breve outcompetes B. longum subspecies infantis when 
B. breve arrives earlier than or at the same time as B. longum 
subspecies infantis in an HMO-rich environment (Ojima et al., 
2022a). B. breve can benefit from the so-called priority effect by 
utilizing the monosaccharides, especially fucose, that are tran-
siently released from B. longum subspecies infantis cells during 
the HMO assimilation process (Figure 5).

B.  longum subspecies longum, B.  catenulatum subspecies 
kashiwanohense, and B. pseudocatenulatum adopt intracellular 
HMO degradation strategy, similar to B.  longum subspecies 
infantis (Sakanaka et  al., 2020). One exception is lacto-N-
biosidase-positive strains of B.  longum subspecies longum, 
which degrades LNT extracellularly into LNB and lactose like 
B. bifidum (Yamada et al., 2017). Bifidobacterium catenulatum 
subspecies kashiwanohense and B.  pseudocatenulatum show 
overlapping but distinct preferences for fucosyl HMOs over 
other HMOs, for which specific variants of fucosyllactose 
transporter homologues are responsible (Sakanaka et al., 2019; 
Ojima et  al., 2022b). The functions (specificities) of HMO 

transporters are thus distantly diversified even in the same 
homologue. Although we have no clear answer to the question 
about how diversified specificities of the transporter influence 
the microbiota formation and composition, it may be an evolu-
tionary consequence within Bifidobacterium species/strains to 
share the niches in the infant colonic ecosystems.

In addition, it has been recently found that HMOs have the 
other biological functions of inhibiting infections by patho-
genic viruses and bacteria, strengthening colonic barrier func-
tion, coordinating immune modulation, and stimulating brain 
activity (Urashima et al., 2020a, 2021b). Determination of the 
biofunction of human milk oligosaccharides will contribute 
to the development of the functional foods, including infant 
formulas.

Few Cases Where Oligosaccharides 
Predominate Over Lactose in the Milk of 

Eutherian Species
As described above, oligosaccharides predominate over lac-

tose in the milk of monotremes and marsupials, while lactose 
predominates over milk oligosaccharides in most eutherians. 
However, some eutherian milks have been found to contain 
oligosaccharides as the predominant carbohydrates (Messer 

Figure 4. The digestion and absorption of lactose by the suckling neonates of eutherians (left) and those of milk oligosaccharides by the neonates of mono-
tremes and marsupials (right). (left) The predominant saccharide, lactose, is split into glucose and galactose by an intestinal lactase (neutral β-galactosidase) 
which is located in the membrane of the microvilli of the small intestinal brush border, and these monosaccharides are transported into the enterocytes via spe-
cific mechanisms. (right) The milk oligosaccharides enter the small intestinal cells via pinocytosis or endocytosis and are transferred to lysosomes in which they 
are hydrolyzed to monosaccharides by several glycosidases.



20 Animal Frontiers

and Urashima, 2002; Urashima et al., 2020b). Among the spe-
cies of Caniformia including bears (Urashima et  al., 2020b), 
seals (Urashima et  al., 2020b), raccoons (Urashima et  al., 
2020b), minks (Urashima et al., 2020b), and skunks (Urashima 
et  al., 2020b), oligosaccharides predominate over lactose in 
their milk; in contrast, it has been shown that lactose is more 
dominant than the oligosaccharides in house dog milk (Bubb 
et al., 1999). The high ratio of milk oligosaccharides to lactose 
is conspicuous in Ursidae and Procyonidae (Urashima et al., 
2020b).

Why is the high ratio of milk oligosaccharides to lactose 
in milk specific to Caniformia species among eutherians? 
The suckling neonates of some species prefer fats to carbohy-
drates in the milk as energy for their growth, while those of 
other species prefer carbohydrates. The preference for fats or 

carbohydrates varies depending on species. It has been shown 
that there is a tendency for high-fat milk to contain low concen-
trations of saccharides. The high dependence on milk fats as an 
energy source should be related to the adaptive strategy for the 
living environment of the animals. The lactation period is very 
short in seals, and the rate of increase in the body weight of the 
young is high. This is because the young must store subcuta-
neous fat quickly, to maintain their body temperature in marine 
environments. High-fat milk is preferable for rapid storage of 
subcutaneous fat in young sucklings (Oftedal et al., 1996).

Bears deliver newborns when they are hibernating with 
fasting. Although mothers do not have access to food, they 
must maintain a constant blood sugar concentration for 
survival. Due to this physiological restriction, it is advanta-
geous for the female to give a high concentration of fats in 

Figure 5. HMO utilization strategies adopted by B. bifidum, B. longum subspecies infantis, and B. breve, representative infant-type species. B. bifidum extra-
cellularly degrades HMOs into mono- and disaccharides to assimilate them by itself  and also to cross-feed the degradants to other bifidobacteria, especially 
B. breve. B. longum subspecies infantis import almost all HMOs as intact forms and degrades them inside the cells. During the process, a part of the liberated 
monosaccharides is expelled from the cell, which is then preferentially utilized by B. breve to outcompete B. longum subspecies infantis. The ability of B. breve 
to rapidly consume mono- and disaccharides in the environment could partly explain the dominance and prevalence of B. breve in the intestine of breastfed in-
fants living the industrialized lifestyle (Ojima et al., 2022a; Olm et al., 2022).
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milk to the young rather than the carbohydrates, as they have 
a rich store in subcutaneous fat (Ramsay and Dunbrack 1986; 
Oftedal et al., 1993).

The seal and bear young do not depend on milk carbohy-
drates for energy. It is assumed that a decrease in the concentra-
tions of milk carbohydrates is achieved by the downregulation 
of α-lactalbumin in lactating mammary glands. It is hypothe-
sized that as the activities of the glycosyltransferases remain in 
the mammary glands, the milk produced contains a high ratio 
of oligosaccharides to lactose.

Thus, the reason for the high ratio of oligosaccharides to 
lactose in milk is explained in the case of bears and seals, but 
it may not be applicable for raccoons and other Caniformia 
species. Why is this notable feature specific to the Caniformia 
species of Carnivora among eutherians? This aspect must be 
explored in future studies. Only the milk of domestic dogs 
contains more lactose than oligosaccharides among the 
Caniformia. This might be related to their breeding by humans 
(Urashima et al., 2021a).

Conclusion
α-Lactalbumin, which evolved from c-type lysozyme, assem-

bled with β4-galactosyltransferase 1, and then, the substrate 
specificity of the transferase changes from GlcNAc to Glc to 
cause the biosynthesis of lactose. As the lactose unit is the pref-
erential substrate for some glycosyltransferases in mammary 
cells, the biosynthesis of milk oligosaccharides, which have a 
reducing lactose unit, takes place. Because oligosaccharides 
predominate over lactose in the milk of living monotremes, 
which have the primitive features of the ancestor mammals, it 
is hypothesized that oligosaccharides had predominated over 
lactose in the milk-like secretions of the common ancestors.

The predominant milk oligosaccharides are utilized as 
an energy source in suckling monotremes and marsupials. 
Oligosaccharides are absorbed by pinocytosis or endocytosis in 
the small intestinal cells and then transported into the lysosome 
to be digested by the actions of acid glycosidases to monosac-
charides. This metabolic system of oligosaccharides differs from 
that of lactose, which uses lactase in the microvilli of epithelial 
cells in eutherian neonates. The predominance of oligosacchar-
ides over lactose is advantageous for marsupial and monotreme 
young because they function as a significant energy source in 
milk without stress due to high osmotic pressure.

In eutherians, lactose has become a dominant saccharide in 
milk, probably because of an increase in the expression levels of 
α-lactalbumin in lactating mammary glands. Lactose is utilized 
as an energy source for neonates by digestion with lactase in the 
small intestine. It is speculated that lactase was acquired in the 
common ancestor of marsupials and eutherians, but only eu-
therians and some marsupial species at the late lactation stage 
use this enzyme for the digestion of lactose in milk. In euther-
ians, milk oligosaccharides are not absorbed and utilized as en-
ergy sources by the young, but they remain in the milk. Their 
concentrations in milk vary depending on the eutherian species.

In humans, milk oligosaccharides are utilized by 
bifidobacteria to colonize the infant colon. By the acquisition 
of genes encoding transporters and glycosidases, which are 
related to the metabolism of human milk oligosaccharides, 
infant-type bifidobacteria could colonize the colon.

A trial to explore the evolution of lactose and milk oligo-
saccharides will continue along with the evolution of the 
mammals.
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